fin_maps.v 75.9 KB
Newer Older
1
(* Copyright (c) 2012-2017, Coq-std++ developers. *)
2 3 4
(* This file is distributed under the terms of the BSD license. *)
(** Finite maps associate data to keys. This file defines an interface for
finite maps and collects some theory on it. Most importantly, it proves useful
5
induction principles for finite maps and implements the tactic
6
[simplify_map_eq] to simplify goals involving finite maps. *)
7
From Coq Require Import Permutation.
8
From stdpp Require Export relations orders vector fin_collections.
9 10
(* FIXME: This file needs a 'Proof Using' hint, but the default we use
   everywhere makes for lots of extra ssumptions. *)
11

12 13
(** * Axiomatization of finite maps *)
(** We require Leibniz equality to be extensional on finite maps. This of
14 15 16 17 18
course limits the space of finite map implementations, but since we are mainly
interested in finite maps with numbers as indexes, we do not consider this to
be a serious limitation. The main application of finite maps is to implement
the memory, where extensionality of Leibniz equality is very important for a
convenient use in the assertions of our axiomatic semantics. *)
19

Robbert Krebbers's avatar
Robbert Krebbers committed
20 21
(** Finiteness is axiomatized by requiring that each map can be translated
to an association list. The translation to association lists is used to
22
prove well founded recursion on finite maps. *)
23

24 25 26
(** Finite map implementations are required to implement the [merge] function
which enables us to give a generic implementation of [union_with],
[intersection_with], and [difference_with]. *)
27

28
Class FinMapToList K A M := map_to_list: M  list (K * A).
Robbert Krebbers's avatar
Robbert Krebbers committed
29

30 31
Class FinMap K M `{FMap M,  A, Lookup K A (M A),  A, Empty (M A),  A,
    PartialAlter K A (M A), OMap M, Merge M,  A, FinMapToList K A (M A),
32
    EqDecision K} := {
33 34
  map_eq {A} (m1 m2 : M A) : ( i, m1 !! i = m2 !! i)  m1 = m2;
  lookup_empty {A} i : ( : M A) !! i = None;
35 36 37 38
  lookup_partial_alter {A} f (m : M A) i :
    partial_alter f i m !! i = f (m !! i);
  lookup_partial_alter_ne {A} f (m : M A) i j :
    i  j  partial_alter f i m !! j = m !! j;
39
  lookup_fmap {A B} (f : A  B) (m : M A) i : (f <$> m) !! i = f <$> m !! i;
40
  NoDup_map_to_list {A} (m : M A) : NoDup (map_to_list m);
41 42
  elem_of_map_to_list {A} (m : M A) i x :
    (i,x)  map_to_list m  m !! i = Some x;
43
  lookup_omap {A B} (f : A  option B) m i : omap f m !! i = m !! i = f;
44
  lookup_merge {A B C} (f: option A  option B  option C) `{!DiagNone f} m1 m2 i :
45
    merge f m1 m2 !! i = f (m1 !! i) (m2 !! i)
Robbert Krebbers's avatar
Robbert Krebbers committed
46 47
}.

48 49 50
(** * Derived operations *)
(** All of the following functions are defined in a generic way for arbitrary
finite map implementations. These generic implementations do not cause a
51 52
significant performance loss to make including them in the finite map interface
worthwhile. *)
53 54 55 56 57 58 59 60 61 62
Instance map_insert `{PartialAlter K A M} : Insert K A M :=
  λ i x, partial_alter (λ _, Some x) i.
Instance map_alter `{PartialAlter K A M} : Alter K A M :=
  λ f, partial_alter (fmap f).
Instance map_delete `{PartialAlter K A M} : Delete K M :=
  partial_alter (λ _, None).
Instance map_singleton `{PartialAlter K A M, Empty M} :
  SingletonM K A M := λ i x, <[i:=x]> .

Definition map_of_list `{Insert K A M, Empty M} : list (K * A)  M :=
63
  fold_right (λ p, <[p.1:=p.2]>) .
64 65 66 67 68 69 70

Definition map_to_collection `{FinMapToList K A M,
    Singleton B C, Empty C, Union C} (f : K  A  B) (m : M) : C :=
  of_list (curry f <$> map_to_list m).
Definition map_of_collection `{Elements B C, Insert K A M, Empty M}
    (f : B  K * A) (X : C) : M :=
  map_of_list (f <$> elements X).
Robbert Krebbers's avatar
Robbert Krebbers committed
71

72 73 74 75 76 77
Instance map_union_with `{Merge M} {A} : UnionWith A (M A) :=
  λ f, merge (union_with f).
Instance map_intersection_with `{Merge M} {A} : IntersectionWith A (M A) :=
  λ f, merge (intersection_with f).
Instance map_difference_with `{Merge M} {A} : DifferenceWith A (M A) :=
  λ f, merge (difference_with f).
Robbert Krebbers's avatar
Robbert Krebbers committed
78

79
Instance map_equiv `{ A, Lookup K A (M A), Equiv A} : Equiv (M A) | 18 :=
80
  λ m1 m2,  i, m1 !! i  m2 !! i.
Robbert Krebbers's avatar
Robbert Krebbers committed
81

