collections.v 46 KB
Newer Older
1
(* Copyright (c) 2012-2017, Coq-std++ developers. *)
2 3 4 5
(* This file is distributed under the terms of the BSD license. *)
(** This file collects definitions and theorems on collections. Most
importantly, it implements some tactics to automatically solve goals involving
collections. *)
6
From stdpp Require Export orders list.
7 8
(* FIXME: This file needs a 'Proof Using' hint, but the default we use
   everywhere makes for lots of extra ssumptions. *)
9

10 11
Instance collection_equiv `{ElemOf A C} : Equiv C := λ X Y,
   x, x  X  x  Y.
12 13
Instance collection_subseteq `{ElemOf A C} : SubsetEq C := λ X Y,
   x, x  X  x  Y.
14 15 16
Instance collection_disjoint `{ElemOf A C} : Disjoint C := λ X Y,
   x, x  X  x  Y  False.
Typeclasses Opaque collection_equiv collection_subseteq collection_disjoint.
17

18 19
(** * Setoids *)
Section setoids_simple.
20
  Context `{SimpleCollection A C}.
Robbert Krebbers's avatar
Robbert Krebbers committed
21

22
  Global Instance collection_equivalence: @Equivalence C ().
23
  Proof.
24 25 26 27
    split.
    - done.
    - intros X Y ? x. by symmetry.
    - intros X Y Z ?? x; by trans (x  Y).
28
  Qed.
29 30 31 32 33 34
  Global Instance singleton_proper : Proper ((=) ==> ()) (singleton (B:=C)).
  Proof. apply _. Qed.
  Global Instance elem_of_proper :
    Proper ((=) ==> () ==> iff) (@elem_of A C _) | 5.
  Proof. by intros x ? <- X Y. Qed.
  Global Instance disjoint_proper: Proper (() ==> () ==> iff) (@disjoint C _).
35
  Proof.
36
    intros X1 X2 HX Y1 Y2 HY; apply forall_proper; intros x. by rewrite HX, HY.
37
  Qed.
38 39 40 41 42 43 44 45 46 47 48 49
  Global Instance union_proper : Proper (() ==> () ==> ()) (@union C _).
  Proof. intros X1 X2 HX Y1 Y2 HY x. rewrite !elem_of_union. f_equiv; auto. Qed.
  Global Instance union_list_proper: Proper (() ==> ()) (union_list (A:=C)).
  Proof. by induction 1; simpl; try apply union_proper. Qed.
  Global Instance subseteq_proper : Proper (() ==> () ==> iff) (() : relation C).
  Proof.
    intros X1 X2 HX Y1 Y2 HY. apply forall_proper; intros x. by rewrite HX, HY.
  Qed.
End setoids_simple.

Section setoids.
  Context `{Collection A C}.
50

51 52 53
  (** * Setoids *)
  Global Instance intersection_proper :
    Proper (() ==> () ==> ()) (@intersection C _).
54
  Proof.
55
    intros X1 X2 HX Y1 Y2 HY x. by rewrite !elem_of_intersection, HX, HY.
56
  Qed.
57 58
  Global Instance difference_proper :
     Proper (() ==> () ==> ()) (@difference C _).
59
  Proof.
60
    intros X1 X2 HX Y1 Y2 HY x. by rewrite !elem_of_difference, HX, HY.
61
  Qed.
62
End setoids.
Robbert Krebbers's avatar
Robbert Krebbers committed
63

64 65 66 67 68
Section setoids_monad.
  Context `{CollectionMonad M}.

  Global Instance collection_fmap_proper {A B} :
    Proper (pointwise_relation _ (=) ==> () ==> ()) (@fmap M _ A B).
69
  Proof.
70 71
    intros f1 f2 Hf X1 X2 HX x. rewrite !elem_of_fmap. f_equiv; intros z.
    by rewrite HX, Hf.
72
  Qed.
73 74 75 76 77 78 79 80 81 82 83 84
  Global Instance collection_bind_proper {A B} :
    Proper (((=) ==> ()) ==> () ==> ()) (@mbind M _ A B).
  Proof.
    intros f1 f2 Hf X1 X2 HX x. rewrite !elem_of_bind. f_equiv; intros z.
    by rewrite HX, (Hf z z).
  Qed.
  Global Instance collection_join_proper {A} :
    Proper (() ==> ()) (@mjoin M _ A).
  Proof.
    intros X1 X2 HX x. rewrite !elem_of_join. f_equiv; intros z. by rewrite HX.
  Qed.
End setoids_monad.
85

86 87 88 89 90
(** * Tactics *)
(** The tactic [set_unfold] transforms all occurrences of [(∪)], [(∩)], [(∖)],
[(<$>)], [∅], [{[_]}], [(≡)], and [(⊆)] into logically equivalent propositions
involving just [∈]. For example, [A → x ∈ X ∪ ∅] becomes [A → x ∈ X ∨ False].

91 92 93
This transformation is implemented using type classes instead of setoid
rewriting to ensure that we traverse each term at most once and to be able to
deal with occurences of the set operations under binders. *)
94 95 96 97 98 99 100
Class SetUnfold (P Q : Prop) := { set_unfold : P  Q }.
Arguments set_unfold _ _ {_}.
Hint Mode SetUnfold + - : typeclass_instances.

Class SetUnfoldSimpl (P Q : Prop) := { set_unfold_simpl : SetUnfold P Q }.
Hint Extern 0 (SetUnfoldSimpl _ _) => csimpl; constructor : typeclass_instances.

101
Instance set_unfold_default P : SetUnfold P P | 1000. done. Qed.
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
Definition set_unfold_1 `{SetUnfold P Q} : P  Q := proj1 (set_unfold P Q).
Definition set_unfold_2 `{SetUnfold P Q} : Q  P := proj2 (set_unfold P Q).

Lemma set_unfold_impl P Q P' Q' :
  SetUnfold P P'  SetUnfold Q Q'  SetUnfold (P  Q) (P'  Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_and P Q P' Q' :
  SetUnfold P P'  SetUnfold Q Q'  SetUnfold (P  Q) (P'  Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_or P Q P' Q' :
  SetUnfold P P'  SetUnfold Q Q'  SetUnfold (P  Q) (P'  Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_iff P Q P' Q' :
  SetUnfold P P'  SetUnfold Q Q'  SetUnfold (P  Q) (P'  Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_not P P' : SetUnfold P P'  SetUnfold (¬P) (¬P').
Proof. constructor. by rewrite (set_unfold P P'). Qed.
Lemma set_unfold_forall {A} (P P' : A  Prop) :
  ( x, SetUnfold (P x) (P' x))  SetUnfold ( x, P x) ( x, P' x).
Proof. constructor. naive_solver. Qed.
Lemma set_unfold_exist {A} (P P' : A  Prop) :
  ( x, SetUnfold (P x) (P' x))  SetUnfold ( x, P x) ( x, P' x).
Proof. constructor. naive_solver. Qed.

