collections.v 30.6 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
2
3
4
5
(* This file is distributed under the terms of the BSD license. *)
(** This file collects definitions and theorems on collections. Most
importantly, it implements some tactics to automatically solve goals involving
collections. *)
6
From stdpp Require Export base tactics orders.
7

8
9
Instance collection_subseteq `{ElemOf A C} : SubsetEq C := λ X Y,
   x, x  X  x  Y.
10
Typeclasses Opaque collection_subseteq.
11

12
(** * Basic theorems *)
13
14
Section simple_collection.
  Context `{SimpleCollection A C}.
15
16
  Implicit Types x y : A.
  Implicit Types X Y : C.
Robbert Krebbers's avatar
Robbert Krebbers committed
17

18
  Lemma elem_of_empty x : x    False.
19
  Proof. split. apply not_elem_of_empty. done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
20
21
22
23
  Lemma elem_of_union_l x X Y : x  X  x  X  Y.
  Proof. intros. apply elem_of_union. auto. Qed.
  Lemma elem_of_union_r x X Y : x  Y  x  X  Y.
  Proof. intros. apply elem_of_union. auto. Qed.
24
25
26
  Global Instance: EmptySpec C.
  Proof. firstorder auto. Qed.
  Global Instance: JoinSemiLattice C.
27
  Proof. firstorder auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
28
29
  Global Instance: AntiSymm () (@collection_subseteq A C _).
  Proof. done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
30
  Lemma elem_of_subseteq X Y : X  Y   x, x  X  x  Y.
31
  Proof. done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
32
33
  Lemma elem_of_equiv X Y : X  Y   x, x  X  x  Y.
  Proof. firstorder. Qed.
34
35
  Lemma elem_of_equiv_alt X Y :
    X  Y  ( x, x  X  x  Y)  ( x, x  Y  x  X).
Robbert Krebbers's avatar
Robbert Krebbers committed
36
  Proof. firstorder. Qed.
37
38
  Lemma elem_of_equiv_empty X : X     x, x  X.
  Proof. firstorder. Qed.
39
40
41
42
43
44
  Lemma collection_positive_l X Y : X  Y    X  .
  Proof.
    rewrite !elem_of_equiv_empty. setoid_rewrite elem_of_union. naive_solver.
  Qed.
  Lemma collection_positive_l_alt X Y : X    X  Y  .
  Proof. eauto using collection_positive_l. Qed.
45
46
47
48
  Lemma elem_of_singleton_1 x y : x  {[y]}  x = y.
  Proof. by rewrite elem_of_singleton. Qed.
  Lemma elem_of_singleton_2 x y : x = y  x  {[y]}.
  Proof. by rewrite elem_of_singleton. Qed.
49
50
51
  Lemma elem_of_subseteq_singleton x X : x  X  {[ x ]}  X.
  Proof.
    split.
52
53
    - intros ??. rewrite elem_of_singleton. by intros ->.
    - intros Ex. by apply (Ex x), elem_of_singleton.
54
  Qed.
55
  Global Instance singleton_proper : Proper ((=) ==> ()) (singleton (B:=C)).
56
  Proof. by repeat intro; subst. Qed.
57
58
  Global Instance elem_of_proper :
    Proper ((=) ==> () ==> iff) (() : A  C  Prop) | 5.
59
  Proof. intros ???; subst. firstorder. Qed.
60
  Lemma elem_of_union_list Xs x : x   Xs   X, X  Xs  x  X.
61
62
  Proof.
    split.
63
    - induction Xs; simpl; intros HXs; [by apply elem_of_empty in HXs|].
64
      setoid_rewrite elem_of_cons. apply elem_of_union in HXs. naive_solver.
65
    - intros [X []]. induction 1; simpl; [by apply elem_of_union_l |].
66
      intros. apply elem_of_union_r; auto.
67
  Qed.
68
  Lemma non_empty_singleton x : ({[ x ]} : C)  .
69
70
71
72
73
74
  Proof. intros [E _]. by apply (elem_of_empty x), E, elem_of_singleton. Qed.
  Lemma not_elem_of_singleton x y : x  {[ y ]}  x  y.
  Proof. by rewrite elem_of_singleton. Qed.
  Lemma not_elem_of_union x X Y : x  X  Y  x  X  x  Y.
  Proof. rewrite elem_of_union. tauto. Qed.

75
76
77
78
79
80
81
82
83
  Section leibniz.
    Context `{!LeibnizEquiv C}.
    Lemma elem_of_equiv_L X Y : X = Y   x, x  X  x  Y.
    Proof. unfold_leibniz. apply elem_of_equiv. Qed.
    Lemma elem_of_equiv_alt_L X Y :
      X = Y  ( x, x  X  x  Y)  ( x, x  Y  x  X).
    Proof. unfold_leibniz. apply elem_of_equiv_alt. Qed.
    Lemma elem_of_equiv_empty_L X : X =    x, x  X.
    Proof. unfold_leibniz. apply elem_of_equiv_empty. Qed.
84
85
86
87
    Lemma collection_positive_l_L X Y : X  Y =   X = .
    Proof. unfold_leibniz. apply collection_positive_l. Qed.
    Lemma collection_positive_l_alt_L X Y : X    X  Y  .
    Proof. unfold_leibniz. apply collection_positive_l_alt. Qed.
88
89
90
91
92
93
94
95
96
97
98
99
    Lemma non_empty_singleton_L x : {[ x ]}  .
    Proof. unfold_leibniz. apply non_empty_singleton. Qed.
  End leibniz.