82 83
(** The relation [intersection_forall R] on finite maps describes that the
relation [R] holds for each pair in the intersection. *)
84
Definition map_Forall `{Lookup K A M} (P : K  A  Prop) : M  Prop :=
Robbert Krebbers's avatar
Robbert Krebbers committed
85
  λ m,  i x, m !! i = Some x  P i x.
86
Definition map_relation `{ A, Lookup K A (M A)} {A B} (R : A  B  Prop)
Robbert Krebbers's avatar
Robbert Krebbers committed
87 88
    (P : A  Prop) (Q : B  Prop) (m1 : M A) (m2 : M B) : Prop :=  i,
  option_relation R P Q (m1 !! i) (m2 !! i).
89
Definition map_included `{ A, Lookup K A (M A)} {A}
Robbert Krebbers's avatar
Robbert Krebbers committed
90
  (R : relation A) : relation (M A) := map_relation R (λ _, False) (λ _, True).
91
Definition map_disjoint `{ A, Lookup K A (M A)} {A} : relation (M A) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
92 93 94 95 96
  map_relation (λ _ _, False) (λ _, True) (λ _, True).
Infix "⊥ₘ" := map_disjoint (at level 70) : C_scope.
Hint Extern 0 (_  _) => symmetry; eassumption.
Notation "( m ⊥ₘ.)" := (map_disjoint m) (only parsing) : C_scope.
Notation "(.⊥ₘ m )" := (λ m2, m2  m) (only parsing) : C_scope.
97
Instance map_subseteq `{ A, Lookup K A (M A)} {A} : SubsetEq (M A) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
98
  map_included (=).
Robbert Krebbers's avatar
Robbert Krebbers committed
99 100 101 102 103

(** The union of two finite maps only has a meaningful definition for maps
that are disjoint. However, as working with partial functions is inconvenient
in Coq, we define the union as a total function. In case both finite maps
have a value at the same index, we take the value of the first map. *)
104
Instance map_union `{Merge M} {A} : Union (M A) := union_with (λ x _, Some x).
105 106 107
Instance map_intersection `{Merge M} {A} : Intersection (M A) :=
  intersection_with (λ x _, Some x).

108 109
(** The difference operation removes all values from the first map whose
index contains a value in the second map as well. *)
110
Instance map_difference `{Merge M} {A} : Difference (M A) :=
111
  difference_with (λ _ _, None).
Robbert Krebbers's avatar
Robbert Krebbers committed
112

113 114
(** A stronger variant of map that allows the mapped function to use the index
of the elements. Implemented by conversion to lists, so not very efficient. *)
115 116
Definition map_imap `{ A, Insert K A (M A),  A, Empty (M A),
     A, FinMapToList K A (M A)} {A B} (f : K  A  option B) (m : M A) : M B :=
117 118
  map_of_list (omap (λ ix, (fst ix,) <$> curry f ix) (map_to_list m)).

119 120 121 122 123
(* Folds a function [f] over a map. The order in which the function is called
is unspecified. *)
Definition map_fold `{FinMapToList K A M} {B}
  (f : K  A  B  B) (b : B) : M  B := foldr (curry f) b  map_to_list.

124 125 126 127
(** * Theorems *)
Section theorems.
Context `{FinMap K M}.

Robbert Krebbers's avatar
Robbert Krebbers committed
128 129
(** ** Setoids *)
Section setoid.
130
  Context `{Equiv A}.
131

132 133 134 135
  Lemma map_equiv_lookup_l (m1 m2 : M A) i x :
    m1  m2  m1 !! i = Some x   y, m2 !! i = Some y  x  y.
  Proof. generalize (equiv_Some_inv_l (m1 !! i) (m2 !! i) x); naive_solver. Qed.

