collections.v 30.6 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
2 3 4 5
(* This file is distributed under the terms of the BSD license. *)
(** This file collects definitions and theorems on collections. Most
importantly, it implements some tactics to automatically solve goals involving
collections. *)
6
From stdpp Require Export base tactics orders.
7

8 9
Instance collection_subseteq `{ElemOf A C} : SubsetEq C := λ X Y,
   x, x  X  x  Y.
10
Typeclasses Opaque collection_subseteq.
11

12
(** * Basic theorems *)
13 14
Section simple_collection.
  Context `{SimpleCollection A C}.
15 16
  Implicit Types x y : A.
  Implicit Types X Y : C.
Robbert Krebbers's avatar
Robbert Krebbers committed
17

18
  Lemma elem_of_empty x : x    False.
19
  Proof. split. apply not_elem_of_empty. done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
20 21 22 23
  Lemma elem_of_union_l x X Y : x  X  x  X  Y.
  Proof. intros. apply elem_of_union. auto. Qed.
  Lemma elem_of_union_r x X Y : x  Y  x  X  Y.
  Proof. intros. apply elem_of_union. auto. Qed.
24 25 26
  Global Instance: EmptySpec C.
  Proof. firstorder auto. Qed.
  Global Instance: JoinSemiLattice C.
27
  Proof. firstorder auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
28 29
  Global Instance: AntiSymm () (@collection_subseteq A C _).
  Proof. done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
30
  Lemma elem_of_subseteq X Y : X  Y   x, x  X  x  Y.
31
  Proof. done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
32 33
  Lemma elem_of_equiv X Y : X  Y   x, x  X  x  Y.
  Proof. firstorder. Qed.
34 35
  Lemma elem_of_equiv_alt X Y :
    X  Y  ( x, x  X  x  Y)  ( x, x  Y  x  X).
Robbert Krebbers's avatar
Robbert Krebbers committed
36
  Proof. firstorder. Qed.
37 38
  Lemma elem_of_equiv_empty X : X     x, x  X.
  Proof. firstorder. Qed.
39 40 41 42 43 44
  Lemma collection_positive_l X Y : X  Y    X  .
  Proof.
    rewrite !elem_of_equiv_empty. setoid_rewrite elem_of_union. naive_solver.
  Qed.
  Lemma collection_positive_l_alt X Y : X    X  Y  .
  Proof. eauto using collection_positive_l. Qed.
45 46 47 48
  Lemma elem_of_singleton_1 x y : x  {[y]}  x = y.
  Proof. by rewrite elem_of_singleton. Qed.
  Lemma elem_of_singleton_2 x y : x = y  x  {[y]}.
  Proof. by rewrite elem_of_singleton. Qed.
49 50 51
  Lemma elem_of_subseteq_singleton x X : x  X  {[ x ]}  X.
  Proof.
    split.
52 53
    - intros ??. rewrite elem_of_singleton. by intros ->.
    - intros Ex. by apply (Ex x), elem_of_singleton.
54
  Qed.
55
  Global Instance singleton_proper : Proper ((=) ==> ()) (singleton (B:=C)).
56
  Proof. by repeat intro; subst. Qed.
57 58
  Global Instance elem_of_proper :
    Proper ((=) ==> () ==> iff) (() : A  C  Prop) | 5.
59
  Proof. intros ???; subst. firstorder. Qed.
60
  Lemma elem_of_union_list Xs x : x   Xs   X, X  Xs  x  X.
61 62
  Proof.
    split.
63
    - induction Xs; simpl; intros HXs; [by apply elem_of_empty in HXs|].
64
      setoid_rewrite elem_of_cons. apply elem_of_union in HXs. naive_solver.
65
    - intros [X []]. induction 1; simpl; [by apply elem_of_union_l |].
66
      intros. apply elem_of_union_r; auto.
67
  Qed.
68
  Lemma non_empty_singleton x : ({[ x ]} : C)  .
69 70 71 72 73 74
  Proof. intros [E _]. by apply (elem_of_empty x), E, elem_of_singleton. Qed.
  Lemma not_elem_of_singleton x y : x  {[ y ]}  x  y.
  Proof. by rewrite elem_of_singleton. Qed.
  Lemma not_elem_of_union x X Y : x  X  Y  x  X  x  Y.
  Proof. rewrite elem_of_union. tauto. Qed.

75 76 77 78 79 80 81 82 83
  Section leibniz.
    Context `{!LeibnizEquiv C}.
    Lemma elem_of_equiv_L X Y : X = Y   x, x  X  x  Y.
    Proof. unfold_leibniz. apply elem_of_equiv. Qed.
    Lemma elem_of_equiv_alt_L X Y :
      X = Y  ( x, x  X  x  Y)  ( x, x  Y  x  X).
    Proof. unfold_leibniz. apply elem_of_equiv_alt. Qed.
    Lemma elem_of_equiv_empty_L X : X =    x, x  X.
    Proof. unfold_leibniz. apply elem_of_equiv_empty. Qed.
84 85 86 87
    Lemma collection_positive_l_L X Y : X  Y =   X = .
    Proof. unfold_leibniz. apply collection_positive_l. Qed.
    Lemma collection_positive_l_alt_L X Y : X    X  Y  .
    Proof. unfold_leibniz. apply collection_positive_l_alt. Qed.
88 89 90 91 92 93 94 95 96 97 98 99
    Lemma non_empty_singleton_L x : {[ x ]}  .
    Proof. unfold_leibniz. apply non_empty_singleton. Qed.
  End leibniz.