  Section dec.
    Context `{ X Y : C, Decision (X  Y)}.
    Global Instance elem_of_dec_slow (x : A) (X : C) : Decision (x  X) | 100.
    Proof.
      refine (cast_if (decide_rel () {[ x ]} X));
        by rewrite elem_of_subseteq_singleton.
    Defined.
  End dec.
100
101
End simple_collection.

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
(** * Tactics *)
(** The tactic [set_unfold] transforms all occurrences of [(∪)], [(∩)], [(∖)],
[(<$>)], [∅], [{[_]}], [(≡)], and [(⊆)] into logically equivalent propositions
involving just [∈]. For example, [A → x ∈ X ∪ ∅] becomes [A → x ∈ X ∨ False].

This transformation is implemented using type classes instead of [rewrite]ing
to ensure that we traverse each term at most once. *)
Class SetUnfold (P Q : Prop) := { set_unfold : P  Q }.
Arguments set_unfold _ _ {_}.
Hint Mode SetUnfold + - : typeclass_instances.

Class SetUnfoldSimpl (P Q : Prop) := { set_unfold_simpl : SetUnfold P Q }.
Hint Extern 0 (SetUnfoldSimpl _ _) => csimpl; constructor : typeclass_instances.

Instance set_unfold_fallthrough P : SetUnfold P P | 1000. done. Qed.
Definition set_unfold_1 `{SetUnfold P Q} : P  Q := proj1 (set_unfold P Q).
Definition set_unfold_2 `{SetUnfold P Q} : Q  P := proj2 (set_unfold P Q).

Lemma set_unfold_impl P Q P' Q' :
  SetUnfold P P'  SetUnfold Q Q'  SetUnfold (P  Q) (P'  Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_and P Q P' Q' :
  SetUnfold P P'  SetUnfold Q Q'  SetUnfold (P  Q) (P'  Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_or P Q P' Q' :
  SetUnfold P P'  SetUnfold Q Q'  SetUnfold (P  Q) (P'  Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_iff P Q P' Q' :
  SetUnfold P P'  SetUnfold Q Q'  SetUnfold (P  Q) (P'  Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_not P P' : SetUnfold P P'  SetUnfold (¬P) (¬P').
Proof. constructor. by rewrite (set_unfold P P'). Qed.
Lemma set_unfold_forall {A} (P P' : A  Prop) :
  ( x, SetUnfold (P x) (P' x))  SetUnfold ( x, P x) ( x, P' x).
Proof. constructor. naive_solver. Qed.
Lemma set_unfold_exist {A} (P P' : A  Prop) :
  ( x, SetUnfold (P x) (P' x))  SetUnfold ( x, P x) ( x, P' x).
Proof. constructor. naive_solver. Qed.

(* Avoid too eager application of the above instances (and thus too eager
unfolding of type class transparent definitions). *)
Hint Extern 0 (SetUnfold (_  _) _) =>
  class_apply set_unfold_impl : typeclass_instances.
Hint Extern 0 (SetUnfold (_  _) _) =>
  class_apply set_unfold_and : typeclass_instances.
Hint Extern 0 (SetUnfold (_  _) _) =>
  class_apply set_unfold_or : typeclass_instances.
Hint Extern 0 (SetUnfold (_  _) _) =>
  class_apply set_unfold_iff : typeclass_instances.
Hint Extern 0 (SetUnfold (¬ _) _) =>
  class_apply set_unfold_not : typeclass_instances.
Hint Extern 1 (SetUnfold ( _, _) _) =>
  class_apply set_unfold_forall : typeclass_instances.
Hint Extern 0 (SetUnfold ( _, _) _) =>
  class_apply set_unfold_exist : typeclass_instances.

Section set_unfold_simple.
  Context `{SimpleCollection A C}.
  Implicit Types x y : A.
  Implicit Types X Y : C.

  Global Instance set_unfold_empty x : SetUnfold (x  ) False.
  Proof. constructor; apply elem_of_empty. Qed.
  Global Instance set_unfold_singleton x y : SetUnfold (x  {[ y ]}) (x = y).
  Proof. constructor; apply elem_of_singleton. Qed.
  Global Instance set_unfold_union x X Y P Q :
    SetUnfold (x  X) P  SetUnfold (x  Y) Q  SetUnfold (x  X  Y) (P  Q).
  Proof.
    intros ??; constructor.
    by rewrite elem_of_union, (set_unfold (x  X) P), (set_unfold (x  Y) Q).
  Qed.
  Global Instance set_unfold_equiv_same X : SetUnfold (X  X) True | 1.
  Proof. done. Qed.
  Global Instance set_unfold_equiv_empty_l X (P : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  SetUnfold (  X) ( x, ¬P x) | 5.
  Proof.
    intros ?; constructor.
    rewrite (symmetry_iff equiv), elem_of_equiv_empty; naive_solver.
  Qed.
  Global Instance set_unfold_equiv_empty_r (P : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  SetUnfold (X  ) ( x, ¬P x) | 5.
  Proof. constructor. rewrite elem_of_equiv_empty; naive_solver. Qed.
  Global Instance set_unfold_equiv (P Q : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
    SetUnfold (X  Y) ( x, P x  Q x) | 10.
  Proof. constructor. rewrite elem_of_equiv; naive_solver. Qed.
  Global Instance set_unfold_subseteq (P Q : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
    SetUnfold (X  Y) ( x, P x  Q x).
  Proof. constructor. rewrite elem_of_subseteq; naive_solver. Qed.
  Global Instance set_unfold_subset (P Q : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
    SetUnfold (X  Y) (( x, P x  Q x)  ¬∀ x, P x  Q x).
  Proof.
    constructor. rewrite subset_spec, elem_of_subseteq, elem_of_equiv.
    repeat f_equiv; naive_solver.
  Qed.