136 137
  Global Instance map_equivalence :
    Equivalence (() : relation A)  Equivalence (() : relation (M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
138 139
  Proof.
    split.
140 141
    - by intros m i.
    - by intros m1 m2 ? i.
142
    - by intros m1 m2 m3 ?? i; trans (m2 !! i).
Robbert Krebbers's avatar
Robbert Krebbers committed
143
  Qed.
144 145
  Global Instance lookup_proper (i : K) :
    Proper (() ==> ()) (lookup (M:=M A) i).
Robbert Krebbers's avatar
Robbert Krebbers committed
146 147
  Proof. by intros m1 m2 Hm. Qed.
  Global Instance partial_alter_proper :
148
    Proper ((() ==> ()) ==> (=) ==> () ==> ()) (partial_alter (M:=M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
149 150 151 152 153 154
  Proof.
    by intros f1 f2 Hf i ? <- m1 m2 Hm j; destruct (decide (i = j)) as [->|];
      rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne by done;
      try apply Hf; apply lookup_proper.
  Qed.
  Global Instance insert_proper (i : K) :
155
    Proper (() ==> () ==> ()) (insert (M:=M A) i).
Robbert Krebbers's avatar
Robbert Krebbers committed
156
  Proof. by intros ???; apply partial_alter_proper; [constructor|]. Qed.
157 158
  Global Instance singleton_proper k :
    Proper (() ==> ()) (singletonM k : A  M A).
159 160 161 162
  Proof.
    intros ???; apply insert_proper; [done|].
    intros ?. rewrite lookup_empty; constructor.
  Qed.
163 164
  Global Instance delete_proper (i : K) :
    Proper (() ==> ()) (delete (M:=M A) i).
Robbert Krebbers's avatar
Robbert Krebbers committed
165 166
  Proof. by apply partial_alter_proper; [constructor|]. Qed.
  Global Instance alter_proper :
167
    Proper ((() ==> ()) ==> (=) ==> () ==> ()) (alter (A:=A) (M:=M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
168 169 170 171
  Proof.
    intros ?? Hf; apply partial_alter_proper.
    by destruct 1; constructor; apply Hf.
  Qed.
172
  Lemma merge_ext f g `{!DiagNone f, !DiagNone g} :
Robbert Krebbers's avatar
Robbert Krebbers committed
173
    (() ==> () ==> ())%signature f g 
174
    (() ==> () ==> ())%signature (merge (M:=M) f) (merge g).
Robbert Krebbers's avatar
Robbert Krebbers committed
175 176 177 178
  Proof.
    by intros Hf ?? Hm1 ?? Hm2 i; rewrite !lookup_merge by done; apply Hf.
  Qed.
  Global Instance union_with_proper :
179
    Proper ((() ==> () ==> ()) ==> () ==> () ==>()) (union_with (M:=M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
180 181 182
  Proof.
    intros ?? Hf ?? Hm1 ?? Hm2 i; apply (merge_ext _ _); auto.
    by do 2 destruct 1; first [apply Hf | constructor].
183
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
184
  Global Instance map_leibniz `{!LeibnizEquiv A} : LeibnizEquiv (M A).
185
  Proof. intros m1 m2 Hm; apply map_eq; intros i. apply leibniz_equiv, Hm. Qed.
186 187
  Lemma map_equiv_empty (m : M A) : m    m = .
  Proof.
188 189 190
    split; [intros Hm; apply map_eq; intros i|intros ->].
    - generalize (Hm i). by rewrite lookup_empty, equiv_None.
    - intros ?. rewrite lookup_empty; constructor.
191
  Qed.
192 193 194 195 196
  Global Instance map_fmap_proper `{Equiv B} (f : A  B) :
    Proper (() ==> ()) f  Proper (() ==> ()) (fmap (M:=M) f).
  Proof.
    intros ? m m' ? k; rewrite !lookup_fmap. by apply option_fmap_proper.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
197 198 199
End setoid.

(** ** General properties *)
200 201 202 203 204
Lemma map_eq_iff {A} (m1 m2 : M A) : m1 = m2   i, m1 !! i = m2 !! i.
Proof. split. by intros ->. apply map_eq. Qed.
Lemma map_subseteq_spec {A} (m1 m2 : M A) :
  m1  m2   i x, m1 !! i = Some x  m2 !! i = Some x.
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
205
  unfold subseteq, map_subseteq, map_relation. split; intros Hm i;
206 207
    specialize (Hm i); destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
208 209
Global Instance:  {A} (R : relation A), PreOrder R  PreOrder (map_included R).
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
210
  split; [intros m i; by destruct (m !! i); simpl|].
211
  intros m1 m2 m3 Hm12 Hm23 i; specialize (Hm12 i); specialize (Hm23 i).
212
  destruct (m1 !! i), (m2 !! i), (m3 !! i); simplify_eq/=;
213
    done || etrans; eauto.
214
Qed.
215
Global Instance: PartialOrder (() : relation (M A)).
216
Proof.
217 218 219
  split; [apply _|].
  intros m1 m2; rewrite !map_subseteq_spec.
  intros; apply map_eq; intros i; apply option_eq; naive_solver.
220 221 222
Qed.
Lemma lookup_weaken {A} (m1 m2 : M A) i x :
  m1 !! i = Some x  m1  m2  m2 !! i = Some x.
223
Proof. rewrite !map_subseteq_spec. auto. Qed.
224 225 226 227 228 229
Lemma lookup_weaken_is_Some {A} (m1 m2 : M A) i :
  is_Some (m1 !! i)  m1  m2  is_Some (m2 !! i).
Proof. inversion 1. eauto using lookup_weaken. Qed.
Lemma lookup_weaken_None {A} (m1 m2 : M A) i :
  m2 !! i = None  m1  m2  m1 !! i = None.
Proof.
230 231
  rewrite map_subseteq_spec, !eq_None_not_Some.
  intros Hm2 Hm [??]; destruct Hm2; eauto.
232 233
Qed.
Lemma lookup_weaken_inv {A} (m1 m2 : M A) i x y :
234 235
  m1 !! i = Some x  m1  m2  m2 !! i = Some y  x = y.
Proof. intros Hm1 ? Hm2. eapply lookup_weaken in Hm1; eauto. congruence. Qed.
236 237 238 239 240 241 242 243 244
Lemma lookup_ne {A} (m : M A) i j : m !! i  m !! j  i  j.
Proof. congruence. Qed.
Lemma map_empty {A} (m : M A) : ( i, m !! i = None)  m = .
Proof. intros Hm. apply map_eq. intros. by rewrite Hm, lookup_empty. Qed.
Lemma lookup_empty_is_Some {A} i : ¬is_Some (( : M A) !! i).
Proof. rewrite lookup_empty. by inversion 1. Qed.
Lemma lookup_empty_Some {A} i (x : A) : ¬ !! i = Some x.
Proof. by rewrite lookup_empty. Qed.
Lemma map_subset_empty {A} (m : M A) : m  .
245 246 247
Proof.
  intros [_ []]. rewrite map_subseteq_spec. intros ??. by rewrite lookup_empty.
Qed.
248 249
Lemma map_fmap_empty {A B} (f : A  B) : f <$> ( : M A) = .
Proof. by apply map_eq; intros i; rewrite lookup_fmap, !lookup_empty. Qed.
250 251