  Section dec.
    Context `{ X Y : C, Decision (X  Y)}.
    Global Instance elem_of_dec_slow (x : A) (X : C) : Decision (x  X) | 100.
    Proof.
      refine (cast_if (decide_rel () {[ x ]} X));
        by rewrite elem_of_subseteq_singleton.
    Defined.
  End dec.
100 101
End simple_collection.

102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
(** * Tactics *)
(** The tactic [set_unfold] transforms all occurrences of [(∪)], [(∩)], [(∖)],
[(<$>)], [∅], [{[_]}], [(≡)], and [(⊆)] into logically equivalent propositions
involving just [∈]. For example, [A → x ∈ X ∪ ∅] becomes [A → x ∈ X ∨ False].

This transformation is implemented using type classes instead of [rewrite]ing
to ensure that we traverse each term at most once. *)
Class SetUnfold (P Q : Prop) := { set_unfold : P  Q }.
Arguments set_unfold _ _ {_}.
Hint Mode SetUnfold + - : typeclass_instances.

Class SetUnfoldSimpl (P Q : Prop) := { set_unfold_simpl : SetUnfold P Q }.
Hint Extern 0 (SetUnfoldSimpl _ _) => csimpl; constructor : typeclass_instances.

Instance set_unfold_fallthrough P : SetUnfold P P | 1000. done. Qed.
Definition set_unfold_1 `{SetUnfold P Q} : P  Q := proj1 (set_unfold P Q).
Definition set_unfold_2 `{SetUnfold P Q} : Q  P := proj2 (set_unfold P Q).

Lemma set_unfold_impl P Q P' Q' :
  SetUnfold P P'  SetUnfold Q Q'  SetUnfold (P  Q) (P'  Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_and P Q P' Q' :
  SetUnfold P P'  SetUnfold Q Q'  SetUnfold (P  Q) (P'  Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_or P Q P' Q' :
  SetUnfold P P'  SetUnfold Q Q'  SetUnfold (P  Q) (P'  Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_iff P Q P' Q' :
  SetUnfold P P'  SetUnfold Q Q'  SetUnfold (P  Q) (P'  Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_not P P' : SetUnfold P P'  SetUnfold (¬P) (¬P').
Proof. constructor. by rewrite (set_unfold P P'). Qed.
Lemma set_unfold_forall {A} (P P' : A  Prop) :
  ( x, SetUnfold (P x) (P' x))  SetUnfold ( x, P x) ( x, P' x).
Proof. constructor. naive_solver. Qed.
Lemma set_unfold_exist {A} (P P' : A  Prop) :
  ( x, SetUnfold (P x) (P' x))  SetUnfold ( x, P x) ( x, P' x).
Proof. constructor. naive_solver. Qed.

(* Avoid too eager application of the above instances (and thus too eager
unfolding of type class transparent definitions). *)
Hint Extern 0 (SetUnfold (_  _) _) =>
  class_apply set_unfold_impl : typeclass_instances.
Hint Extern 0 (SetUnfold (_  _) _) =>
  class_apply set_unfold_and : typeclass_instances.
Hint Extern 0 (SetUnfold (_  _) _) =>
  class_apply set_unfold_or : typeclass_instances.
Hint Extern 0 (SetUnfold (_  _) _) =>
  class_apply set_unfold_iff : typeclass_instances.
Hint Extern 0 (SetUnfold (¬ _) _) =>
  class_apply set_unfold_not : typeclass_instances.
Hint Extern 1 (SetUnfold ( _, _) _) =>
  class_apply set_unfold_forall : typeclass_instances.
Hint Extern 0 (SetUnfold ( _, _) _) =>
  class_apply set_unfold_exist : typeclass_instances.

Section set_unfold_simple.
  Context `{SimpleCollection A C}.
  Implicit Types x y : A.
  Implicit Types X Y : C.

  Global Instance set_unfold_empty x : SetUnfold (x  ) False.
  Proof. constructor; apply elem_of_empty. Qed.
  Global Instance set_unfold_singleton x y : SetUnfold (x  {[ y ]}) (x = y).
  Proof. constructor; apply elem_of_singleton. Qed.
  Global Instance set_unfold_union x X Y P Q :
    SetUnfold (x  X) P  SetUnfold (x  Y) Q  SetUnfold (x  X  Y) (P  Q).
  Proof.
    intros ??; constructor.
    by rewrite elem_of_union, (set_unfold (x  X) P), (set_unfold (x  Y) Q).
  Qed.
  Global Instance set_unfold_equiv_same X : SetUnfold (X  X) True | 1.
  Proof. done. Qed.
  Global Instance set_unfold_equiv_empty_l X (P : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  SetUnfold (  X) ( x, ¬P x) | 5.
  Proof.
    intros ?; constructor.
    rewrite (symmetry_iff equiv), elem_of_equiv_empty; naive_solver.
  Qed.
  Global Instance set_unfold_equiv_empty_r (P : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  SetUnfold (X  ) ( x, ¬P x) | 5.
  Proof. constructor. rewrite elem_of_equiv_empty; naive_solver. Qed.
  Global Instance set_unfold_equiv (P Q : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
    SetUnfold (X  Y) ( x, P x  Q x) | 10.
  Proof. constructor. rewrite elem_of_equiv; naive_solver. Qed.
  Global Instance set_unfold_subseteq (P Q : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
    SetUnfold (X  Y) ( x, P x  Q x).
  Proof. constructor. rewrite elem_of_subseteq; naive_solver. Qed.
  Global Instance set_unfold_subset (P Q : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
    SetUnfold (X  Y) (( x, P x  Q x)  ¬∀ x, P x  Q x).
  Proof.
    constructor. rewrite subset_spec, elem_of_subseteq, elem_of_equiv.
    repeat f_equiv; naive_solver.
  Qed.