  Context `{!LeibnizEquiv C}.
  Global Instance set_unfold_equiv_same_L X : SetUnfold (X = X) True | 1.
  Proof. done. Qed.
  Global Instance set_unfold_equiv_empty_l_L X (P : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  SetUnfold ( = X) ( x, ¬P x) | 5.
  Proof.
    constructor. rewrite (symmetry_iff eq), elem_of_equiv_empty_L; naive_solver.
  Qed.
  Global Instance set_unfold_equiv_empty_r_L (P : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  SetUnfold (X = ) ( x, ¬P x) | 5.
  Proof. constructor. rewrite elem_of_equiv_empty_L; naive_solver. Qed.
  Global Instance set_unfold_equiv_L (P Q : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
    SetUnfold (X = Y) ( x, P x  Q x) | 10.
  Proof. constructor. rewrite elem_of_equiv_L; naive_solver. Qed.
End set_unfold_simple.

Section set_unfold.
  Context `{Collection A C}.
  Implicit Types x y : A.
  Implicit Types X Y : C.

  Global Instance set_unfold_intersection x X Y P Q :
    SetUnfold (x  X) P  SetUnfold (x  Y) Q  SetUnfold (x  X  Y) (P  Q).
  Proof.
    intros ??; constructor. by rewrite elem_of_intersection,
      (set_unfold (x  X) P), (set_unfold (x  Y) Q).
  Qed.
  Global Instance set_unfold_difference x X Y P Q :
    SetUnfold (x  X) P  SetUnfold (x  Y) Q  SetUnfold (x  X  Y) (P  ¬Q).
  Proof.
    intros ??; constructor. by rewrite elem_of_difference,
      (set_unfold (x  X) P), (set_unfold (x  Y) Q).
  Qed.
End set_unfold.

Section set_unfold_monad.
  Context `{CollectionMonad M} {A : Type}.
  Implicit Types x y : A.

  Global Instance set_unfold_ret x y : SetUnfold (x  mret y) (x = y).
  Proof. constructor; apply elem_of_ret. Qed.
  Global Instance set_unfold_bind {B} (f : A  M B) X (P Q : A  Prop) :
    ( y, SetUnfold (y  X) (P y))  ( y, SetUnfold (x  f y) (Q y)) 
    SetUnfold (x  X = f) ( y, Q y  P y).
  Proof. constructor. rewrite elem_of_bind; naive_solver. Qed.
  Global Instance set_unfold_fmap {B} (f : A  B) X (P : A  Prop) :
    ( y, SetUnfold (y  X) (P y)) 
    SetUnfold (x  f <$> X) ( y, x = f y  P y).
  Proof. constructor. rewrite elem_of_fmap; naive_solver. Qed.
  Global Instance set_unfold_join (X : M (M A)) (P : M A  Prop) :
    ( Y, SetUnfold (Y  X) (P Y))  SetUnfold (x  mjoin X) ( Y, x  Y  P Y).
  Proof. constructor. rewrite elem_of_join; naive_solver. Qed.
End set_unfold_monad.

Ltac set_unfold :=
  let rec unfold_hyps :=
    try match goal with
    | H : _ |- _ =>
       apply set_unfold_1 in H; revert H;
       first [unfold_hyps; intros H | intros H; fail 1]
    end in
  apply set_unfold_2; unfold_hyps; csimpl in *.

(** Since [firstorder] fails or loops on very small goals generated by
[set_solver] already. We use the [naive_solver] tactic as a substitute.
This tactic either fails or proves the goal. *)
Tactic Notation "set_solver" "by" tactic3(tac) :=
  intros; setoid_subst;
  set_unfold;
  intros; setoid_subst;
  try match goal with |- _  _ => apply dec_stable end;
  naive_solver tac.
Tactic Notation "set_solver" "-" hyp_list(Hs) "by" tactic3(tac) :=
  clear Hs; set_solver by tac.
Tactic Notation "set_solver" "+" hyp_list(Hs) "by" tactic3(tac) :=
  clear -Hs; set_solver by tac.
Tactic Notation "set_solver" := set_solver by idtac.
Tactic Notation "set_solver" "-" hyp_list(Hs) := clear Hs; set_solver.
Tactic Notation "set_solver" "+" hyp_list(Hs) := clear -Hs; set_solver.