(* Avoid too eager application of the above instances (and thus too eager
unfolding of type class transparent definitions). *)
Hint Extern 0 (SetUnfold (_  _) _) =>
  class_apply set_unfold_impl : typeclass_instances.
Hint Extern 0 (SetUnfold (_  _) _) =>
  class_apply set_unfold_and : typeclass_instances.
Hint Extern 0 (SetUnfold (_  _) _) =>
  class_apply set_unfold_or : typeclass_instances.
Hint Extern 0 (SetUnfold (_  _) _) =>
  class_apply set_unfold_iff : typeclass_instances.
Hint Extern 0 (SetUnfold (¬ _) _) =>
  class_apply set_unfold_not : typeclass_instances.
Hint Extern 1 (SetUnfold ( _, _) _) =>
  class_apply set_unfold_forall : typeclass_instances.
Hint Extern 0 (SetUnfold ( _, _) _) =>
  class_apply set_unfold_exist : typeclass_instances.

Section set_unfold_simple.
  Context `{SimpleCollection A C}.
  Implicit Types x y : A.
  Implicit Types X Y : C.

  Global Instance set_unfold_empty x : SetUnfold (x  ) False.
149
  Proof. constructor. split. apply not_elem_of_empty. done. Qed.
150 151 152 153 154 155 156 157 158 159 160 161 162
  Global Instance set_unfold_singleton x y : SetUnfold (x  {[ y ]}) (x = y).
  Proof. constructor; apply elem_of_singleton. Qed.
  Global Instance set_unfold_union x X Y P Q :
    SetUnfold (x  X) P  SetUnfold (x  Y) Q  SetUnfold (x  X  Y) (P  Q).
  Proof.
    intros ??; constructor.
    by rewrite elem_of_union, (set_unfold (x  X) P), (set_unfold (x  Y) Q).
  Qed.
  Global Instance set_unfold_equiv_same X : SetUnfold (X  X) True | 1.
  Proof. done. Qed.
  Global Instance set_unfold_equiv_empty_l X (P : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  SetUnfold (  X) ( x, ¬P x) | 5.
  Proof.
163 164
    intros ?; constructor. unfold equiv, collection_equiv.
    pose proof not_elem_of_empty; naive_solver.
165 166 167
  Qed.
  Global Instance set_unfold_equiv_empty_r (P : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  SetUnfold (X  ) ( x, ¬P x) | 5.
168 169 170 171
  Proof.
    intros ?; constructor. unfold equiv, collection_equiv.
    pose proof not_elem_of_empty; naive_solver.
  Qed.
172 173 174
  Global Instance set_unfold_equiv (P Q : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
    SetUnfold (X  Y) ( x, P x  Q x) | 10.
175
  Proof. constructor. apply forall_proper; naive_solver. Qed.
176 177 178
  Global Instance set_unfold_subseteq (P Q : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
    SetUnfold (X  Y) ( x, P x  Q x).
179
  Proof. constructor. apply forall_proper; naive_solver. Qed.
180 181
  Global Instance set_unfold_subset (P Q : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
182
    SetUnfold (X  Y) (( x, P x  Q x)  ¬∀ x, Q x  P x).
183
  Proof.
184 185
    constructor. unfold strict.
    repeat f_equiv; apply forall_proper; naive_solver.
186
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
187 188 189
  Global Instance set_unfold_disjoint (P Q : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
    SetUnfold (X  Y) ( x, P x  Q x  False).
190
  Proof. constructor. unfold disjoint, collection_disjoint. naive_solver. Qed.
191 192 193 194 195 196

  Context `{!LeibnizEquiv C}.
  Global Instance set_unfold_equiv_same_L X : SetUnfold (X = X) True | 1.
  Proof. done. Qed.
  Global Instance set_unfold_equiv_empty_l_L X (P : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  SetUnfold ( = X) ( x, ¬P x) | 5.
197
  Proof. constructor. unfold_leibniz. by apply set_unfold_equiv_empty_l. Qed.
198 199
  Global Instance set_unfold_equiv_empty_r_L (P : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  SetUnfold (X = ) ( x, ¬P x) | 5.
200
  Proof. constructor. unfold_leibniz. by apply set_unfold_equiv_empty_r. Qed.
201 202 203
  Global Instance set_unfold_equiv_L (P Q : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
    SetUnfold (X = Y) ( x, P x  Q x) | 10.
204
  Proof. constructor. unfold_leibniz. by apply set_unfold_equiv. Qed.
205 206 207 208 209 210 211 212 213 214
End set_unfold_simple.

Section set_unfold.
  Context `{Collection A C}.
  Implicit Types x y : A.
  Implicit Types X Y : C.

  Global Instance set_unfold_intersection x X Y P Q :
    SetUnfold (x  X) P  SetUnfold (x  Y) Q  SetUnfold (x  X  Y) (P  Q).
  Proof.
215 216
    intros ??; constructor. rewrite elem_of_intersection.
    by rewrite (set_unfold (x  X) P), (set_unfold (x  Y) Q).
217 218 219 220
  Qed.
  Global Instance set_unfold_difference x X Y P Q :
    SetUnfold (x  X) P  SetUnfold (x  Y) Q  SetUnfold (x  X  Y) (P  ¬Q).
  Proof.
221 222
    intros ??; constructor. rewrite elem_of_difference.
    by rewrite (set_unfold (x  X) P), (set_unfold (x  Y) Q).
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
  Qed.
End set_unfold.

Section set_unfold_monad.
  Context `{CollectionMonad M} {A : Type}.
  Implicit Types x y : A.

  Global Instance set_unfold_ret x y : SetUnfold (x  mret y) (x = y).
  Proof. constructor; apply elem_of_ret. Qed.
  Global Instance set_unfold_bind {B} (f : A  M B) X (P Q : A  Prop) :
    ( y, SetUnfold (y  X) (P y))  ( y, SetUnfold (x  f y) (Q y)) 
    SetUnfold (x  X = f) ( y, Q y  P y).
  Proof. constructor. rewrite elem_of_bind; naive_solver. Qed.
  Global Instance set_unfold_fmap {B} (f : A  B) X (P : A  Prop) :
    ( y, SetUnfold (y  X) (P y)) 
    SetUnfold (x  f <$> X) ( y, x = f y  P y).
  Proof. constructor. rewrite elem_of_fmap; naive_solver. Qed.
  Global Instance set_unfold_join (X : M (M A)) (P : M A  Prop) :
    ( Y, SetUnfold (Y  X) (P Y))  SetUnfold (x  mjoin X) ( Y, x  Y  P Y).
  Proof. constructor. rewrite elem_of_join; naive_solver. Qed.
End set_unfold_monad.