(** ** Properties of the [partial_alter] operation *)
252 253 254
Lemma partial_alter_ext {A} (f g : option A  option A) (m : M A) i :
  ( x, m !! i = x  f x = g x)  partial_alter f i m = partial_alter g i m.
Proof.
255 256
  intros. apply map_eq; intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne; auto.
257 258
Qed.
Lemma partial_alter_compose {A} f g (m : M A) i:
259 260
  partial_alter (f  g) i m = partial_alter f i (partial_alter g i m).
Proof.
261 262
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
263
Qed.
264
Lemma partial_alter_commute {A} f g (m : M A) i j :
265
  i  j  partial_alter f i (partial_alter g j m) =
266 267
    partial_alter g j (partial_alter f i m).
Proof.
268 269 270 271
  intros. apply map_eq; intros jj. destruct (decide (jj = j)) as [->|?].
  { by rewrite lookup_partial_alter_ne,
      !lookup_partial_alter, lookup_partial_alter_ne. }
  destruct (decide (jj = i)) as [->|?].
272
  - by rewrite lookup_partial_alter,
273
     !lookup_partial_alter_ne, lookup_partial_alter by congruence.
274
  - by rewrite !lookup_partial_alter_ne by congruence.
275 276 277 278
Qed.
Lemma partial_alter_self_alt {A} (m : M A) i x :
  x = m !! i  partial_alter (λ _, x) i m = m.
Proof.
279 280
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
281
Qed.
282
Lemma partial_alter_self {A} (m : M A) i : partial_alter (λ _, m !! i) i m = m.
283
Proof. by apply partial_alter_self_alt. Qed.
284
Lemma partial_alter_subseteq {A} f (m : M A) i :
285
  m !! i = None  m  partial_alter f i m.
286 287 288 289
Proof.
  rewrite map_subseteq_spec. intros Hi j x Hj.
  rewrite lookup_partial_alter_ne; congruence.
Qed.
290
Lemma partial_alter_subset {A} f (m : M A) i :
291
  m !! i = None  is_Some (f (m !! i))  m  partial_alter f i m.
292
Proof.
293 294 295 296
  intros Hi Hfi. split; [by apply partial_alter_subseteq|].
  rewrite !map_subseteq_spec. inversion Hfi as [x Hx]. intros Hm.
  apply (Some_ne_None x). rewrite <-(Hm i x); [done|].
  by rewrite lookup_partial_alter.
297 298 299
Qed.

(** ** Properties of the [alter] operation *)
300 301
Lemma alter_ext {A} (f g : A  A) (m : M A) i :
  ( x, m !! i = Some x  f x = g x)  alter f i m = alter g i m.
302
Proof. intro. apply partial_alter_ext. intros [x|] ?; f_equal/=; auto. Qed.
303
Lemma lookup_alter {A} (f : A  A) m i : alter f i m !! i = f <$> m !! i.
304
Proof. unfold alter. apply lookup_partial_alter. Qed.
305
Lemma lookup_alter_ne {A} (f : A  A) m i j : i  j  alter f i m !! j = m !! j.
306
Proof. unfold alter. apply lookup_partial_alter_ne. Qed.
307 308 309 310 311 312 313 314 315
Lemma alter_compose {A} (f g : A  A) (m : M A) i:
  alter (f  g) i m = alter f i (alter g i m).
Proof.
  unfold alter, map_alter. rewrite <-partial_alter_compose.
  apply partial_alter_ext. by intros [?|].
Qed.
Lemma alter_commute {A} (f g : A  A) (m : M A) i j :
  i  j  alter f i (alter g j m) = alter g j (alter f i m).
Proof. apply partial_alter_commute. Qed.
316 317 318 319
Lemma lookup_alter_Some {A} (f : A  A) m i j y :
  alter f i m !! j = Some y 
    (i = j   x, m !! j = Some x  y = f x)  (i  j  m !! j = Some y).
Proof.
320
  destruct (decide (i = j)) as [->|?].
321
  - rewrite lookup_alter. naive_solver (simplify_option_eq; eauto).
322
  - rewrite lookup_alter_ne by done. naive_solver.
323 324 325 326
Qed.
Lemma lookup_alter_None {A} (f : A  A) m i j :
  alter f i m !! j = None  m !! j = None.
Proof.
327 328
  by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_alter, ?fmap_None, ?lookup_alter_ne.
329
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
330 331
Lemma alter_id {A} (f : A  A) m i :
  ( x, m !! i = Some x  f x = x)  alter f i m = m.
332
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
333
  intros Hi; apply map_eq; intros j; destruct (decide (i = j)) as [->|?].
334
  { rewrite lookup_alter; destruct (m !! j); f_equal/=; auto. }
Robbert Krebbers's avatar
Robbert Krebbers committed
335
  by rewrite lookup_alter_ne by done.
336 337 338 339 340 341 342 343 344 345 346
Qed.