(** * Conversion of option and list *)
Definition of_option `{Singleton A C, Empty C} (mx : option A) : C :=
  match mx with None =>  | Some x => {[ x ]} end.
284
285
Fixpoint of_list `{Singleton A C, Empty C, Union C} (l : list A) : C :=
  match l with [] =>  | x :: l => {[ x ]}  of_list l end.
286

287
288
Section of_option_list.
  Context `{SimpleCollection A C}.
289
290
  Lemma elem_of_of_option (x : A) mx: x  of_option mx  mx = Some x.
  Proof. destruct mx; set_solver. Qed.
291
292
293
  Lemma elem_of_of_list (x : A) l : x  of_list l  x  l.
  Proof.
    split.
294
    - induction l; simpl; [by rewrite elem_of_empty|].
Robbert Krebbers's avatar
Robbert Krebbers committed
295
      rewrite elem_of_union,elem_of_singleton; intros [->|?]; constructor; auto.
296
    - induction 1; simpl; rewrite elem_of_union, elem_of_singleton; auto.
297
  Qed.
298
299
300
301
302
303
  Global Instance set_unfold_of_option (mx : option A) x :
    SetUnfold (x  of_option mx) (mx = Some x).
  Proof. constructor; apply elem_of_of_option. Qed.
  Global Instance set_unfold_of_list (l : list A) x :
    SetUnfold (x  of_list l) (x  l).
  Proof. constructor; apply elem_of_of_list. Qed.
304
End of_option_list.
305

306
(** * Guard *)
307
308
Global Instance collection_guard `{CollectionMonad M} : MGuard M :=
  λ P dec A x, match dec with left H => x H | _ =>  end.
309
310
311
312
313
314
315
316
317

Section collection_monad_base.
  Context `{CollectionMonad M}.
  Lemma elem_of_guard `{Decision P} {A} (x : A) (X : M A) :
    x  guard P; X  P  x  X.
  Proof.
    unfold mguard, collection_guard; simpl; case_match;
      rewrite ?elem_of_empty; naive_solver.
  Qed.
318
319
320
  Lemma elem_of_guard_2 `{Decision P} {A} (x : A) (X : M A) :
    P  x  X  x  guard P; X.
  Proof. by rewrite elem_of_guard. Qed.
321
322
323
324
325
  Lemma guard_empty `{Decision P} {A} (X : M A) : guard P; X    ¬P  X  .
  Proof.
    rewrite !elem_of_equiv_empty; setoid_rewrite elem_of_guard.
    destruct (decide P); naive_solver.
  Qed.
326
327
328
  Global Instance set_unfold_guard `{Decision P} {A} (x : A) X Q :
    SetUnfold (x  X) Q  SetUnfold (x  guard P; X) (P  Q).
  Proof. constructor. by rewrite elem_of_guard, (set_unfold (x  X) Q). Qed.
329
330
  Lemma bind_empty {A B} (f : A  M B) X :
    X = f    X     x, x  X  f x  .
331
  Proof. set_solver. Qed.
332
End collection_monad_base.
333

334
(** * More theorems *)
Robbert Krebbers's avatar
Robbert Krebbers committed
335
336
Section collection.
  Context `{Collection A C}.
337
  Implicit Types X Y : C.
Robbert Krebbers's avatar
Robbert Krebbers committed
338

339
  Global Instance: Lattice C.
340
  Proof. split. apply _. firstorder auto. set_solver. Qed.
341
342
  Global Instance difference_proper :
     Proper (() ==> () ==> ()) (@difference C _).
Robbert Krebbers's avatar
Robbert Krebbers committed
343
344
345
346
  Proof.
    intros X1 X2 HX Y1 Y2 HY; apply elem_of_equiv; intros x.
    by rewrite !elem_of_difference, HX, HY.
  Qed.
347
  Lemma non_empty_inhabited x X : x  X  X  .
348
  Proof. set_solver. Qed.
349
  Lemma intersection_singletons x : ({[x]} : C)  {[x]}  {[x]}.
350
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
351
  Lemma difference_twice X Y : (X  Y)  Y  X  Y.
352
  Proof. set_solver. Qed.
353
  Lemma subseteq_empty_difference X Y : X  Y  X  Y  .
354
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
355
  Lemma difference_diag X : X  X  .
356
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
357
  Lemma difference_union_distr_l X Y Z : (X  Y)  Z  X  Z  Y  Z.
358
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
359
  Lemma difference_union_distr_r X Y Z : Z  (X  Y)  (Z  X)  (Z  Y).
360
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
361
  Lemma difference_intersection_distr_l X Y Z : (X  Y)  Z  X  Z  Y  Z.
362
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
363
  Lemma disjoint_union_difference X Y : X  Y    (X  Y)  X  Y.
364
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
365