Robbert Krebbers's avatar
Robbert Krebbers committed
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
Section set_unfold_list.
  Context {A : Type}.
  Implicit Types x : A.
  Implicit Types l : list A.

  Global Instance set_unfold_nil x : SetUnfold (x  []) False.
  Proof. constructor; apply elem_of_nil. Qed.
  Global Instance set_unfold_cons x y l P :
    SetUnfold (x  l) P  SetUnfold (x  y :: l) (x = y  P).
  Proof. constructor. by rewrite elem_of_cons, (set_unfold (x  l) P). Qed.
  Global Instance set_unfold_app x l k P Q :
    SetUnfold (x  l) P  SetUnfold (x  k) Q  SetUnfold (x  l ++ k) (P  Q).
  Proof.
    intros ??; constructor.
    by rewrite elem_of_app, (set_unfold (x  l) P), (set_unfold (x  k) Q).
  Qed.
  Global Instance set_unfold_included l k (P Q : A  Prop) :
    ( x, SetUnfold (x  l) (P x))  ( x, SetUnfold (x  k) (Q x)) 
    SetUnfold (l  k) ( x, P x  Q x).
  Proof.
    constructor; unfold subseteq, list_subseteq.
    apply forall_proper; naive_solver.
  Qed.
End set_unfold_list.

270 271 272
Ltac set_unfold :=
  let rec unfold_hyps :=
    try match goal with
273 274 275 276 277 278 279
    | H : ?P |- _ =>
       lazymatch type of P with
       | Prop =>
         apply set_unfold_1 in H; revert H;
         first [unfold_hyps; intros H | intros H; fail 1]
       | _ => fail
       end
280 281 282
    end in
  apply set_unfold_2; unfold_hyps; csimpl in *.

283 284
(** Since [firstorder] already fails or loops on very small goals generated by
[set_solver], we use the [naive_solver] tactic as a substitute. *)
285
Tactic Notation "set_solver" "by" tactic3(tac) :=
286
  try fast_done;
287 288 289 290 291 292 293 294 295 296 297 298 299
  intros; setoid_subst;
  set_unfold;
  intros; setoid_subst;
  try match goal with |- _  _ => apply dec_stable end;
  naive_solver tac.
Tactic Notation "set_solver" "-" hyp_list(Hs) "by" tactic3(tac) :=
  clear Hs; set_solver by tac.
Tactic Notation "set_solver" "+" hyp_list(Hs) "by" tactic3(tac) :=
  clear -Hs; set_solver by tac.
Tactic Notation "set_solver" := set_solver by idtac.
Tactic Notation "set_solver" "-" hyp_list(Hs) := clear Hs; set_solver.
Tactic Notation "set_solver" "+" hyp_list(Hs) := clear -Hs; set_solver.

300 301 302 303
Hint Extern 1000 (_  _) => set_solver : set_solver.
Hint Extern 1000 (_  _) => set_solver : set_solver.
Hint Extern 1000 (_  _) => set_solver : set_solver.

304

305 306
(** * Collections with [∪], [∅] and [{[_]}] *)
Section simple_collection.
307
  Context `{SimpleCollection A C}.
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
  Implicit Types x y : A.
  Implicit Types X Y : C.
  Implicit Types Xs Ys : list C.

  (** Equality *)
  Lemma elem_of_equiv X Y : X  Y   x, x  X  x  Y.
  Proof. set_solver. Qed.
  Lemma collection_equiv_spec X Y : X  Y  X  Y  Y  X.
  Proof. set_solver. Qed.

  (** Subset relation *)
  Global Instance collection_subseteq_antisymm: AntiSymm () (() : relation C).
  Proof. intros ??. set_solver. Qed.

  Global Instance collection_subseteq_preorder: PreOrder (() : relation C).
  Proof. split. by intros ??. intros ???; set_solver. Qed.

  Lemma subseteq_union X Y : X  Y  X  Y  Y.
  Proof. set_solver. Qed.
  Lemma subseteq_union_1 X Y : X  Y  X  Y  Y.
  Proof. by rewrite subseteq_union. Qed.
  Lemma subseteq_union_2 X Y : X  Y  Y  X  Y.
  Proof. by rewrite subseteq_union. Qed.

  Lemma union_subseteq_l X Y : X  X  Y.
  Proof. set_solver. Qed.
  Lemma union_subseteq_r X Y : Y  X  Y.
  Proof. set_solver. Qed.
  Lemma union_least X Y Z : X  Z  Y  Z  X  Y  Z.
  Proof. set_solver. Qed.

  Lemma elem_of_subseteq X Y : X  Y   x, x  X  x  Y.
  Proof. done. Qed.
  Lemma elem_of_subset X Y : X  Y  ( x, x  X  x  Y)  ¬( x, x  Y  x  X).
  Proof. set_solver. Qed.

  (** Union *)
345 346
  Lemma union_subseteq X Y Z : X  Y  Z  X  Z  Y  Z.
  Proof. set_solver. Qed.
347 348 349 350 351 352
  Lemma not_elem_of_union x X Y : x  X  Y  x  X  x  Y.
  Proof. set_solver. Qed.
  Lemma elem_of_union_l x X Y : x  X  x  X  Y.
  Proof. set_solver. Qed.
  Lemma elem_of_union_r x X Y : x  Y  x  X  Y.
  Proof. set_solver. Qed.
353
  Lemma union_mono_l X Y1 Y2 : Y1  Y2  X  Y1  X  Y2.
354
  Proof. set_solver. Qed.
355
  Lemma union_mono_r X1 X2 Y : X1  X2  X1  Y  X2  Y.
356
  Proof. set_solver. Qed.
357
  Lemma union_mono X1 X2 Y1 Y2 : X1  X2  Y1  Y2  X1  Y1  X2  Y2.
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
  Proof. set_solver. Qed.

  Global Instance union_idemp : IdemP (() : relation C) ().
  Proof. intros X. set_solver. Qed.
  Global Instance union_empty_l : LeftId (() : relation C)  ().
  Proof. intros X. set_solver. Qed.
  Global Instance union_empty_r : RightId (() : relation C)  ().
  Proof. intros X. set_solver. Qed.
  Global Instance union_comm : Comm (() : relation C) ().
  Proof. intros X Y. set_solver. Qed.
  Global Instance union_assoc : Assoc (() : relation C) ().
  Proof. intros X Y Z. set_solver. Qed.

