assoc.v 11.9 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
2 3 4 5 6 7 8
(* This file is distributed under the terms of the BSD license. *)
(** An implementation of finite maps and finite sets using association lists
ordered by keys. Although the lookup and insert operation are linear-time, the
main advantage of these association lists compared to search trees, is that it
has canonical representatives and thus extensional Leibniz equality. Compared
to a naive unordered association list, the merge operation (used for unions,
intersections, and difference) is also linear-time. *)
9 10
Require Import prelude.mapset.
Require Export prelude.fin_maps.
11 12 13

(** Because the association list is sorted using [strict lexico] instead of
[lexico], it automatically guarantees that no duplicates exist. *)
14 15
Definition assoc (K : Type) `{Lexico K, !TrichotomyT lexico,
    !StrictOrder lexico} (A : Type) : Type :=
16
  dsig (λ l : list (K * A), StronglySorted lexico (l.*1)).
17 18

Section assoc.
19 20
Context `{Lexico K, !StrictOrder lexico,
   x y : K, Decision (x = y), !TrichotomyT lexico}.
21

22
Infix "⊂" := lexico.
23 24
Notation assoc_before j l := (Forall (lexico j) (l.*1)) (only parsing).
Notation assoc_wf l := (StronglySorted (lexico) (l.*1)) (only parsing).
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

Lemma assoc_before_transitive {A} (l : list (K * A)) i j :
  i  j  assoc_before j l  assoc_before i l.
Proof. intros. eapply Forall_impl; eauto. intros. by transitivity j. Qed.
Hint Resolve assoc_before_transitive.

Hint Extern 1 (StronglySorted _ []) => constructor.
Hint Extern 1 (StronglySorted _ (_ :: _)) => constructor.
Hint Extern 1 (Forall _ []) => constructor.
Hint Extern 1 (Forall _ (_ :: _)) => constructor.
Hint Extern 100 => progress simpl.

Ltac simplify_assoc := intros;
  repeat match goal with
  | H : Forall _ [] |- _ => clear H
  | H : Forall _ (_ :: _) |- _ => inversion_clear H
  | H : StronglySorted _ [] |- _ => clear H
  | H : StronglySorted _ (_ :: _) |- _ => inversion_clear H
  | _ => progress decompose_elem_of_list
  | _ => progress simplify_equality'
45
  | _ => match goal with |- context [?o = _] => by destruct o end
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
  end;
  repeat first
  [ progress simplify_order
  | progress autorewrite with assoc in *; simplify_equality'
  | destruct (trichotomyT lexico) as [[?|?]|?]; simplify_equality' ];
  eauto 9.

Fixpoint assoc_lookup_raw {A} (i : K) (l : list (K * A)) : option A :=
  match l with
  | [] => None
  | (j,x) :: l =>
    match trichotomyT lexico i j with
    | (**i i ⊂ j *) inleft (left _) => None
    | (**i i = j *) inleft (right _) => Some x
    | (**i j ⊂ i *) inright _ => assoc_lookup_raw i l
    end
  end.
Global Instance assoc_lookup {A} : Lookup K A (assoc K A) := λ k m,
  assoc_lookup_raw k (`m).

Lemma assoc_lookup_before {A} (l : list (K * A)) i :
  assoc_before i l  assoc_lookup_raw i l = None.
Proof. induction l as [|[??]]; simplify_assoc. Qed.
Hint Rewrite @assoc_lookup_before using (by eauto) : assoc.

Lemma assoc_eq {A} (l1 l2 : list (K * A)) :
  assoc_wf l1  assoc_wf l2 
  ( i, assoc_lookup_raw i l1 = assoc_lookup_raw i l2)  l1 = l2.
Proof.
  revert l2. induction l1 as [|[i x] l1 IH]; intros [|[j y] l2]; intros ?? E.
  { done. }
  { specialize (E j); simplify_assoc; by repeat constructor. }
  { specialize (E i); simplify_assoc; by repeat constructor. }
  pose proof (E i); pose proof (E j); simplify_assoc.
  f_equal. apply IH; auto. intros i'. specialize (E i'); simplify_assoc.
Qed.
Definition assoc_empty_wf {A} : assoc_wf (@nil (K * A)).
Proof. constructor. Qed.
Global Instance assoc_empty {A} : Empty (assoc K A) := dexist _ assoc_empty_wf.

Definition assoc_cons {A} (i : K) (o : option A) (l : list (K * A)) :
  list (K * A) := match o with None => l | Some z => (i,z) :: l end.
Lemma assoc_cons_before {A} (l : list (K * A)) i j o :
  assoc_before i l  i  j  assoc_before i (assoc_cons j o l).
Proof. destruct o; simplify_assoc. Qed.
Lemma assoc_cons_wf {A} (l : list (K * A)) i o :
  assoc_wf l  assoc_before i l  assoc_wf (assoc_cons i o l).
Proof. destruct o; simplify_assoc. Qed.
Hint Resolve assoc_cons_before assoc_cons_wf.
Lemma assoc_lookup_cons {A} (l : list (K * A)) i o :
  assoc_before i l  assoc_lookup_raw i (assoc_cons i o l) = o.
Proof. destruct o; simplify_assoc. Qed.
Lemma assoc_lookup_cons_lt {A} (l : list (K * A)) i j o :
  i  j  assoc_before i l  assoc_lookup_raw i (assoc_cons j o l) = None.
Proof. destruct o; simplify_assoc. Qed.
Lemma assoc_lookup_cons_gt {A} (l : list (K * A)) i j o :
  j  i  assoc_lookup_raw i (assoc_cons j o l) = assoc_lookup_raw i l.
Proof. destruct o; simplify_assoc. Qed.
Hint Rewrite @assoc_lookup_cons @assoc_lookup_cons_lt
  @assoc_lookup_cons_gt using (by eauto 8) : assoc.