366
367
368
369
370
371
  Section leibniz.
    Context `{!LeibnizEquiv C}.
    Lemma intersection_singletons_L x : {[x]}  {[x]} = {[x]}.
    Proof. unfold_leibniz. apply intersection_singletons. Qed.
    Lemma difference_twice_L X Y : (X  Y)  Y = X  Y.
    Proof. unfold_leibniz. apply difference_twice. Qed.
372
373
    Lemma subseteq_empty_difference_L X Y : X  Y  X  Y = .
    Proof. unfold_leibniz. apply subseteq_empty_difference. Qed.
374
375
376
377
    Lemma difference_diag_L X : X  X = .
    Proof. unfold_leibniz. apply difference_diag. Qed.
    Lemma difference_union_distr_l_L X Y Z : (X  Y)  Z = X  Z  Y  Z.
    Proof. unfold_leibniz. apply difference_union_distr_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
378
379
    Lemma difference_union_distr_r_L X Y Z : Z  (X  Y) = (Z  X)  (Z  Y).
    Proof. unfold_leibniz. apply difference_union_distr_r. Qed.
380
381
382
    Lemma difference_intersection_distr_l_L X Y Z :
      (X  Y)  Z = X  Z  Y  Z.
    Proof. unfold_leibniz. apply difference_intersection_distr_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
383
384
    Lemma disjoint_union_difference_L X Y : X  Y =   (X  Y)  X = Y.
    Proof. unfold_leibniz. apply disjoint_union_difference. Qed.
385
386
387
  End leibniz.

  Section dec.
Robbert Krebbers's avatar
Robbert Krebbers committed
388
    Context `{ (x : A) (X : C), Decision (x  X)}.
389
    Lemma not_elem_of_intersection x X Y : x  X  Y  x  X  x  Y.
390
    Proof. rewrite elem_of_intersection. destruct (decide (x  X)); tauto. Qed.
391
    Lemma not_elem_of_difference x X Y : x  X  Y  x  X  x  Y.
392
    Proof. rewrite elem_of_difference. destruct (decide (x  Y)); tauto. Qed.
393
394
    Lemma union_difference X Y : X  Y  Y  X  Y  X.
    Proof.
395
396
      split; intros x; rewrite !elem_of_union, elem_of_difference; [|intuition].
      destruct (decide (x  X)); intuition.
397
398
    Qed.
    Lemma non_empty_difference X Y : X  Y  Y  X  .
399
    Proof. intros [HXY1 HXY2] Hdiff. destruct HXY2. set_solver. Qed.
400
    Lemma empty_difference_subseteq X Y : X  Y    X  Y.
401
    Proof. set_solver. Qed.
402
403
404
405
406
    Context `{!LeibnizEquiv C}.
    Lemma union_difference_L X Y : X  Y  Y = X  Y  X.
    Proof. unfold_leibniz. apply union_difference. Qed.
    Lemma non_empty_difference_L X Y : X  Y  Y  X  .
    Proof. unfold_leibniz. apply non_empty_difference. Qed.
407
408
    Lemma empty_difference_subseteq_L X Y : X  Y =   X  Y.
    Proof. unfold_leibniz. apply empty_difference_subseteq. Qed.
409
410
411
412
413
414
  End dec.
End collection.

Section collection_ops.
  Context `{CollectionOps A C}.

Robbert Krebbers's avatar
Robbert Krebbers committed
415
416
417
418
419
  Lemma elem_of_intersection_with_list (f : A  A  option A) Xs Y x :
    x  intersection_with_list f Y Xs   xs y,
      Forall2 () xs Xs  y  Y  foldr (λ x, (= f x)) (Some y) xs = Some x.
  Proof.
    split.
420
    - revert x. induction Xs; simpl; intros x HXs; [eexists [], x; intuition|].
421
422
      rewrite elem_of_intersection_with in HXs; destruct HXs as (x1&x2&?&?&?).
      destruct (IHXs x2) as (xs & y & hy & ? & ?); trivial.
423
      eexists (x1 :: xs), y. intuition (simplify_option_eq; auto).
424
    - intros (xs & y & Hxs & ? & Hx). revert x Hx.
425
      induction Hxs; intros; simplify_option_eq; [done |].
Robbert Krebbers's avatar
Robbert Krebbers committed
426
427
428
429
430
431
432
433
434
      rewrite elem_of_intersection_with. naive_solver.
  Qed.

  Lemma intersection_with_list_ind (P Q : A  Prop) f Xs Y :
    ( y, y  Y  P y) 
    Forall (λ X,  x, x  X  Q x) Xs 
    ( x y z, Q x  P y  f x y = Some z  P z) 
     x, x  intersection_with_list f Y Xs  P x.
  Proof.
435
    intros HY HXs Hf. induction Xs; simplify_option_eq; [done |].
Robbert Krebbers's avatar
Robbert Krebbers committed
436
437
438
    intros x Hx. rewrite elem_of_intersection_with in Hx.
    decompose_Forall. destruct Hx as (? & ? & ? & ? & ?). eauto.
  Qed.
439
End collection_ops.
Robbert Krebbers's avatar
Robbert Krebbers committed
440

441
(** * Sets without duplicates up to an equivalence *)
442
Section NoDup.
443
  Context `{SimpleCollection A B} (R : relation A) `{!Equivalence R}.
Robbert Krebbers's avatar
Robbert Krebbers committed
444
445

  Definition elem_of_upto (x : A) (X : B) :=  y, y  X  R x y.
446
  Definition set_NoDup (X : B) :=  x y, x  X  y  X  R x y  x = y.
Robbert Krebbers's avatar
Robbert Krebbers committed
447
448

  Global Instance: Proper (() ==> iff) (elem_of_upto x).
Robbert Krebbers's avatar
Robbert Krebbers committed
449
  Proof. intros ??? E. unfold elem_of_upto. by setoid_rewrite E. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
450
451
452
  Global Instance: Proper (R ==> () ==> iff) elem_of_upto.
  Proof.
    intros ?? E1 ?? E2. split; intros [z [??]]; exists z.
453
454
    - rewrite <-E1, <-E2; intuition.
    - rewrite E1, E2; intuition.
Robbert Krebbers's avatar
Robbert Krebbers committed
455
  Qed.
456
  Global Instance: Proper (() ==> iff) set_NoDup.
Robbert Krebbers's avatar
Robbert Krebbers committed
457
458
459
  Proof. firstorder. Qed.