  Lemma empty_union X Y : X  Y    X    Y  .
  Proof. set_solver. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
374 375 376 377 378
  Lemma union_cancel_l X Y Z : Z  X  Z  Y  Z  X  Z  Y  X  Y.
  Proof. set_solver. Qed.
  Lemma union_cancel_r X Y Z : X  Z  Y  Z  X  Z  Y  Z  X  Y.
  Proof. set_solver. Qed.

379
  (** Empty *)
Robbert Krebbers's avatar
Robbert Krebbers committed
380 381
  Lemma empty_subseteq X :   X.
  Proof. set_solver. Qed.
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
  Lemma elem_of_equiv_empty X : X     x, x  X.
  Proof. set_solver. Qed.
  Lemma elem_of_empty x : x    False.
  Proof. set_solver. Qed.
  Lemma equiv_empty X : X    X  .
  Proof. set_solver. Qed.
  Lemma union_positive_l X Y : X  Y    X  .
  Proof. set_solver. Qed.
  Lemma union_positive_l_alt X Y : X    X  Y  .
  Proof. set_solver. Qed.
  Lemma non_empty_inhabited x X : x  X  X  .
  Proof. set_solver. Qed.

  (** Singleton *)
  Lemma elem_of_singleton_1 x y : x  {[y]}  x = y.
  Proof. by rewrite elem_of_singleton. Qed.
  Lemma elem_of_singleton_2 x y : x = y  x  {[y]}.
  Proof. by rewrite elem_of_singleton. Qed.
  Lemma elem_of_subseteq_singleton x X : x  X  {[ x ]}  X.
  Proof. set_solver. Qed.
  Lemma non_empty_singleton x : ({[ x ]} : C)  .
  Proof. set_solver. Qed.
  Lemma not_elem_of_singleton x y : x  {[ y ]}  x  y.
  Proof. by rewrite elem_of_singleton. Qed.

  (** Disjointness *)
  Lemma elem_of_disjoint X Y : X  Y   x, x  X  x  Y  False.
  Proof. done. Qed.

  Global Instance disjoint_sym : Symmetric (@disjoint C _).
  Proof. intros X Y. set_solver. Qed.
  Lemma disjoint_empty_l Y :   Y.
  Proof. set_solver. Qed.
  Lemma disjoint_empty_r X : X  .
  Proof. set_solver. Qed.
  Lemma disjoint_singleton_l x Y : {[ x ]}  Y  x  Y.
  Proof. set_solver. Qed.
  Lemma disjoint_singleton_r y X : X  {[ y ]}  y  X.
  Proof. set_solver. Qed.
  Lemma disjoint_union_l X1 X2 Y : X1  X2  Y  X1  Y  X2  Y.
  Proof. set_solver. Qed.
  Lemma disjoint_union_r X Y1 Y2 : X  Y1  Y2  X  Y1  X  Y2.
  Proof. set_solver. Qed.

  (** Big unions *)
  Lemma elem_of_union_list Xs x : x   Xs   X, X  Xs  x  X.
428 429
  Proof.
    split.
430 431
    - induction Xs; simpl; intros HXs; [by apply elem_of_empty in HXs|].
      setoid_rewrite elem_of_cons. apply elem_of_union in HXs. naive_solver.
Ralf Jung's avatar
Ralf Jung committed
432
    - intros [X [Hx]]. induction Hx; simpl; [by apply elem_of_union_l |].
433
      intros. apply elem_of_union_r; auto.
434
  Qed.
435

436 437 438 439 440 441 442
  Lemma union_list_nil :  @nil C = .
  Proof. done. Qed.
  Lemma union_list_cons X Xs :  (X :: Xs) = X   Xs.
  Proof. done. Qed.
  Lemma union_list_singleton X :  [X]  X.
  Proof. simpl. by rewrite (right_id  _). Qed.
  Lemma union_list_app Xs1 Xs2 :  (Xs1 ++ Xs2)   Xs1   Xs2.
443
  Proof.
444 445
    induction Xs1 as [|X Xs1 IH]; simpl; [by rewrite (left_id  _)|].
    by rewrite IH, (assoc _).
446
  Qed.
447
  Lemma union_list_reverse Xs :  (reverse Xs)   Xs.
448
  Proof.
449 450 451
    induction Xs as [|X Xs IH]; simpl; [done |].
    by rewrite reverse_cons, union_list_app,
      union_list_singleton, (comm _), IH.
452
  Qed.
453 454
  Lemma union_list_mono Xs Ys : Xs * Ys   Xs   Ys.
  Proof. induction 1; simpl; auto using union_mono. Qed.
455
  Lemma empty_union_list Xs :  Xs    Forall ( ) Xs.
456
  Proof.
457 458 459
    split.
    - induction Xs; simpl; rewrite ?empty_union; intuition.
    - induction 1 as [|?? E1 ? E2]; simpl. done. by apply empty_union.
460
  Qed.
461

462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
  Section leibniz.
    Context `{!LeibnizEquiv C}.

    Lemma elem_of_equiv_L X Y : X = Y   x, x  X  x  Y.
    Proof. unfold_leibniz. apply elem_of_equiv. Qed.
    Lemma collection_equiv_spec_L X Y : X = Y  X  Y  Y  X.
    Proof. unfold_leibniz. apply collection_equiv_spec. Qed.

    (** Subset relation *)
    Global Instance collection_subseteq_partialorder :
      PartialOrder (() : relation C).
    Proof. split. apply _. intros ??. unfold_leibniz. apply (anti_symm _). Qed.

    Lemma subseteq_union_L X Y : X  Y  X  Y = Y.
    Proof. unfold_leibniz. apply subseteq_union. Qed.
    Lemma subseteq_union_1_L X Y : X  Y  X  Y = Y.
    Proof. unfold_leibniz. apply subseteq_union_1. Qed.
    Lemma subseteq_union_2_L X Y : X  Y = Y  X  Y.
    Proof. unfold_leibniz. apply subseteq_union_2. Qed.

    (** Union *)
    Global Instance union_idemp_L : IdemP (@eq C) ().
    Proof. intros ?. unfold_leibniz. apply (idemp _). Qed.
    Global Instance union_empty_l_L : LeftId (@eq C)  ().
    Proof. intros ?. unfold_leibniz. apply (left_id _ _). Qed.
    Global Instance union_empty_r_L : RightId (@eq C)  ().
    Proof. intros ?. unfold_leibniz. apply (right_id _ _). Qed.
    Global Instance union_comm_L : Comm (@eq C) ().
    Proof. intros ??. unfold_leibniz. apply (comm _). Qed.
    Global Instance union_assoc_L : Assoc (@eq C) ().
    Proof. intros ???. unfold_leibniz. apply (assoc _). Qed.