  Context `{!LeibnizEquiv C}.
  Global Instance set_unfold_equiv_same_L X : SetUnfold (X = X) True | 1.
  Proof. done. Qed.
  Global Instance set_unfold_equiv_empty_l_L X (P : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  SetUnfold ( = X) ( x, ¬P x) | 5.
  Proof.
    constructor. rewrite (symmetry_iff eq), elem_of_equiv_empty_L; naive_solver.
  Qed.
  Global Instance set_unfold_equiv_empty_r_L (P : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  SetUnfold (X = ) ( x, ¬P x) | 5.
  Proof. constructor. rewrite elem_of_equiv_empty_L; naive_solver. Qed.
  Global Instance set_unfold_equiv_L (P Q : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
    SetUnfold (X = Y) ( x, P x  Q x) | 10.
  Proof. constructor. rewrite elem_of_equiv_L; naive_solver. Qed.
End set_unfold_simple.

Section set_unfold.
  Context `{Collection A C}.
  Implicit Types x y : A.
  Implicit Types X Y : C.

  Global Instance set_unfold_intersection x X Y P Q :
    SetUnfold (x  X) P  SetUnfold (x  Y) Q  SetUnfold (x  X  Y) (P  Q).
  Proof.
    intros ??; constructor. by rewrite elem_of_intersection,
      (set_unfold (x  X) P), (set_unfold (x  Y) Q).
  Qed.
  Global Instance set_unfold_difference x X Y P Q :
    SetUnfold (x  X) P  SetUnfold (x  Y) Q  SetUnfold (x  X  Y) (P  ¬Q).
  Proof.
    intros ??; constructor. by rewrite elem_of_difference,
      (set_unfold (x  X) P), (set_unfold (x  Y) Q).
  Qed.
End set_unfold.

Section set_unfold_monad.
  Context `{CollectionMonad M} {A : Type}.
  Implicit Types x y : A.

  Global Instance set_unfold_ret x y : SetUnfold (x  mret y) (x = y).
  Proof. constructor; apply elem_of_ret. Qed.
  Global Instance set_unfold_bind {B} (f : A  M B) X (P Q : A  Prop) :
    ( y, SetUnfold (y  X) (P y))  ( y, SetUnfold (x  f y) (Q y)) 
    SetUnfold (x  X = f) ( y, Q y  P y).
  Proof. constructor. rewrite elem_of_bind; naive_solver. Qed.
  Global Instance set_unfold_fmap {B} (f : A  B) X (P : A  Prop) :
    ( y, SetUnfold (y  X) (P y)) 
    SetUnfold (x  f <$> X) ( y, x = f y  P y).
  Proof. constructor. rewrite elem_of_fmap; naive_solver. Qed.
  Global Instance set_unfold_join (X : M (M A)) (P : M A  Prop) :
    ( Y, SetUnfold (Y  X) (P Y))  SetUnfold (x  mjoin X) ( Y, x  Y  P Y).
  Proof. constructor. rewrite elem_of_join; naive_solver. Qed.
End set_unfold_monad.

Ltac set_unfold :=
  let rec unfold_hyps :=
    try match goal with
    | H : _ |- _ =>
       apply set_unfold_1 in H; revert H;
       first [unfold_hyps; intros H | intros H; fail 1]
    end in
  apply set_unfold_2; unfold_hyps; csimpl in *.

(** Since [firstorder] fails or loops on very small goals generated by
[set_solver] already. We use the [naive_solver] tactic as a substitute.
This tactic either fails or proves the goal. *)
Tactic Notation "set_solver" "by" tactic3(tac) :=
  intros; setoid_subst;
  set_unfold;
  intros; setoid_subst;
  try match goal with |- _  _ => apply dec_stable end;
  naive_solver tac.
Tactic Notation "set_solver" "-" hyp_list(Hs) "by" tactic3(tac) :=
  clear Hs; set_solver by tac.
Tactic Notation "set_solver" "+" hyp_list(Hs) "by" tactic3(tac) :=
  clear -Hs; set_solver by tac.
Tactic Notation "set_solver" := set_solver by idtac.
Tactic Notation "set_solver" "-" hyp_list(Hs) := clear Hs; set_solver.
Tactic Notation "set_solver" "+" hyp_list(Hs) := clear -Hs; set_solver.