  Lemma elem_of_upto_elem_of x X : x  X  elem_of_upto x X.
460
  Proof. unfold elem_of_upto. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
461
  Lemma elem_of_upto_empty x : ¬elem_of_upto x .
462
  Proof. unfold elem_of_upto. set_solver. Qed.
463
  Lemma elem_of_upto_singleton x y : elem_of_upto x {[ y ]}  R x y.
464
  Proof. unfold elem_of_upto. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
465

466
467
  Lemma elem_of_upto_union X Y x :
    elem_of_upto x (X  Y)  elem_of_upto x X  elem_of_upto x Y.
468
  Proof. unfold elem_of_upto. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
469
  Lemma not_elem_of_upto x X : ¬elem_of_upto x X   y, y  X  ¬R x y.
470
  Proof. unfold elem_of_upto. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
471

472
  Lemma set_NoDup_empty: set_NoDup .
473
  Proof. unfold set_NoDup. set_solver. Qed.
474
475
  Lemma set_NoDup_add x X :
    ¬elem_of_upto x X  set_NoDup X  set_NoDup ({[ x ]}  X).
476
  Proof. unfold set_NoDup, elem_of_upto. set_solver. Qed.
477
478
  Lemma set_NoDup_inv_add x X :
    x  X  set_NoDup ({[ x ]}  X)  ¬elem_of_upto x X.
479
480
  Proof.
    intros Hin Hnodup [y [??]].
481
    rewrite (Hnodup x y) in Hin; set_solver.
482
  Qed.
483
  Lemma set_NoDup_inv_union_l X Y : set_NoDup (X  Y)  set_NoDup X.
484
  Proof. unfold set_NoDup. set_solver. Qed.
485
  Lemma set_NoDup_inv_union_r X Y : set_NoDup (X  Y)  set_NoDup Y.
486
  Proof. unfold set_NoDup. set_solver. Qed.
487
End NoDup.
Robbert Krebbers's avatar
Robbert Krebbers committed
488

489
(** * Quantifiers *)
Robbert Krebbers's avatar
Robbert Krebbers committed
490
Section quantifiers.
491
  Context `{SimpleCollection A B} (P : A  Prop).
Robbert Krebbers's avatar
Robbert Krebbers committed
492

493
494
495
496
  Definition set_Forall X :=  x, x  X  P x.
  Definition set_Exists X :=  x, x  X  P x.

  Lemma set_Forall_empty : set_Forall .
497
  Proof. unfold set_Forall. set_solver. Qed.
498
  Lemma set_Forall_singleton x : set_Forall {[ x ]}  P x.
499
  Proof. unfold set_Forall. set_solver. Qed.
500
  Lemma set_Forall_union X Y : set_Forall X  set_Forall Y  set_Forall (X  Y).
501
  Proof. unfold set_Forall. set_solver. Qed.
502
  Lemma set_Forall_union_inv_1 X Y : set_Forall (X  Y)  set_Forall X.
503
  Proof. unfold set_Forall. set_solver. Qed.
504
  Lemma set_Forall_union_inv_2 X Y : set_Forall (X  Y)  set_Forall Y.
505
  Proof. unfold set_Forall. set_solver. Qed.
506
507

  Lemma set_Exists_empty : ¬set_Exists .
508
  Proof. unfold set_Exists. set_solver. Qed.
509
  Lemma set_Exists_singleton x : set_Exists {[ x ]}  P x.
510
  Proof. unfold set_Exists. set_solver. Qed.
511
  Lemma set_Exists_union_1 X Y : set_Exists X  set_Exists (X  Y).
512
  Proof. unfold set_Exists. set_solver. Qed.
513
  Lemma set_Exists_union_2 X Y : set_Exists Y  set_Exists (X  Y).
514
  Proof. unfold set_Exists. set_solver. Qed.
515
516
  Lemma set_Exists_union_inv X Y :
    set_Exists (X  Y)  set_Exists X  set_Exists Y.
517
  Proof. unfold set_Exists. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
518
519
End quantifiers.

520
Section more_quantifiers.
521
  Context `{SimpleCollection A B}.
522

523
524
525
526
527
528
  Lemma set_Forall_weaken (P Q : A  Prop) (Hweaken :  x, P x  Q x) X :
    set_Forall P X  set_Forall Q X.
  Proof. unfold set_Forall. naive_solver. Qed.
  Lemma set_Exists_weaken (P Q : A  Prop) (Hweaken :  x, P x  Q x) X :
    set_Exists P X  set_Exists Q X.
  Proof. unfold set_Exists. naive_solver. Qed.
529
530
End more_quantifiers.