    Lemma empty_union_L X Y : X  Y =   X =   Y = .
    Proof. unfold_leibniz. apply empty_union. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
497 498 499 500 501
    Lemma union_cancel_l_L X Y Z : Z  X  Z  Y  Z  X = Z  Y  X = Y.
    Proof. unfold_leibniz. apply union_cancel_l. Qed.
    Lemma union_cancel_r_L X Y Z : X  Z  Y  Z  X  Z = Y  Z  X = Y.
    Proof. unfold_leibniz. apply union_cancel_r. Qed.

502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
    (** Empty *)
    Lemma elem_of_equiv_empty_L X : X =    x, x  X.
    Proof. unfold_leibniz. apply elem_of_equiv_empty. Qed.
    Lemma equiv_empty_L X : X    X = .
    Proof. unfold_leibniz. apply equiv_empty. Qed.
    Lemma union_positive_l_L X Y : X  Y =   X = .
    Proof. unfold_leibniz. apply union_positive_l. Qed.
    Lemma union_positive_l_alt_L X Y : X    X  Y  .
    Proof. unfold_leibniz. apply union_positive_l_alt. Qed.
    Lemma non_empty_inhabited_L x X : x  X  X  .
    Proof. unfold_leibniz. apply non_empty_inhabited. Qed.

    (** Singleton *)
    Lemma non_empty_singleton_L x : {[ x ]}  .
    Proof. unfold_leibniz. apply non_empty_singleton. Qed.

    (** Big unions *)
    Lemma union_list_singleton_L X :  [X] = X.
    Proof. unfold_leibniz. apply union_list_singleton. Qed.
    Lemma union_list_app_L Xs1 Xs2 :  (Xs1 ++ Xs2) =  Xs1   Xs2.
    Proof. unfold_leibniz. apply union_list_app. Qed.
    Lemma union_list_reverse_L Xs :  (reverse Xs) =  Xs.
    Proof. unfold_leibniz. apply union_list_reverse. Qed.
    Lemma empty_union_list_L Xs :  Xs =   Forall (= ) Xs.
    Proof. unfold_leibniz. by rewrite empty_union_list. Qed. 
  End leibniz.

  Section dec.
    Context `{ (X Y : C), Decision (X  Y)}.
    Lemma collection_subseteq_inv X Y : X  Y  X  Y  X  Y.
    Proof. destruct (decide (X  Y)); [by right|left;set_solver]. Qed.
    Lemma collection_not_subset_inv X Y : X  Y  X  Y  X  Y.
    Proof. destruct (decide (X  Y)); [by right|left;set_solver]. Qed.

    Lemma non_empty_union X Y : X  Y    X    Y  .
    Proof. rewrite empty_union. destruct (decide (X  )); intuition. Qed.
    Lemma non_empty_union_list Xs :  Xs    Exists ( ) Xs.
    Proof. rewrite empty_union_list. apply (not_Forall_Exists _). Qed.

    Context `{!LeibnizEquiv C}.
    Lemma collection_subseteq_inv_L X Y : X  Y  X  Y  X = Y.
    Proof. unfold_leibniz. apply collection_subseteq_inv. Qed.
    Lemma collection_not_subset_inv_L X Y : X  Y  X  Y  X = Y.
    Proof. unfold_leibniz. apply collection_not_subset_inv. Qed.
    Lemma non_empty_union_L X Y : X  Y    X    Y  .
    Proof. unfold_leibniz. apply non_empty_union. Qed.
    Lemma non_empty_union_list_L Xs :  Xs    Exists ( ) Xs.
    Proof. unfold_leibniz. apply non_empty_union_list. Qed.
  End dec.
End simple_collection.


(** * Collections with [∪], [∩], [∖], [∅] and [{[_]}] *)
Robbert Krebbers's avatar
Robbert Krebbers committed
555 556
Section collection.
  Context `{Collection A C}.
557
  Implicit Types X Y : C.
Robbert Krebbers's avatar
Robbert Krebbers committed
558

559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
  (** Intersection *)
  Lemma subseteq_intersection X Y : X  Y  X  Y  X.
  Proof. set_solver. Qed. 
  Lemma subseteq_intersection_1 X Y : X  Y  X  Y  X.
  Proof. apply subseteq_intersection. Qed.
  Lemma subseteq_intersection_2 X Y : X  Y  X  X  Y.
  Proof. apply subseteq_intersection. Qed.

  Lemma intersection_subseteq_l X Y : X  Y  X.
  Proof. set_solver. Qed.
  Lemma intersection_subseteq_r X Y : X  Y  Y.
  Proof. set_solver. Qed.
  Lemma intersection_greatest X Y Z : Z  X  Z  Y  Z  X  Y.
  Proof. set_solver. Qed.

574
  Lemma intersection_mono_l X Y1 Y2 : Y1  Y2  X  Y1  X  Y2.
575
  Proof. set_solver. Qed.
576
  Lemma intersection_mono_r X1 X2 Y : X1  X2  X1  Y  X2  Y.
577
  Proof. set_solver. Qed.
578
  Lemma intersection_mono X1 X2 Y1 Y2 :
579
    X1  X2  Y1  Y2  X1  Y1  X2  Y2.
580
  Proof. set_solver. Qed.
581 582 583 584 585 586 587 588 589 590 591 592

  Global Instance intersection_idemp : IdemP (() : relation C) ().
  Proof. intros X; set_solver. Qed.
  Global Instance intersection_comm : Comm (() : relation C) ().
  Proof. intros X Y; set_solver. Qed.
  Global Instance intersection_assoc : Assoc (() : relation C) ().
  Proof. intros X Y Z; set_solver. Qed.
  Global Instance intersection_empty_l : LeftAbsorb (() : relation C)  ().
  Proof. intros X; set_solver. Qed.
  Global Instance intersection_empty_r: RightAbsorb (() : relation C)  ().
  Proof. intros X; set_solver. Qed.

593
  Lemma intersection_singletons x : ({[x]} : C)  {[x]}  {[x]}.
594
  Proof. set_solver. Qed.
595 596 597 598 599 600 601 602 603 604 605

  Lemma union_intersection_l X Y Z : X  (Y  Z)  (X  Y)  (X  Z).
  Proof. set_solver. Qed.
  Lemma union_intersection_r X Y Z : (X  Y)  Z  (X  Z)  (Y  Z).
  Proof. set_solver. Qed.
  Lemma intersection_union_l X Y Z : X  (Y  Z)  (X  Y)  (X  Z).
  Proof. set_solver. Qed.
  Lemma intersection_union_r X Y Z : (X  Y)  Z  (X  Z)  (Y  Z).
  Proof. set_solver. Qed.