(** ** Properties of the [delete] operation *)
Lemma lookup_delete {A} (m : M A) i : delete i m !! i = None.
Proof. apply lookup_partial_alter. Qed.
Lemma lookup_delete_ne {A} (m : M A) i j : i  j  delete i m !! j = m !! j.
Proof. apply lookup_partial_alter_ne. Qed.
Lemma lookup_delete_Some {A} (m : M A) i j y :
  delete i m !! j = Some y  i  j  m !! j = Some y.
Proof.
  split.
347
  - destruct (decide (i = j)) as [->|?];
348
      rewrite ?lookup_delete, ?lookup_delete_ne; intuition congruence.
349
  - intros [??]. by rewrite lookup_delete_ne.
350
Qed.
351 352 353
Lemma lookup_delete_is_Some {A} (m : M A) i j :
  is_Some (delete i m !! j)  i  j  is_Some (m !! j).
Proof. unfold is_Some; setoid_rewrite lookup_delete_Some; naive_solver. Qed.
354 355 356
Lemma lookup_delete_None {A} (m : M A) i j :
  delete i m !! j = None  i = j  m !! j = None.
Proof.
357 358
  destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne; tauto.
359 360 361
Qed.
Lemma delete_empty {A} i : delete i ( : M A) = .
Proof. rewrite <-(partial_alter_self ) at 2. by rewrite lookup_empty. Qed.
362
Lemma delete_singleton {A} i (x : A) : delete i {[i := x]} = .
363 364 365 366 367 368 369
Proof. setoid_rewrite <-partial_alter_compose. apply delete_empty. Qed.
Lemma delete_commute {A} (m : M A) i j :
  delete i (delete j m) = delete j (delete i m).
Proof. destruct (decide (i = j)). by subst. by apply partial_alter_commute. Qed.
Lemma delete_insert_ne {A} (m : M A) i j x :
  i  j  delete i (<[j:=x]>m) = <[j:=x]>(delete i m).
Proof. intro. by apply partial_alter_commute. Qed.
370
Lemma delete_notin {A} (m : M A) i : m !! i = None  delete i m = m.
371
Proof.
372 373
  intros. apply map_eq. intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne.
374 375 376 377 378 379 380 381 382 383
Qed.
Lemma delete_partial_alter {A} (m : M A) i f :
  m !! i = None  delete i (partial_alter f i m) = m.
Proof.
  intros. unfold delete, map_delete. rewrite <-partial_alter_compose.
  unfold compose. by apply partial_alter_self_alt.
Qed.
Lemma delete_insert {A} (m : M A) i x :
  m !! i = None  delete i (<[i:=x]>m) = m.
Proof. apply delete_partial_alter. Qed.
384 385
Lemma insert_delete {A} (m : M A) i x : <[i:=x]>(delete i m) = <[i:=x]> m.
Proof. symmetry; apply (partial_alter_compose (λ _, Some x)). Qed.
386
Lemma delete_subseteq {A} (m : M A) i : delete i m  m.
387 388 389
Proof.
  rewrite !map_subseteq_spec. intros j x. rewrite lookup_delete_Some. tauto.
Qed.
390
Lemma delete_subseteq_compat {A} (m1 m2 : M A) i :
391
  m1  m2  delete i m1  delete i m2.
392 393 394 395
Proof.
  rewrite !map_subseteq_spec. intros ? j x.
  rewrite !lookup_delete_Some. intuition eauto.
Qed.
396
Lemma delete_subset_alt {A} (m : M A) i x : m !! i = Some x  delete i m  m.
397
Proof.
398 399 400
  split; [apply delete_subseteq|].
  rewrite !map_subseteq_spec. intros Hi. apply (None_ne_Some x).
  by rewrite <-(lookup_delete m i), (Hi i x).
401
Qed.
402
Lemma delete_subset {A} (m : M A) i : is_Some (m !! i)  delete i m  m.
403 404 405 406 407
Proof. inversion 1. eauto using delete_subset_alt. Qed.