531
532
533
(** * Fresh elements *)
(** We collect some properties on the [fresh] operation. In particular we
generalize [fresh] to generate lists of fresh elements. *)
534
535
536
537
538
539
540
541
542
543
Fixpoint fresh_list `{Fresh A C, Union C, Singleton A C}
    (n : nat) (X : C) : list A :=
  match n with
  | 0 => []
  | S n => let x := fresh X in x :: fresh_list n ({[ x ]}  X)
  end.
Inductive Forall_fresh `{ElemOf A C} (X : C) : list A  Prop :=
  | Forall_fresh_nil : Forall_fresh X []
  | Forall_fresh_cons x xs :
     x  xs  x  X  Forall_fresh X xs  Forall_fresh X (x :: xs).
544

545
546
Section fresh.
  Context `{FreshSpec A C}.
547
  Implicit Types X Y : C.
548

549
  Global Instance fresh_proper: Proper (() ==> (=)) (fresh (C:=C)).
550
  Proof. intros ???. by apply fresh_proper_alt, elem_of_equiv. Qed.
551
552
  Global Instance fresh_list_proper:
    Proper ((=) ==> () ==> (=)) (fresh_list (C:=C)).
553
  Proof.
554
    intros ? n ->. induction n as [|n IH]; intros ?? E; f_equal/=; [by rewrite E|].
555
    apply IH. by rewrite E.
556
  Qed.
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571

  Lemma Forall_fresh_NoDup X xs : Forall_fresh X xs  NoDup xs.
  Proof. induction 1; by constructor. Qed.
  Lemma Forall_fresh_elem_of X xs x : Forall_fresh X xs  x  xs  x  X.
  Proof.
    intros HX; revert x; rewrite <-Forall_forall.
    by induction HX; constructor.
  Qed.
  Lemma Forall_fresh_alt X xs :
    Forall_fresh X xs  NoDup xs   x, x  xs  x  X.
  Proof.
    split; eauto using Forall_fresh_NoDup, Forall_fresh_elem_of.
    rewrite <-Forall_forall.
    intros [Hxs Hxs']. induction Hxs; decompose_Forall_hyps; constructor; auto.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
572
573
  Lemma Forall_fresh_subseteq X Y xs :
    Forall_fresh X xs  Y  X  Forall_fresh Y xs.
574
  Proof. rewrite !Forall_fresh_alt; set_solver. Qed.
575

576
577
  Lemma fresh_list_length n X : length (fresh_list n X) = n.
  Proof. revert X. induction n; simpl; auto. Qed.
578
  Lemma fresh_list_is_fresh n X x : x  fresh_list n X  x  X.
579
  Proof.
580
    revert X. induction n as [|n IH]; intros X; simpl;[by rewrite elem_of_nil|].
581
    rewrite elem_of_cons; intros [->| Hin]; [apply is_fresh|].
582
    apply IH in Hin; set_solver.
583
  Qed.
584
  Lemma NoDup_fresh_list n X : NoDup (fresh_list n X).
585
  Proof.
586
    revert X. induction n; simpl; constructor; auto.
587
    intros Hin; apply fresh_list_is_fresh in Hin; set_solver.
588
589
590
591
  Qed.
  Lemma Forall_fresh_list X n : Forall_fresh X (fresh_list n X).
  Proof.
    rewrite Forall_fresh_alt; eauto using NoDup_fresh_list, fresh_list_is_fresh.
592
593
  Qed.
End fresh.
594

595
(** * Properties of implementations of collections that form a monad *)
596
597
598
Section collection_monad.
  Context `{CollectionMonad M}.

599
600
  Global Instance collection_fmap_mono {A B} :
    Proper (pointwise_relation _ (=) ==> () ==> ()) (@fmap M _ A B).
601
  Proof. intros f g ? X Y ?; set_solver by eauto. Qed.
602
603
  Global Instance collection_fmap_proper {A B} :
    Proper (pointwise_relation _ (=) ==> () ==> ()) (@fmap M _ A B).
604
  Proof. intros f g ? X Y [??]; split; set_solver by eauto. Qed.
605
606
  Global Instance collection_bind_mono {A B} :
    Proper (((=) ==> ()) ==> () ==> ()) (@mbind M _ A B).
607
  Proof. unfold respectful; intros f g Hfg X Y ?; set_solver. Qed.
608
609
  Global Instance collection_bind_proper {A B} :
    Proper (((=) ==> ()) ==> () ==> ()) (@mbind M _ A B).
610
  Proof. unfold respectful; intros f g Hfg X Y [??]; split; set_solver. Qed.
611
612
  Global Instance collection_join_mono {A} :
    Proper (() ==> ()) (@mjoin M _ A).
613
  Proof. intros X Y ?; set_solver. Qed.
614
615
  Global Instance collection_join_proper {A} :
    Proper (() ==> ()) (@mjoin M _ A).
616
  Proof. intros X Y [??]; split; set_solver. Qed.
617