  (** Difference *)
Robbert Krebbers's avatar
Robbert Krebbers committed
606
  Lemma difference_twice X Y : (X  Y)  Y  X  Y.
607
  Proof. set_solver. Qed.
608
  Lemma subseteq_empty_difference X Y : X  Y  X  Y  .
609
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
610
  Lemma difference_diag X : X  X  .
611
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
612
  Lemma difference_union_distr_l X Y Z : (X  Y)  Z  X  Z  Y  Z.
613
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
614
  Lemma difference_union_distr_r X Y Z : Z  (X  Y)  (Z  X)  (Z  Y).
615
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
616
  Lemma difference_intersection_distr_l X Y Z : (X  Y)  Z  X  Z  Y  Z.
617
  Proof. set_solver. Qed.
618
  Lemma difference_disjoint X Y : X  Y  X  Y  X.
619
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
620

621
  Lemma difference_mono X1 X2 Y1 Y2 :
Robbert Krebbers's avatar
Robbert Krebbers committed
622 623
    X1  X2  Y2  Y1  X1  Y1  X2  Y2.
  Proof. set_solver. Qed.
624
  Lemma difference_mono_l X Y1 Y2 : Y2  Y1  X  Y1  X  Y2.
Robbert Krebbers's avatar
Robbert Krebbers committed
625
  Proof. set_solver. Qed.
626
  Lemma difference_mono_r X1 X2 Y : X1  X2  X1  Y  X2  Y.
Robbert Krebbers's avatar
Robbert Krebbers committed
627 628
  Proof. set_solver. Qed.

629 630 631 632
  (** Disjointness *)
  Lemma disjoint_intersection X Y : X  Y  X  Y  .
  Proof. set_solver. Qed.

633 634
  Section leibniz.
    Context `{!LeibnizEquiv C}.
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654

    (** Intersection *)
    Lemma subseteq_intersection_L X Y : X  Y  X  Y = X.
    Proof. unfold_leibniz. apply subseteq_intersection. Qed.
    Lemma subseteq_intersection_1_L X Y : X  Y  X  Y = X.
    Proof. unfold_leibniz. apply subseteq_intersection_1. Qed.
    Lemma subseteq_intersection_2_L X Y : X  Y = X  X  Y.
    Proof. unfold_leibniz. apply subseteq_intersection_2. Qed.

    Global Instance intersection_idemp_L : IdemP ((=) : relation C) ().
    Proof. intros ?. unfold_leibniz. apply (idemp _). Qed.
    Global Instance intersection_comm_L : Comm ((=) : relation C) ().
    Proof. intros ??. unfold_leibniz. apply (comm _). Qed.
    Global Instance intersection_assoc_L : Assoc ((=) : relation C) ().
    Proof. intros ???. unfold_leibniz. apply (assoc _). Qed.
    Global Instance intersection_empty_l_L: LeftAbsorb ((=) : relation C)  ().
    Proof. intros ?. unfold_leibniz. apply (left_absorb _ _). Qed.
    Global Instance intersection_empty_r_L: RightAbsorb ((=) : relation C)  ().
    Proof. intros ?. unfold_leibniz. apply (right_absorb _ _). Qed.

655 656
    Lemma intersection_singletons_L x : {[x]}  {[x]} = {[x]}.
    Proof. unfold_leibniz. apply intersection_singletons. Qed.
657 658 659 660 661

    Lemma union_intersection_l_L X Y Z : X  (Y  Z) = (X  Y)  (X  Z).
    Proof. unfold_leibniz; apply union_intersection_l. Qed.
    Lemma union_intersection_r_L X Y Z : (X  Y)  Z = (X  Z)  (Y  Z).
    Proof. unfold_leibniz; apply union_intersection_r. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
662
    Lemma intersection_union_l_L X Y Z : X  (Y  Z) = (X  Y)  (X  Z).
663
    Proof. unfold_leibniz; apply intersection_union_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
664
    Lemma intersection_union_r_L X Y Z : (X  Y)  Z = (X  Z)  (Y  Z).
665 666 667
    Proof. unfold_leibniz; apply intersection_union_r. Qed.

    (** Difference *)
668 669
    Lemma difference_twice_L X Y : (X  Y)  Y = X  Y.
    Proof. unfold_leibniz. apply difference_twice. Qed.
670 671
    Lemma subseteq_empty_difference_L X Y : X  Y  X  Y = .
    Proof. unfold_leibniz. apply subseteq_empty_difference. Qed.
672 673 674 675
    Lemma difference_diag_L X : X  X = .
    Proof. unfold_leibniz. apply difference_diag. Qed.
    Lemma difference_union_distr_l_L X Y Z : (X  Y)  Z = X  Z  Y  Z.
    Proof. unfold_leibniz. apply difference_union_distr_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
676 677
    Lemma difference_union_distr_r_L X Y Z : Z  (X  Y) = (Z  X)  (Z  Y).
    Proof. unfold_leibniz. apply difference_union_distr_r. Qed.
678 679 680
    Lemma difference_intersection_distr_l_L X Y Z :
      (X  Y)  Z = X  Z  Y  Z.
    Proof. unfold_leibniz. apply difference_intersection_distr_l. Qed.
681 682
    Lemma difference_disjoint_L X Y : X  Y  X  Y = X.
    Proof. unfold_leibniz. apply difference_disjoint. Qed.
683 684 685 686

    (** Disjointness *)
    Lemma disjoint_intersection_L X Y : X  Y  X  Y = .
    Proof. unfold_leibniz. apply disjoint_intersection. Qed.
687 688 689
  End leibniz.

  Section dec.
Robbert Krebbers's avatar
Robbert Krebbers committed
690
    Context `{ (x : A) (X : C), Decision (x  X)}.
691
    Lemma not_elem_of_intersection x X Y : x  X  Y  x  X  x  Y.
692
    Proof. rewrite elem_of_intersection. destruct (decide (x  X)); tauto. Qed.
693
    Lemma not_elem_of_difference x X Y : x  X  Y  x  X  x  Y.
694
    Proof. rewrite elem_of_difference. destruct (decide (x  Y)); tauto. Qed.
695 696
    Lemma union_difference X Y : X  Y  Y  X  Y  X.
    Proof.
697
      intros ? x; split; rewrite !elem_of_union, elem_of_difference; [|intuition].
698
      destruct (decide (x  X)); intuition.
699
    Qed.
700 701 702 703 704
    Lemma subseteq_disjoint_union X Y : X  Y   Z, Y  X  Z  X  Z.
    Proof.
      split; [|set_solver].
      exists (Y  X); split; [auto using union_difference|set_solver].
    Qed.
705
    Lemma non_empty_difference X Y : X  Y  Y  X  .
706
    Proof. intros [HXY1 HXY2] Hdiff. destruct HXY2. set_solver. Qed.
707
    Lemma empty_difference_subseteq X Y : X  Y    X  Y.
708
    Proof. set_solver. Qed.
709

710 711 712 713 714
    Context `{!LeibnizEquiv C}.
    Lemma union_difference_L X Y : X  Y  Y = X  Y  X.
    Proof. unfold_leibniz. apply union_difference. Qed.
    Lemma non_empty_difference_L X Y : X  Y  Y  X  .
    Proof. unfold_leibniz. apply non_empty_difference. Qed.
715 716
    Lemma empty_difference_subseteq_L X Y : X  Y =   X  Y.
    Proof. unfold_leibniz. apply empty_difference_subseteq. Qed.
717 718
    Lemma subseteq_disjoint_union_L X Y : X  Y   Z, Y = X  Z  X  Z.
    Proof. unfold_leibniz. apply subseteq_disjoint_union. Qed.
719 720 721
  End dec.
End collection.