(** ** Properties of the [insert] operation *)
Lemma lookup_insert {A} (m : M A) i x : <[i:=x]>m !! i = Some x.
Proof. unfold insert. apply lookup_partial_alter. Qed.
408
Lemma lookup_insert_rev {A}  (m : M A) i x y : <[i:=x]>m !! i = Some y  x = y.
409
Proof. rewrite lookup_insert. congruence. Qed.
410
Lemma lookup_insert_ne {A} (m : M A) i j x : i  j  <[i:=x]>m !! j = m !! j.
411
Proof. unfold insert. apply lookup_partial_alter_ne. Qed.
412 413
Lemma insert_insert {A} (m : M A) i x y : <[i:=x]>(<[i:=y]>m) = <[i:=x]>m.
Proof. unfold insert, map_insert. by rewrite <-partial_alter_compose. Qed.
414 415 416 417 418 419 420
Lemma insert_commute {A} (m : M A) i j x y :
  i  j  <[i:=x]>(<[j:=y]>m) = <[j:=y]>(<[i:=x]>m).
Proof. apply partial_alter_commute. Qed.
Lemma lookup_insert_Some {A} (m : M A) i j x y :
  <[i:=x]>m !! j = Some y  (i = j  x = y)  (i  j  m !! j = Some y).
Proof.
  split.
421
  - destruct (decide (i = j)) as [->|?];
422
      rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
423
  - intros [[-> ->]|[??]]; [apply lookup_insert|]. by rewrite lookup_insert_ne.
424
Qed.
425 426 427
Lemma lookup_insert_is_Some {A} (m : M A) i j x :
  is_Some (<[i:=x]>m !! j)  i = j  i  j  is_Some (m !! j).
Proof. unfold is_Some; setoid_rewrite lookup_insert_Some; naive_solver. Qed.
428 429 430
Lemma lookup_insert_is_Some' {A} (m : M A) i j x :
  is_Some (<[i:=x]>m !! j)  i = j  is_Some (m !! j).
Proof. rewrite lookup_insert_is_Some. destruct (decide (i=j)); naive_solver. Qed.
431 432 433
Lemma lookup_insert_None {A} (m : M A) i j x :
  <[i:=x]>m !! j = None  m !! j = None  i  j.
Proof.
434 435 436
  split; [|by intros [??]; rewrite lookup_insert_ne].
  destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
437
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
438
Lemma insert_id {A} (m : M A) i x : m !! i = Some x  <[i:=x]>m = m.
439 440 441 442 443 444 445 446
Proof.
  intros; apply map_eq; intros j; destruct (decide (i = j)) as [->|];
    by rewrite ?lookup_insert, ?lookup_insert_ne by done.
Qed.
Lemma insert_included {A} R `{!Reflexive R} (m : M A) i x :
  ( y, m !! i = Some y  R y x)  map_included R m (<[i:=x]>m).
Proof.
  intros ? j; destruct (decide (i = j)) as [->|].
447 448
  - rewrite lookup_insert. destruct (m !! j); simpl; eauto.
  - rewrite lookup_insert_ne by done. by destruct (m !! j); simpl.
449
Qed.
450
Lemma insert_subseteq {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
451
Proof. apply partial_alter_subseteq. Qed.
452
Lemma insert_subset {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
453 454
Proof. intro. apply partial_alter_subset; eauto. Qed.
Lemma insert_subseteq_r {A} (m1 m2 : M A) i x :
455
  m1 !! i = None  m1  m2  m1  <[i:=x]>m2.
456
Proof.
457 458 459
  rewrite !map_subseteq_spec. intros ?? j ?.
  destruct (decide (j = i)) as [->|?]; [congruence|].
  rewrite lookup_insert_ne; auto.
460 461
Qed.
Lemma insert_delete_subseteq {A} (m1 m2 : M A) i x :
462
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
463
Proof.
464 465 466 467
  rewrite !map_subseteq_spec. intros Hi Hix j y Hj.
  destruct (decide (i = j)) as [->|]; [congruence|].
  rewrite lookup_delete_ne by done.
  apply Hix; by rewrite lookup_insert_ne by done.
468 469
Qed.
Lemma delete_insert_subseteq {A} (m1 m2 : M A) i x :
470
  m1 !! i = Some x  delete i m1  m2  m1  <[i:=x]> m2.
471
Proof.
472 473
  rewrite !map_subseteq_spec.
  intros Hix Hi j y Hj. destruct (decide (i = j)) as [->|?].
474 475
  - rewrite lookup_insert. congruence.
  - rewrite lookup_insert_ne by done. apply Hi. by rewrite lookup_delete_ne.
476 477
Qed.
Lemma insert_delete_subset {A} (m1 m2 : M A) i x :
478
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
479
Proof.
480 481 482
  intros ? [Hm12 Hm21]; split; [eauto using insert_delete_subseteq|].
  contradict Hm21. apply delete_insert_subseteq; auto.
  eapply lookup_weaken, Hm12. by rewrite lookup_insert.
483 484
Qed.
Lemma insert_subset_inv {A} (m1 m2 : M A) i x :
485
  m1 !! i = None  <[i:=x]> m1  m2 
486 487
   m2', m2 = <[i:=x]>m2'  m1  m2'  m2' !! i = None.
Proof.
488
  intros Hi Hm1m2. exists (delete i m2). split_and?.
489 490
  - rewrite insert_delete, insert_id. done.
    eapply lookup_weaken, strict_include; eauto. by rewrite lookup_insert.
491 492
  - eauto using insert_delete_subset.
  - by rewrite lookup_delete.
493
Qed.
494
Lemma insert_empty {A} i (x : A) : <[i:=x]> = {[i := x]}.
495
Proof. done. Qed.
496 497 498 499
Lemma insert_non_empty {A} (m : M A) i x : <[i:=x]>m  .
Proof.
  intros Hi%(f_equal (!! i)). by rewrite lookup_insert, lookup_empty in Hi.
Qed.
500 501 502