(** * Conversion of option and list *)
Definition of_option `{Singleton A C, Empty C} (mx : option A) : C :=
  match mx with None =>  | Some x => {[ x ]} end.
284 285
Fixpoint of_list `{Singleton A C, Empty C, Union C} (l : list A) : C :=
  match l with [] =>  | x :: l => {[ x ]}  of_list l end.
286

287 288
Section of_option_list.
  Context `{SimpleCollection A C}.
289 290
  Lemma elem_of_of_option (x : A) mx: x  of_option mx  mx = Some x.
  Proof. destruct mx; set_solver. Qed.
291 292 293
  Lemma elem_of_of_list (x : A) l : x  of_list l  x  l.
  Proof.
    split.
294
    - induction l; simpl; [by rewrite elem_of_empty|].
Robbert Krebbers's avatar
Robbert Krebbers committed
295
      rewrite elem_of_union,elem_of_singleton; intros [->|?]; constructor; auto.
296
    - induction 1; simpl; rewrite elem_of_union, elem_of_singleton; auto.
297
  Qed.
298 299 300 301 302 303
  Global Instance set_unfold_of_option (mx : option A) x :
    SetUnfold (x  of_option mx) (mx = Some x).
  Proof. constructor; apply elem_of_of_option. Qed.
  Global Instance set_unfold_of_list (l : list A) x :
    SetUnfold (x  of_list l) (x  l).
  Proof. constructor; apply elem_of_of_list. Qed.
304
End of_option_list.
305

306
(** * Guard *)
307 308
Global Instance collection_guard `{CollectionMonad M} : MGuard M :=
  λ P dec A x, match dec with left H => x H | _ =>  end.
309 310 311 312 313 314 315 316 317

Section collection_monad_base.
  Context `{CollectionMonad M}.
  Lemma elem_of_guard `{Decision P} {A} (x : A) (X : M A) :
    x  guard P; X  P  x  X.
  Proof.
    unfold mguard, collection_guard; simpl; case_match;
      rewrite ?elem_of_empty; naive_solver.
  Qed.
318 319 320
  Lemma elem_of_guard_2 `{Decision P} {A} (x : A) (X : M A) :
    P  x  X  x  guard P; X.
  Proof. by rewrite elem_of_guard. Qed.
321 322 323 324 325
  Lemma guard_empty `{Decision P} {A} (X : M A) : guard P; X    ¬P  X  .
  Proof.
    rewrite !elem_of_equiv_empty; setoid_rewrite elem_of_guard.
    destruct (decide P); naive_solver.
  Qed.
326 327 328
  Global Instance set_unfold_guard `{Decision P} {A} (x : A) X Q :
    SetUnfold (x  X) Q  SetUnfold (x  guard P; X) (P  Q).
  Proof. constructor. by rewrite elem_of_guard, (set_unfold (x  X) Q). Qed.
329 330
  Lemma bind_empty {A B} (f : A  M B) X :
    X = f    X     x, x  X  f x  .
331
  Proof. set_solver. Qed.
332
End collection_monad_base.
333

334
(** * More theorems *)
Robbert Krebbers's avatar
Robbert Krebbers committed
335 336
Section collection.
  Context `{Collection A C}.
337
  Implicit Types X Y : C.
Robbert Krebbers's avatar
Robbert Krebbers committed
338

339
  Global Instance: Lattice C.
340
  Proof. split. apply _. firstorder auto. set_solver. Qed.
341 342
  Global Instance difference_proper :
     Proper (() ==> () ==> ()) (@difference C _).
Robbert Krebbers's avatar
Robbert Krebbers committed
343 344 345 346
  Proof.
    intros X1 X2 HX Y1 Y2 HY; apply elem_of_equiv; intros x.
    by rewrite !elem_of_difference, HX, HY.
  Qed.
347
  Lemma non_empty_inhabited x X : x  X  X  .
348
  Proof. set_solver. Qed.
349
  Lemma intersection_singletons x : ({[x]} : C)  {[x]}  {[x]}.
350
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
351
  Lemma difference_twice X Y : (X  Y)  Y  X  Y.
352
  Proof. set_solver. Qed.
353
  Lemma subseteq_empty_difference X Y : X  Y  X  Y  .
354
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
355
  Lemma difference_diag X : X  X  .
356
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
357
  Lemma difference_union_distr_l X Y Z : (X  Y)  Z  X  Z  Y  Z.
358
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
359
  Lemma difference_union_distr_r X Y Z : Z  (X  Y)  (Z  X)  (Z  Y).
360
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
361
  Lemma difference_intersection_distr_l X Y Z : (X  Y)  Z  X  Z  Y  Z.
362
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
363
  Lemma disjoint_union_difference X Y : X  Y    (X  Y)  X  Y.
364
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
365