722 723 724 725 726 727 728 729 730

(** * Conversion of option and list *)
Definition of_option `{Singleton A C, Empty C} (mx : option A) : C :=
  match mx with None =>  | Some x => {[ x ]} end.
Fixpoint of_list `{Singleton A C, Empty C, Union C} (l : list A) : C :=
  match l with [] =>  | x :: l => {[ x ]}  of_list l end.

Section of_option_list.
  Context `{SimpleCollection A C}.
Robbert Krebbers's avatar
Robbert Krebbers committed
731 732
  Implicit Types l : list A.

733 734
  Lemma elem_of_of_option (x : A) mx: x  of_option mx  mx = Some x.
  Proof. destruct mx; set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
735 736 737
  Lemma not_elem_of_of_option (x : A) mx: x  of_option mx  mx  Some x.
  Proof. by rewrite elem_of_of_option. Qed.

738 739 740 741 742 743 744
  Lemma elem_of_of_list (x : A) l : x  of_list l  x  l.
  Proof.
    split.
    - induction l; simpl; [by rewrite elem_of_empty|].
      rewrite elem_of_union,elem_of_singleton; intros [->|?]; constructor; auto.
    - induction 1; simpl; rewrite elem_of_union, elem_of_singleton; auto.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
745 746 747
  Lemma not_elem_of_of_list (x : A) l : x  of_list l  x  l.
  Proof. by rewrite elem_of_of_list. Qed.

748 749 750 751 752 753 754
  Global Instance set_unfold_of_option (mx : option A) x :
    SetUnfold (x  of_option mx) (mx = Some x).
  Proof. constructor; apply elem_of_of_option. Qed.
  Global Instance set_unfold_of_list (l : list A) x P :
    SetUnfold (x  l) P  SetUnfold (x  of_list l) P.
  Proof. constructor. by rewrite elem_of_of_list, (set_unfold (x  l) P). Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
755 756 757 758 759 760 761 762
  Lemma of_list_nil : of_list (C:=C) [] = .
  Proof. done. Qed.
  Lemma of_list_cons x l : of_list (C:=C) (x :: l) = {[ x ]}  of_list l.
  Proof. done. Qed.
  Lemma of_list_app l1 l2 : of_list (C:=C) (l1 ++ l2)  of_list l1  of_list l2.
  Proof. set_solver. Qed.
  Global Instance of_list_perm : Proper (() ==> ()) (of_list (C:=C)).
  Proof. induction 1; set_solver. Qed.
763

Robbert Krebbers's avatar
Robbert Krebbers committed
764 765 766 767 768 769
  Context `{!LeibnizEquiv C}.
  Lemma of_list_app_L l1 l2 : of_list (C:=C) (l1 ++ l2) = of_list l1  of_list l2.
  Proof. set_solver. Qed.
  Global Instance of_list_perm_L : Proper (() ==> (=)) (of_list (C:=C)).
  Proof. induction 1; set_solver. Qed.
End of_option_list.
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800


(** * Guard *)
Global Instance collection_guard `{CollectionMonad M} : MGuard M :=
  λ P dec A x, match dec with left H => x H | _ =>  end.

Section collection_monad_base.
  Context `{CollectionMonad M}.
  Lemma elem_of_guard `{Decision P} {A} (x : A) (X : M A) :
    x  guard P; X  P  x  X.
  Proof.
    unfold mguard, collection_guard; simpl; case_match;
      rewrite ?elem_of_empty; naive_solver.
  Qed.
  Lemma elem_of_guard_2 `{Decision P} {A} (x : A) (X : M A) :
    P  x  X  x  guard P; X.
  Proof. by rewrite elem_of_guard. Qed.
  Lemma guard_empty `{Decision P} {A} (X : M A) : guard P; X    ¬P  X  .
  Proof.
    rewrite !elem_of_equiv_empty; setoid_rewrite elem_of_guard.
    destruct (decide P); naive_solver.
  Qed.
  Global Instance set_unfold_guard `{Decision P} {A} (x : A) X Q :
    SetUnfold (x  X) Q  SetUnfold (x  guard P; X) (P  Q).
  Proof. constructor. by rewrite elem_of_guard, (set_unfold (x  X) Q). Qed.
  Lemma bind_empty {A B} (f : A  M B) X :
    X = f    X     x, x  X  f x  .
  Proof. set_solver. Qed.
End collection_monad_base.


801
(** * Quantifiers *)
802 803 804
Definition set_Forall `{ElemOf A C} (P : A  Prop) (X : C) :=  x, x  X  P x.
Definition set_Exists `{ElemOf A C} (P : A  Prop) (X : C) :=  x, x  X  P x.

Robbert Krebbers's avatar
Robbert Krebbers committed
805
Section quantifiers.
806
  Context `{SimpleCollection A B} (P : A  Prop).
Robbert Krebbers's avatar
Robbert Krebbers committed
807

808
  Lemma set_Forall_empty : set_Forall P .
809
  Proof. unfold set_Forall. set_solver. Qed.
810
  Lemma set_Forall_singleton x : set_Forall P {[ x ]}  P x.
811
  Proof. unfold set_Forall. set_solver. Qed.
812 813
  Lemma set_Forall_union X Y :
    set_Forall P X  set_Forall P Y  set_Forall P (X  Y).
814
  Proof. unfold set_Forall. set_solver. Qed.
815
  Lemma set_Forall_union_inv_1 X Y : set_Forall P (X  Y)  set_Forall P X.
816
  Proof. unfold set_Forall. set_solver. Qed.
817
  Lemma set_Forall_union_inv_2 X Y : set_Forall P (X  Y)  set_Forall P Y.
818
  Proof. unfold set_Forall. set_solver. Qed.
819

820
  Lemma set_Exists_empty : ¬set_Exists P .
821
  Proof. unfold set_Exists. set_solver. Qed.
822
  Lemma set_Exists_singleton x : set_Exists P {[ x ]}  P x.
823
  Proof. unfold set_Exists. set_solver. Qed.
824
  Lemma set_Exists_union_1 X Y : set_Exists P X  set_Exists P (X  Y).
825
  Proof. unfold set_Exists. set_solver. Qed.
826
  Lemma set_Exists_union_2 X Y : set_Exists P Y  set_Exists P (X  Y).
827
  Proof. unfold set_Exists. set_solver. Qed.
828
  Lemma set_Exists_union_inv X Y :
829
    set_Exists P (X  Y)  set_Exists P X  set_Exists P Y.
830
  Proof. unfold set_Exists. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
831 832
End quantifiers.