(** ** Properties of the singleton maps *)
Lemma lookup_singleton_Some {A} i j (x y : A) :
503
  {[i := x]} !! j = Some y  i = j  x = y.
504
Proof.
505
  rewrite <-insert_empty,lookup_insert_Some, lookup_empty; intuition congruence.
506
Qed.
507
Lemma lookup_singleton_None {A} i j (x : A) : {[i := x]} !! j = None  i  j.
508
Proof. rewrite <-insert_empty,lookup_insert_None, lookup_empty; tauto. Qed.
509
Lemma lookup_singleton {A} i (x : A) : {[i := x]} !! i = Some x.
510
Proof. by rewrite lookup_singleton_Some. Qed.
511
Lemma lookup_singleton_ne {A} i j (x : A) : i  j  {[i := x]} !! j = None.
512
Proof. by rewrite lookup_singleton_None. Qed.
513
Lemma map_non_empty_singleton {A} i (x : A) : {[i := x]}  .
514 515 516 517
Proof.
  intros Hix. apply (f_equal (!! i)) in Hix.
  by rewrite lookup_empty, lookup_singleton in Hix.
Qed.
518
Lemma insert_singleton {A} i (x y : A) : <[i:=y]>{[i := x]} = {[i := y]}.
519
Proof.
520
  unfold singletonM, map_singleton, insert, map_insert.
521 522
  by rewrite <-partial_alter_compose.
Qed.
523
Lemma alter_singleton {A} (f : A  A) i x : alter f i {[i := x]} = {[i := f x]}.
524
Proof.
525
  intros. apply map_eq. intros i'. destruct (decide (i = i')) as [->|?].
526 527
  - by rewrite lookup_alter, !lookup_singleton.
  - by rewrite lookup_alter_ne, !lookup_singleton_ne.
528 529
Qed.
Lemma alter_singleton_ne {A} (f : A  A) i j x :
530
  i  j  alter f i {[j := x]} = {[j := x]}.
531
Proof.
532 533
  intros. apply map_eq; intros i'. by destruct (decide (i = i')) as [->|?];
    rewrite ?lookup_alter, ?lookup_singleton_ne, ?lookup_alter_ne by done.
534
Qed.
535 536
Lemma singleton_non_empty {A} i (x : A) : {[i:=x]}  .
Proof. apply insert_non_empty. Qed.
537

538 539 540 541 542
(** ** Properties of the map operations *)
Lemma fmap_empty {A B} (f : A  B) : f <$>  = .
Proof. apply map_empty; intros i. by rewrite lookup_fmap, lookup_empty. Qed.
Lemma omap_empty {A B} (f : A  option B) : omap f  = .
Proof. apply map_empty; intros i. by rewrite lookup_omap, lookup_empty. Qed.
543 544 545
Lemma fmap_insert {A B} (f: A  B) m i x: f <$> <[i:=x]>m = <[i:=f x]>(f <$> m).
Proof.
  apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
546 547
  - by rewrite lookup_fmap, !lookup_insert.
  - by rewrite lookup_fmap, !lookup_insert_ne, lookup_fmap by done.
548
Qed.
549 550 551 552 553 554
Lemma fmap_delete {A B} (f: A  B) m i: f <$> delete i m = delete i (f <$> m).
Proof.
  apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
  - by rewrite lookup_fmap, !lookup_delete.
  - by rewrite lookup_fmap, !lookup_delete_ne, lookup_fmap by done.
Qed.
555 556 557 558
Lemma omap_insert {A B} (f : A  option B) m i x y :
  f x = Some y  omap f (<[i:=x]>m) = <[i:=y]>(omap f m).
Proof.
  intros; apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
559 560
  - by rewrite lookup_omap, !lookup_insert.
  - by rewrite lookup_omap, !lookup_insert_ne, lookup_omap by done.
561
Qed.
562
Lemma map_fmap_singleton {A B} (f : A  B) i x : f <$> {[i := x]} = {[i := f x]}.
563 564 565
Proof.
  by unfold singletonM, map_singleton; rewrite fmap_insert, map_fmap_empty.
Qed.
566
Lemma omap_singleton {A B} (f : A  option B) i x y :
567
  f x = Some y  omap f {[ i := x ]} = {[ i := y ]}.
568
Proof.
569 570
  intros. unfold singletonM, map_singleton.
  by erewrite omap_insert, omap_empty by eauto.
571
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
572 573 574 575 576
Lemma map_fmap_id {A} (m : M A) : id <$> m = m.
Proof. apply map_eq; intros i; by rewrite lookup_fmap, option_fmap_id. Qed.
Lemma map_fmap_compose {A B C} (f : A  B) (g : B  C) (m : M A) :
  g  f <$> m = g <$> f <$> m.
Proof. apply map_eq; intros i; by rewrite !lookup_fmap,option_fmap_compose. Qed.
577
Lemma map_fmap_equiv_ext `{Equiv A, Equiv B} (f1 f2 : A  B) m :
578 579 580 581 582
  ( i x, m !! i = Some x  f1 x  f2 x)  f1 <$> m  f2 <$> m.
Proof.
  intros Hi i; rewrite !lookup_fmap.
  destruct (m !! i) eqn:?; constructor; eauto.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
583 584 585 586 587 588
Lemma map_fmap_ext {A B} (f1 f2 : A  B) m :
  ( i x, m !! i = Some x  f1 x = f2 x)  f1 <$> m = f2 <$> m.
Proof.
  intros Hi; apply map_eq; intros i; rewrite !lookup_fmap.
  by destruct (m !! i) eqn:?; simpl; erewrite ?Hi by eauto.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
589 590 591 592 593 594
Lemma omap_ext {A B} (f1 f2 : A  option B) m :
  ( i x, m !! i = Some x  f1 x = f2 x)  omap f1 m = omap f2 m.
Proof.
  intros Hi; apply map_eq; intros i; rewrite !lookup_omap.
  by destruct (m !! i) eqn:?; simpl; erewrite ?Hi by eauto.
Qed.
595