366 367 368 369 370 371
  Section leibniz.
    Context `{!LeibnizEquiv C}.
    Lemma intersection_singletons_L x : {[x]}  {[x]} = {[x]}.
    Proof. unfold_leibniz. apply intersection_singletons. Qed.
    Lemma difference_twice_L X Y : (X  Y)  Y = X  Y.
    Proof. unfold_leibniz. apply difference_twice. Qed.
372 373
    Lemma subseteq_empty_difference_L X Y : X  Y  X  Y = .
    Proof. unfold_leibniz. apply subseteq_empty_difference. Qed.
374 375 376 377
    Lemma difference_diag_L X : X  X = .
    Proof. unfold_leibniz. apply difference_diag. Qed.
    Lemma difference_union_distr_l_L X Y Z : (X  Y)  Z = X  Z  Y  Z.
    Proof. unfold_leibniz. apply difference_union_distr_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
378 379
    Lemma difference_union_distr_r_L X Y Z : Z  (X  Y) = (Z  X)  (Z  Y).
    Proof. unfold_leibniz. apply difference_union_distr_r. Qed.
380 381 382
    Lemma difference_intersection_distr_l_L X Y Z :
      (X  Y)  Z = X  Z  Y  Z.
    Proof. unfold_leibniz. apply difference_intersection_distr_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
383 384
    Lemma disjoint_union_difference_L X Y : X  Y =   (X  Y)  X = Y.
    Proof. unfold_leibniz. apply disjoint_union_difference. Qed.
385 386 387
  End leibniz.

  Section dec.
Robbert Krebbers's avatar
Robbert Krebbers committed
388
    Context `{ (x : A) (X : C), Decision (x  X)}.
389
    Lemma not_elem_of_intersection x X Y : x  X  Y  x  X  x  Y.
390
    Proof. rewrite elem_of_intersection. destruct (decide (x  X)); tauto. Qed.
391
    Lemma not_elem_of_difference x X Y : x  X  Y  x  X  x  Y.
392
    Proof. rewrite elem_of_difference. destruct (decide (x  Y)); tauto. Qed.
393 394
    Lemma union_difference X Y : X  Y  Y  X  Y  X.
    Proof.
395 396
      split; intros x; rewrite !elem_of_union, elem_of_difference; [|intuition].
      destruct (decide (x  X)); intuition.
397 398
    Qed.
    Lemma non_empty_difference X Y : X  Y  Y  X  .
399
    Proof. intros [HXY1 HXY2] Hdiff. destruct HXY2. set_solver. Qed.
400
    Lemma empty_difference_subseteq X Y : X  Y    X  Y.
401
    Proof. set_solver. Qed.
402 403 404 405 406
    Context `{!LeibnizEquiv C}.
    Lemma union_difference_L X Y : X  Y  Y = X  Y  X.
    Proof. unfold_leibniz. apply union_difference. Qed.
    Lemma non_empty_difference_L X Y : X  Y  Y  X  .
    Proof. unfold_leibniz. apply non_empty_difference. Qed.
407 408
    Lemma empty_difference_subseteq_L X Y : X  Y =   X  Y.
    Proof. unfold_leibniz. apply empty_difference_subseteq. Qed.
409 410 411 412 413 414
  End dec.
End collection.

Section collection_ops.
  Context `{CollectionOps A C}.

Robbert Krebbers's avatar
Robbert Krebbers committed
415 416 417 418 419
  Lemma elem_of_intersection_with_list (f : A  A  option A) Xs Y x :
    x  intersection_with_list f Y Xs   xs y,
      Forall2 () xs Xs  y  Y  foldr (λ x, (= f x)) (Some y) xs = Some x.
  Proof.
    split.
420
    - revert x. induction Xs; simpl; intros x HXs; [eexists [], x; intuition|].
421 422
      rewrite elem_of_intersection_with in HXs; destruct HXs as (x1&x2&?&?&?).
      destruct (IHXs x2) as (xs & y & hy & ? & ?); trivial.
423
      eexists (x1 :: xs), y. intuition (simplify_option_eq; auto).
424
    - intros (xs & y & Hxs & ? & Hx). revert x Hx.
425
      induction Hxs; intros; simplify_option_eq; [done |].
Robbert Krebbers's avatar
Robbert Krebbers committed
426 427 428 429 430 431 432 433 434
      rewrite elem_of_intersection_with. naive_solver.
  Qed.

  Lemma intersection_with_list_ind (P Q : A  Prop) f Xs Y :
    ( y, y  Y  P y) 
    Forall (λ X,  x, x  X  Q x) Xs 
    ( x y z, Q x  P y  f x y = Some z  P z) 
     x, x  intersection_with_list f Y Xs  P x.
  Proof.
435
    intros HY HXs Hf. induction Xs; simplify_option_eq; [done |].
Robbert Krebbers's avatar
Robbert Krebbers committed
436 437 438
    intros x Hx. rewrite elem_of_intersection_with in Hx.
    decompose_Forall. destruct Hx as (? & ? & ? & ? & ?). eauto.
  Qed.
439
End collection_ops.
Robbert Krebbers's avatar
Robbert Krebbers committed
440

441
(** * Sets without duplicates up to an equivalence *)
442
Section NoDup.
443
  Context `{SimpleCollection A B} (R : relation A) `{!Equivalence R}.
Robbert Krebbers's avatar
Robbert Krebbers committed
444 445

  Definition elem_of_upto (x : A) (X : B) :=  y, y  X  R x y.
446
  Definition set_NoDup (X : B) :=  x y, x  X  y  X  R x y  x = y.
Robbert Krebbers's avatar
Robbert Krebbers committed
447 448

  Global Instance: Proper (() ==> iff) (elem_of_upto x).
Robbert Krebbers's avatar
Robbert Krebbers committed
449
  Proof. intros ??? E. unfold elem_of_upto. by setoid_rewrite E. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
450 451 452
  Global Instance: Proper (R ==> () ==> iff) elem_of_upto.
  Proof.
    intros ?? E1 ?? E2. split; intros [z [??]]; exists z.
453 454
    - rewrite <-E1, <-E2; intuition.
    - rewrite E1, E2; intuition.
Robbert Krebbers's avatar
Robbert Krebbers committed
455
  Qed.
456
  Global Instance: Proper (() ==> iff) set_NoDup.
Robbert Krebbers's avatar
Robbert Krebbers committed
457 458 459
  Proof. firstorder. Qed.