618
  Lemma collection_bind_singleton {A B} (f : A  M B) x : {[ x ]} = f  f x.
619
  Proof. set_solver. Qed.
620
  Lemma collection_guard_True {A} `{Decision P} (X : M A) : P  guard P; X  X.
621
  Proof. set_solver. Qed.
622
  Lemma collection_fmap_compose {A B C} (f : A  B) (g : B  C) (X : M A) :
623
    g  f <$> X  g <$> (f <$> X).
624
  Proof. set_solver. Qed.
625
626
  Lemma elem_of_fmap_1 {A B} (f : A  B) (X : M A) (y : B) :
    y  f <$> X   x, y = f x  x  X.
627
  Proof. set_solver. Qed.
628
629
  Lemma elem_of_fmap_2 {A B} (f : A  B) (X : M A) (x : A) :
    x  X  f x  f <$> X.
630
  Proof. set_solver. Qed.
631
632
  Lemma elem_of_fmap_2_alt {A B} (f : A  B) (X : M A) (x : A) (y : B) :
    x  X  y = f x  y  f <$> X.
633
  Proof. set_solver. Qed.
634
635
636
637
638

  Lemma elem_of_mapM {A B} (f : A  M B) l k :
    l  mapM f k  Forall2 (λ x y, x  f y) l k.
  Proof.
    split.
639
    - revert l. induction k; set_solver by eauto.
640
    - induction 1; set_solver.
641
  Qed.
642
  Lemma collection_mapM_length {A B} (f : A  M B) l k :
643
    l  mapM f k  length l = length k.
644
  Proof. revert l; induction k; set_solver by eauto. Qed.
645
  Lemma elem_of_mapM_fmap {A B} (f : A  B) (g : B  M A) l k :
646
    Forall (λ x,  y, y  g x  f y = x) l  k  mapM g l  fmap f k = l.
647
  Proof. intros Hl. revert k. induction Hl; set_solver. Qed.
648
  Lemma elem_of_mapM_Forall {A B} (f : A  M B) (P : B  Prop) l k :
649
    l  mapM f k  Forall (λ x,  y, y  f x  P y) k  Forall P l.
Robbert Krebbers's avatar
Robbert Krebbers committed
650
  Proof. rewrite elem_of_mapM. apply Forall2_Forall_l. Qed.
651
652
  Lemma elem_of_mapM_Forall2_l {A B C} (f : A  M B) (P: B  C  Prop) l1 l2 k :
    l1  mapM f k  Forall2 (λ x y,  z, z  f x  P z y) k l2 
Robbert Krebbers's avatar
Robbert Krebbers committed
653
654
655
656
657
    Forall2 P l1 l2.
  Proof.
    rewrite elem_of_mapM. intros Hl1. revert l2.
    induction Hl1; inversion_clear 1; constructor; auto.
  Qed.
658
End collection_monad.
659
660
661
662
663
664

(** Finite collections *)
Definition set_finite `{ElemOf A B} (X : B) :=  l : list A,  x, x  X  x  l.

Section finite.
  Context `{SimpleCollection A B}.
665
666
  Global Instance set_finite_subseteq :
     Proper (flip () ==> impl) (@set_finite A B _).
667
  Proof. intros X Y HX [l Hl]; exists l; set_solver. Qed.
668
669
  Global Instance set_finite_proper : Proper (() ==> iff) (@set_finite A B _).
  Proof. by intros X Y [??]; split; apply set_finite_subseteq. Qed.
670
671
672
  Lemma empty_finite : set_finite .
  Proof. by exists []; intros ?; rewrite elem_of_empty. Qed.
  Lemma singleton_finite (x : A) : set_finite {[ x ]}.
Ralf Jung's avatar
Ralf Jung committed
673
  Proof. exists [x]; intros y ->%elem_of_singleton; left. Qed.
674
675
676
677
678
679
  Lemma union_finite X Y : set_finite X  set_finite Y  set_finite (X  Y).
  Proof.
    intros [lX ?] [lY ?]; exists (lX ++ lY); intros x.
    rewrite elem_of_union, elem_of_app; naive_solver.
  Qed.
  Lemma union_finite_inv_l X Y : set_finite (X  Y)  set_finite X.
680
  Proof. intros [l ?]; exists l; set_solver. Qed.
681
  Lemma union_finite_inv_r X Y : set_finite (X  Y)  set_finite Y.
682
  Proof. intros [l ?]; exists l; set_solver. Qed.
683
684
685
686
687
End finite.

Section more_finite.
  Context `{Collection A B}.
  Lemma intersection_finite_l X Y : set_finite X  set_finite (X  Y).
Ralf Jung's avatar
Ralf Jung committed
688
  Proof. intros [l ?]; exists l; intros x [??]%elem_of_intersection; auto. Qed.
689
  Lemma intersection_finite_r X Y : set_finite Y  set_finite (X  Y).
Ralf Jung's avatar
Ralf Jung committed
690
  Proof. intros [l ?]; exists l; intros x [??]%elem_of_intersection; auto. Qed.
691
  Lemma difference_finite X Y : set_finite X  set_finite (X  Y).
Ralf Jung's avatar
Ralf Jung committed
692
  Proof. intros [l ?]; exists l; intros x [??]%elem_of_difference; auto. Qed.
693
694
695
696
  Lemma difference_finite_inv X Y `{ x, Decision (x  Y)} :
    set_finite Y  set_finite (X  Y)  set_finite X.
  Proof.
    intros [l ?] [k ?]; exists (l ++ k).
697
    intros x ?; destruct (decide (x  Y)); rewrite elem_of_app; set_solver.
698
  Qed.
699
End more_finite.