833
Section more_quantifiers.
834
  Context `{SimpleCollection A B}.
835

836 837
  Lemma set_Forall_impl (P Q : A  Prop) X :
    set_Forall P X  ( x, P x  Q x)  set_Forall Q X.
838
  Proof. unfold set_Forall. naive_solver. Qed.
839 840
  Lemma set_Exists_impl (P Q : A  Prop) X :
    set_Exists P X  ( x, P x  Q x)  set_Exists Q X.
841
  Proof. unfold set_Exists. naive_solver. Qed.
842 843
End more_quantifiers.

844 845 846
(** * Fresh elements *)
(** We collect some properties on the [fresh] operation. In particular we
generalize [fresh] to generate lists of fresh elements. *)
847 848 849 850 851 852 853 854 855 856
Fixpoint fresh_list `{Fresh A C, Union C, Singleton A C}
    (n : nat) (X : C) : list A :=
  match n with
  | 0 => []
  | S n => let x := fresh X in x :: fresh_list n ({[ x ]}  X)
  end.
Inductive Forall_fresh `{ElemOf A C} (X : C) : list A  Prop :=
  | Forall_fresh_nil : Forall_fresh X []
  | Forall_fresh_cons x xs :
     x  xs  x  X  Forall_fresh X xs  Forall_fresh X (x :: xs).
857

858 859
Section fresh.
  Context `{FreshSpec A C}.
860
  Implicit Types X Y : C.
861

862
  Global Instance fresh_proper: Proper (() ==> (=)) (fresh (C:=C)).
863
  Proof. intros ???. by apply fresh_proper_alt, elem_of_equiv. Qed.
864 865
  Global Instance fresh_list_proper:
    Proper ((=) ==> () ==> (=)) (fresh_list (C:=C)).
866
  Proof.
867
    intros ? n ->. induction n as [|n IH]; intros ?? E; f_equal/=; [by rewrite E|].
868
    apply IH. by rewrite E.
869
  Qed.
870

871 872
  Lemma exist_fresh X :  x, x  X.
  Proof. exists (fresh X). apply is_fresh. Qed.
873 874 875 876
  Lemma Forall_fresh_NoDup X xs : Forall_fresh X xs  NoDup xs.
  Proof. induction 1; by constructor. Qed.
  Lemma Forall_fresh_elem_of X xs x : Forall_fresh X xs  x  xs  x  X.
  Proof.
877
    intros HX; revert x; rewrite <-Forall_forall. by induction HX; constructor.
878 879 880 881 882 883 884 885
  Qed.
  Lemma Forall_fresh_alt X xs :
    Forall_fresh X xs  NoDup xs   x, x  xs  x  X.
  Proof.
    split; eauto using Forall_fresh_NoDup, Forall_fresh_elem_of.
    rewrite <-Forall_forall.
    intros [Hxs Hxs']. induction Hxs; decompose_Forall_hyps; constructor; auto.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
886 887
  Lemma Forall_fresh_subseteq X Y xs :
    Forall_fresh X xs  Y  X  Forall_fresh Y xs.
888
  Proof. rewrite !Forall_fresh_alt; set_solver. Qed.
889

890 891
  Lemma fresh_list_length n X : length (fresh_list n X) = n.
  Proof. revert X. induction n; simpl; auto. Qed.
892
  Lemma fresh_list_is_fresh n X x : x  fresh_list n X  x  X.
893
  Proof.
894
    revert X. induction n as [|n IH]; intros X; simpl;[by rewrite elem_of_nil|].
895
    rewrite elem_of_cons; intros [->| Hin]; [apply is_fresh|].
896
    apply IH in Hin; set_solver.
897
  Qed.
898
  Lemma NoDup_fresh_list n X : NoDup (fresh_list n X).
899
  Proof.
900
    revert X. induction n; simpl; constructor; auto.
901
    intros Hin; apply fresh_list_is_fresh in Hin; set_solver.
902 903 904 905
  Qed.
  Lemma Forall_fresh_list X n : Forall_fresh X (fresh_list n X).
  Proof.
    rewrite Forall_fresh_alt; eauto using NoDup_fresh_list, fresh_list_is_fresh.
906 907
  Qed.
End fresh.
908

909
(** * Properties of implementations of collections that form a monad *)
910 911 912
Section collection_monad.
  Context `{CollectionMonad M}.

913 914
  Global Instance collection_fmap_mono {A B} :
    Proper (pointwise_relation _ (=) ==> () ==> ()) (@fmap M _ A B).
915
  Proof. intros f g ? X Y ?; set_solver by eauto. Qed.
916 917
  Global Instance collection_bind_mono {A B} :
    Proper (((=) ==> ()) ==> () ==> ()) (@mbind M _ A B).
918
  Proof. unfold respectful; intros f g Hfg X Y ?; set_solver. Qed.
919 920
  Global Instance collection_join_mono {A} :
    Proper (() ==> ()) (@mjoin M _ A).
921
  Proof. intros X Y ?; set_solver. Qed.
922

923
  Lemma collection_bind_singleton {A B} (f : A  M B) x : {[ x ]} = f  f x.
924
  Proof. set_solver. Qed.
925
  Lemma collection_guard_True {A} `{Decision P} (X : M A) : P  guard P; X  X.
926
  Proof. set_solver. Qed.
927
  Lemma collection_fmap_compose {A B C} (f : A  B) (g : B  C) (X : M A) :
928
    g  f <$> X  g <$> (f <$> X).
929
  Proof. set_solver. Qed.
930 931
  Lemma elem_of_fmap_1 {A B} (f : A  B) (X : M A) (y : B) :
    y  f <$> X   x, y = f x  x  X.
932
  Proof. set_solver. Qed.
933 934
  Lemma elem_of_fmap_2 {A B} (f : A  B) (X : M A) (x : A) :
    x  X  f x  f <$> X.
935
  Proof. set_solver. Qed.
936 937
  Lemma elem_of_fmap_2_alt {A B} (f : A  B) (X : M A) (x : A) (y : B) :
    x  X  y = f x  y  f <$> X.
938
  Proof. set_solver. Qed.
939 940 941 942 943

  Lemma elem_of_mapM {A B} (f : A  M B) l k :
    l  mapM f