  Lemma elem_of_upto_elem_of x X : x  X  elem_of_upto x X.
460
  Proof. unfold elem_of_upto. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
461
  Lemma elem_of_upto_empty x : ¬elem_of_upto x .
462
  Proof. unfold elem_of_upto. set_solver. Qed.
463
  Lemma elem_of_upto_singleton x y : elem_of_upto x {[ y ]}  R x y.
464
  Proof. unfold elem_of_upto. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
465

466 467
  Lemma elem_of_upto_union X Y x :
    elem_of_upto x (X  Y)  elem_of_upto x X  elem_of_upto x Y.
468
  Proof. unfold elem_of_upto. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
469
  Lemma not_elem_of_upto x X : ¬elem_of_upto x X   y, y  X  ¬R x y.
470
  Proof. unfold elem_of_upto. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
471

472
  Lemma set_NoDup_empty: set_NoDup .
473
  Proof. unfold set_NoDup. set_solver. Qed.
474 475
  Lemma set_NoDup_add x X :
    ¬elem_of_upto x X  set_NoDup X  set_NoDup ({[ x ]}  X).
476
  Proof. unfold set_NoDup, elem_of_upto. set_solver. Qed.
477 478
  Lemma set_NoDup_inv_add x X :
    x  X  set_NoDup ({[ x ]}  X)  ¬elem_of_upto x X.
479 480
  Proof.
    intros Hin Hnodup [y [??]].
481
    rewrite (Hnodup x y) in Hin; set_solver.
482
  Qed.
483
  Lemma set_NoDup_inv_union_l X Y : set_NoDup (X  Y)  set_NoDup X.
484
  Proof. unfold set_NoDup. set_solver. Qed.
485
  Lemma set_NoDup_inv_union_r X Y : set_NoDup (X  Y)  set_NoDup Y.
486
  Proof. unfold set_NoDup. set_solver. Qed.
487
End NoDup.
Robbert Krebbers's avatar
Robbert Krebbers committed
488

489
(** * Quantifiers *)
Robbert Krebbers's avatar
Robbert Krebbers committed
490
Section quantifiers.
491
  Context `{SimpleCollection A B} (P : A  Prop).
Robbert Krebbers's avatar
Robbert Krebbers committed
492

493 494 495 496
  Definition set_Forall X :=  x, x  X  P x.
  Definition set_Exists X :=  x, x  X  P x.

  Lemma set_Forall_empty : set_Forall .
497
  Proof. unfold set_Forall. set_solver. Qed.
498
  Lemma set_Forall_singleton x : set_Forall {[ x ]}  P x.
499
  Proof. unfold set_Forall. set_solver. Qed.
500
  Lemma set_Forall_union X Y : set_Forall X  set_Forall Y  set_Forall (X  Y).
501
  Proof. unfold set_Forall. set_solver. Qed.
502
  Lemma set_Forall_union_inv_1 X Y : set_Forall (X  Y)  set_Forall X.
503
  Proof. unfold set_Forall. set_solver. Qed.
504
  Lemma set_Forall_union_inv_2 X Y : set_Forall (X  Y)  set_Forall Y.
505
  Proof. unfold set_Forall. set_solver. Qed.
506 507

  Lemma set_Exists_empty : ¬set_Exists .
508
  Proof. unfold set_Exists. set_solver. Qed.
509
  Lemma set_Exists_singleton x : set_Exists {[ x ]}  P x.
510
  Proof. unfold set_Exists. set_solver. Qed.
511
  Lemma set_Exists_union_1 X Y : set_Exists X  set_Exists (X  Y).
512
  Proof. unfold set_Exists. set_solver. Qed.
513
  Lemma set_Exists_union_2 X Y : set_Exists Y  set_Exists (X  Y).
514
  Proof. unfold set_Exists. set_solver. Qed.
515 516
  Lemma set_Exists_union_inv X Y :
    set_Exists (X  Y)  set_Exists X  set_Exists Y.
517
  Proof. unfold set_Exists. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
518 519
End quantifiers.

520
Section more_quantifiers.
521
  Context `{SimpleCollection A B}.
522

523 524 525 526 527 528
  Lemma set_Forall_weaken (P Q : A  Prop) (Hweaken :  x, P x  Q x) X :
    set_Forall P X  set_Forall Q X.
  Proof. unfold set_Forall. naive_solver. Qed.
  Lemma set_Exists_weaken (P Q : A  Prop) (Hweaken :  x, P x  Q x) X :
    set_Exists P X  set_Exists Q X.
  Proof. unfold set_Exists. naive_solver. Qed.
529 530
End more_quantifiers.