596
(** ** Properties of conversion to lists *)
597 598 599
Lemma elem_of_map_to_list' {A} (m : M A) ix :
  ix  map_to_list m  m !! ix.1 = Some (ix.2).
Proof. destruct ix as [i x]. apply elem_of_map_to_list. Qed.
600
Lemma map_to_list_unique {A} (m : M A) i x y :
601
  (i,x)  map_to_list m  (i,y)  map_to_list m  x = y.
602
Proof. rewrite !elem_of_map_to_list. congruence. Qed.
603
Lemma NoDup_fst_map_to_list {A} (m : M A) : NoDup ((map_to_list m).*1).
604
Proof. eauto using NoDup_fmap_fst, map_to_list_unique, NoDup_map_to_list. Qed.
605 606
Lemma elem_of_map_of_list_1' {A} (l : list (K * A)) i x :
  ( y, (i,y)  l  x = y)  (i,x)  l  map_of_list l !! i = Some x.
607 608 609
Proof.
  induction l as [|[j y] l IH]; csimpl; [by rewrite elem_of_nil|].
  setoid_rewrite elem_of_cons.
610
  intros Hdup [?|?]; simplify_eq; [by rewrite lookup_insert|].
611
  destruct (decide (i = j)) as [->|].
612
  - rewrite lookup_insert; f_equal; eauto using eq_sym.
613
  - rewrite lookup_insert_ne by done; eauto.
614
Qed.
615
Lemma elem_of_map_of_list_1 {A} (l : list (K * A)) i x :
616
  NoDup (l.*1)  (i,x)  l  map_of_list l !! i = Some x.
617
Proof.
618
  intros ? Hx; apply elem_of_map_of_list_1'; eauto using NoDup_fmap_fst.
619
  intros y; revert Hx. rewrite !elem_of_list_lookup; intros [i' Hi'] [j' Hj'].
620
  cut (i' = j'); [naive_solver|]. apply NoDup_lookup with (l.*1) i;
621
    by rewrite ?list_lookup_fmap, ?Hi', ?Hj'.
622 623
Qed.
Lemma elem_of_map_of_list_2 {A} (l : list (K * A)) i x :
624
  map_of_list l !! i = Some x  (i,x)  l.
625
Proof.
626 627 628
  induction l as [|[j y] l IH]; simpl; [by rewrite lookup_empty|].
  rewrite elem_of_cons. destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
629
Qed.
630 631 632 633
Lemma elem_of_map_of_list' {A} (l : list (K * A)) i x :
  ( x', (i,x)  l  (i,x')  l  x = x') 
  (i,x)  l  map_of_list l !! i = Some x.
Proof. split; auto using elem_of_map_of_list_1', elem_of_map_of_list_2. Qed.
634
Lemma elem_of_map_of_list {A} (l : list (K * A)) i x :
635
  NoDup (l.*1)  (i,x)  l  map_of_list l !! i = Some x.
636
Proof. split; auto using elem_of_map_of_list_1, elem_of_map_of_list_2. Qed.
637

638
Lemma not_elem_of_map_of_list_1 {A} (l : list (K * A)) i :
639
  i  l.*1  map_of_list l !! i = None.
640
Proof.
641 642
  rewrite elem_of_list_fmap, eq_None_not_Some. intros Hi [x ?]; destruct Hi.
  exists (i,x); simpl; auto using elem_of_map_of_list_2.
643 644
Qed.
Lemma not_elem_of_map_of_list_2 {A} (l : list (K * A)) i :
645
  map_of_list l !! i = None  i  l.*1.
646
Proof.
647
  induction l as [|[j y] l IH]; csimpl; [rewrite elem_of_nil; tauto|].
648
  rewrite elem_of_cons. destruct (decide (i = j)); simplify_eq.
649 650
  - by rewrite lookup_insert.
  - by rewrite lookup_insert_ne; intuition.
651 652
Qed.
Lemma not_elem_of_map_of_list {A} (l : list (K * A)) i :
653
  i  l.*1  map_of_list l !! i = None.
654
Proof. red; auto using not_elem_of_map_of_list_1,not_elem_of_map_of_list_2. Qed.
655
Lemma map_of_list_proper {A} (l1 l2 : list (K * A)) :
656
  NoDup (l1.*1)  l1  l2  map_of_list l1 = map_of_list l2.
657 658 659 660