531 532 533
(** * Fresh elements *)
(** We collect some properties on the [fresh] operation. In particular we
generalize [fresh] to generate lists of fresh elements. *)
534 535 536 537 538 539 540 541 542 543
Fixpoint fresh_list `{Fresh A C, Union C, Singleton A C}
    (n : nat) (X : C) : list A :=
  match n with
  | 0 => []
  | S n => let x := fresh X in x :: fresh_list n ({[ x ]}  X)
  end.
Inductive Forall_fresh `{ElemOf A C} (X : C) : list A  Prop :=
  | Forall_fresh_nil : Forall_fresh X []
  | Forall_fresh_cons x xs :
     x  xs  x  X  Forall_fresh X xs  Forall_fresh X (x :: xs).
544

545 546
Section fresh.
  Context `{FreshSpec A C}.
547
  Implicit Types X Y : C.
548

549
  Global Instance fresh_proper: Proper (() ==> (=)) (fresh (C:=C)).
550
  Proof. intros ???. by apply fresh_proper_alt, elem_of_equiv. Qed.
551 552
  Global Instance fresh_list_proper:
    Proper ((=) ==> () ==> (=)) (fresh_list (C:=C)).
553
  Proof.
554
    intros ? n ->. induction n as [|n IH]; intros ?? E; f_equal/=; [by rewrite E|].
555
    apply IH. by rewrite E.
556
  Qed.
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571

  Lemma Forall_fresh_NoDup X xs : Forall_fresh X xs  NoDup xs.
  Proof. induction 1; by constructor. Qed.
  Lemma Forall_fresh_elem_of X xs x : Forall_fresh X xs  x  xs  x  X.
  Proof.
    intros HX; revert x; rewrite <-Forall_forall.
    by induction HX; constructor.
  Qed.
  Lemma Forall_fresh_alt X xs :
    Forall_fresh X xs  NoDup xs   x, x  xs  x  X.
  Proof.
    split; eauto using Forall_fresh_NoDup, Forall_fresh_elem_of.
    rewrite <-Forall_forall.
    intros [Hxs Hxs']. induction Hxs; decompose_Forall_hyps; constructor; auto.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
572 573
  Lemma Forall_fresh_subseteq X Y xs :
    Forall_fresh X xs  Y  X  Forall_fresh Y xs.
574
  Proof. rewrite !Forall_fresh_alt; set_solver. Qed.
575

576 577
  Lemma fresh_list_length n X : length (fresh_list n X) = n.
  Proof. revert X. induction n; simpl; auto. Qed.
578
  Lemma fresh_list_is_fresh n X x : x  fresh_list n X  x  X.
579
  Proof.
580
    revert X. induction n as [|n IH]; intros X; simpl;[by rewrite elem_of_nil|].
581
    rewrite elem_of_cons; intros [->| Hin]; [apply is_fresh|].
582
    apply IH in Hin; set_solver.
583
  Qed.
584
  Lemma NoDup_fresh_list n X : NoDup (fresh_list n X).
585
  Proof.
586
    revert X. induction n; simpl; constructor; auto.
587
    intros Hin; apply fresh_list_is_fresh in Hin; set_solver.
588 589 590 591
  Qed.
  Lemma Forall_fresh_list X n : Forall_fresh X (fresh_list n X).
  Proof.
    rewrite Forall_fresh_alt; eauto using NoDup_fresh_list, fresh_list_is_fresh.
592 593
  Qed.
End fresh.
594

595
(** * Properties of implementations of collections that form a monad *)
596 597 598
Section collection_monad.
  Context `{CollectionMonad M}.

599 600
  Global Instance collection_fmap_mono {A B} :
    Proper (pointwise_relation _ (=) ==> () ==> ()) (@fmap M _ A B).
601
  Proof. intros f g ? X Y ?; set_solver by eauto. Qed.
602 603
  Global Instance collection_fmap_proper {A B} :
    Proper (pointwise_relation _ (=) ==> () ==> ()) (@fmap M _ A B).
604
  Proof. intros f g ? X Y [??]; split; set_solver by eauto. Qed.
605 606
  Global Instance collection_bind_mono {A B} :
    Proper (((=) ==> ()) ==> () ==> ()) (@mbind M _ A B).
607
  Proof. unfold respectful; intros f g Hfg X Y ?; set_solver. Qed.
608 609
  Global Instance collection_bind_proper {A B} :
    Proper (((=) ==> ()) ==> () ==> ()) (@mbind M _ A B).
610
  Proof. unfold respectful; intros f g Hfg X Y [??]; split; set_solver. Qed.
611 612
  Global Instance collection_join_mono {A} :
    Proper (() ==> ()) (@mjoin M _ A).
613
  Proof. intros X Y ?; set_solver. Qed.
614 615
  Global Instance collection_join_proper {A} :
    Proper (() ==> ()) (@mjoin M _ A).
616
  Proof. intros X Y [??]; split; set_solver. Qed.
617

618
  Lemma collection_bind_singleton {A B} (f : A  M B) x : {[ x ]} = f  f x.
619
  Proof. set_solver. Qed.
620
  Lemma collection_guard_True {A} `{Decision P} (X : M A) : P  guard P; X  X.
621
  Proof. set_solver. Qed.
622
  Lemma collection_fmap_compose {A B C} (f : A  B) (g : B  C) (X : M A) :
623
    g  f <$> X  g <$> (f <$> X).
624
  Proof. set_solver. Qed.
625 626
  Lemma elem_of_fmap_1 {A B} (f : A  B) (X : M A) (y : B) :
    y  f <$> X   x, y = f x  x  X.
627
  Proof. set_solver. Qed.
628 629
  Lemma elem_of_fmap_2 {A B} (f : A  B) (X : M A) (x : A) :
    x  X  f x  f <$> X.
630
  Proof. set_solver. Qed.
631 632
  Lemma elem_of_fmap_2_alt {A B} (f : A  B) (X : M A) (x : A) (y : B) :
    x  X  y = f x  y  f <$> X.
633
  Proof. set_solver. Qed.
634 635 636 637 638

  Lemma elem_of_mapM {A B} (f : A  M B) l k :
    l  mapM f k  Forall2 (λ x y, x  f y) l k.
  Proof.
    split.
639
    - revert l. induction k; set_solver by eauto.
640
    - induction 1; set_solver.
641
  Qed.
642
  Lemma collection_mapM_length {A B} (f : A  M B) l k :
643
    l  mapM f k  length l = length k.
644
  Proof. revert l; induction k; set_solver by eauto. Qed.
645
  Lemma elem_of_mapM_fmap {A B} (f : A  B) (g : B  M A) l k :
646
    Forall (λ x,  y, y  g x  f y = x) l  k  mapM g l  fmap f k = l.
647
  Proof. intros Hl. revert k. induction Hl; set_solver. Qed.
648
  Lemma elem_of_mapM_Forall {A B} (f : A  M B) (P : B  Prop) l k :
649
    l  mapM f k  Forall (λ x,  y, y  f x  P y) k  Forall P l.
Robbert Krebbers's avatar
Robbert Krebbers committed
650
  Proof. rewrite elem_of_mapM. apply Forall2_Forall_l. Qed.
651 652
  Lemma elem_of_mapM_Forall2_l {A B C} (f : A  M B) (P: B  C  Prop) l1 l2 k :
    l1  mapM f k  Forall2 (λ x y,  z, z  f x  P z y) k l2 
Robbert Krebbers's avatar
Robbert Krebbers committed
653 654 655 656 657
    Forall2 P l1 l2.
  Proof.
    rewrite elem_of_mapM. intros Hl1. revert l2.
    induction Hl1; inversion_clear 1; constructor; auto.
  Qed.
658
End collection_monad.
659 660 661 662 663 664

(** Finite collections *)
Definition set_finite `{ElemOf A B} (X : B) :=  l : list A,  x, x  X  x  l.

Section finite.
  Context `{SimpleCollection A B}.
665 666
  Global Instance set_finite_subseteq :
     Proper (flip () ==> impl) (@set_finite A B _).
667
  Proof. intros X Y HX [l Hl]; exists l; set_solver. Qed.
668 669
  Global Instance set_finite_proper : Proper (() ==> iff) (@set_finite A B _).
  Proof. by intros X Y [??]; split; apply set_finite_subseteq. Qed.
670 671 672
  Lemma empty_finite : set_finite .
  Proof. by exists []; intros ?; rewrite elem_of_empty. Qed.
  Lemma singleton_finite (x : A) : set_finite {[ x ]}.
Ralf Jung's avatar
Ralf Jung committed
673
  Proof. exists [x]; intros y ->%elem_of_singleton; left. Qed.
674 675 676 677 678 679
  Lemma union_finite X Y : set_finite X  set_finite Y  set_finite (X  Y).
  Proof.
    intros [lX ?] [lY ?]; exists (lX ++ lY); intros x.
    rewrite elem_of_union, elem_of_app; naive_solver.
  Qed.
  Lemma union_finite_inv_l X Y : set_finite (X  Y)  set_finite X.
680
  Proof. intros [l ?]; exists l; set_solver. Qed.
681
  Lemma union_finite_inv_r X Y : set_finite (X  Y)  set_finite Y.
682
  Proof. intros [l ?]; exists l; set_solver. Qed.
683 684 685 686 687
End finite.

Section more_finite.
  Context `{Collection A B}.
  Lemma intersection_finite_l X Y : set_finite X  set_finite (X  Y).
Ralf Jung's avatar
Ralf Jung committed
688
  Proof. intros [l ?]; exists l; intros x [??]%elem_of_intersection; auto. Qed.
689
  Lemma intersection_finite_r X Y : set_finite Y  set_finite (X  Y).
Ralf Jung's avatar
Ralf Jung committed
690
  Proof. intros [l ?]; exists l; intros x [??]%elem_of_intersection; auto. Qed.
691
  Lemma difference_finite X Y : set_finite X  set_finite (X  Y).
Ralf Jung's avatar
Ralf Jung committed
692
  Proof. intros [l ?]; exists l; intros x [??]%elem_of_difference; auto. Qed.
693 694 695 696
  Lemma difference_finite_inv X Y `{ x, Decision (x  Y)} :
    set_finite Y  set_finite (X  Y)  set_finite X.
  Proof.
    intros [l ?] [k ?]; exists (l ++ k).
697
    intros x ?; destruct (decide (x  Y)); rewrite elem_of_app; set_solver.
698
  Qed.
699
End more_finite.