Fixpoint assoc_alter_raw {A} (f : option A  option A)
    (i : K) (l : list (K * A)) : list (K * A) :=
  match l with
  | [] => assoc_cons i (f None) []
  | (j,x) :: l =>
    match trichotomyT lexico i j with
    | (**i i ⊂ j *) inleft (left _) => assoc_cons i (f None) ((j,x) :: l)
    | (**i i = j *) inleft (right _) => assoc_cons j (f (Some x)) l
    | (**i j ⊂ i *) inright _ => (j,x) :: assoc_alter_raw f i l
    end
  end.
Lemma assoc_alter_wf {A} (f : option A  option A) i l :
  assoc_wf l  assoc_wf (assoc_alter_raw f i l).
Proof.
  revert l. assert ( j l,
    j  i  assoc_before j l  assoc_before j (assoc_alter_raw f i l)).
  { intros j l. induction l as [|[??]]; simplify_assoc. }
  intros l. induction l as [|[??]]; simplify_assoc.
Qed.
Global Instance assoc_alter {A} : PartialAlter K A (assoc K A) := λ f i m,
  dexist _ (assoc_alter_wf f i _ (proj2_dsig m)).

Lemma assoc_lookup_raw_alter {A} f (l : list (K * A)) i :
  assoc_wf l 
  assoc_lookup_raw i (assoc_alter_raw f i l) = f (assoc_lookup_raw i l).
Proof. induction l as [|[??]]; simplify_assoc. Qed.
Lemma assoc_lookup_raw_alter_ne {A} f (l : list (K * A)) i j :
  assoc_wf l  i  j 
  assoc_lookup_raw j (assoc_alter_raw f i l) = assoc_lookup_raw j l.
Proof.
  induction l as [|[??]]; simplify_assoc; unfold assoc_cons;
    destruct (f _); simplify_assoc.
Qed.
Lemma assoc_fmap_wf {A B} (f : A  B) (l : list (K * A)) :
141
  assoc_wf l  assoc_wf (prod_map id f <$> l).
142 143 144 145 146 147 148
Proof.
  intros. by rewrite <-list_fmap_compose,
    (list_fmap_ext _ fst l l) by (done; by intros []).
Qed.
Global Program Instance assoc_fmap: FMap (assoc K) := λ A B f m,
  dexist _ (assoc_fmap_wf f _ (proj2_dsig m)).
Lemma assoc_lookup_fmap {A B} (f : A  B) (l : list (K * A)) i :
149
  assoc_lookup_raw i (prod_map id f <$> l) = fmap f (assoc_lookup_raw i l).
150 151
Proof. induction l as [|[??]]; simplify_assoc. Qed.

152
Fixpoint assoc_omap_raw {A B} (f : A  option B)
153 154 155
    (l : list (K * A)) : list (K * B) :=
  match l with
  | [] => []
156
  | (i,x) :: l => assoc_cons i (f x) (assoc_omap_raw f l)
157
  end.
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
Lemma assoc_omap_raw_before {A B} (f : A  option B) l j :
  assoc_before j l  assoc_before j (assoc_omap_raw f l).
Proof. induction l as [|[??]]; simplify_assoc. Qed.
Hint Resolve assoc_omap_raw_before.
Lemma assoc_omap_wf {A B} (f : A  option B) l :
  assoc_wf l  assoc_wf (assoc_omap_raw f l).
Proof. induction l as [|[??]]; simplify_assoc. Qed.
Hint Resolve assoc_omap_wf.
Global Instance assoc_omap: OMap (assoc K) := λ A B f m,
  dexist _ (assoc_omap_wf f _ (proj2_dsig m)).
Lemma assoc_omap_spec {A B} (f : A  option B) l i :
  assoc_wf l 
  assoc_lookup_raw i (assoc_omap_raw f l) = assoc_lookup_raw i l = f.
Proof. intros. induction l as [|[??]]; simplify_assoc. Qed.
Hint Rewrite @assoc_omap_spec using (by eauto) : assoc.

174 175 176 177
Fixpoint assoc_merge_raw {A B C} (f : option A  option B  option C)
    (l : list (K * A)) : list (K * B)  list (K * C) :=
  fix go (k : list (K * B)) :=
  match l, k with
178 179
  | [], _ => assoc_omap_raw (f None  Some) k
  | _, [] => assoc_omap_raw (flip f None  Some) l
180 181 182 183 184 185 186 187 188 189 190
  | (i,x) :: l, (j,y) :: k =>
    match trichotomyT lexico i j with
    | (**i i ⊂ j *) inleft (left _) =>
      assoc_cons i (f (Some x) None) (assoc_merge_raw f l ((j,y) :: k))
    | (**i i = j *) inleft (right _) =>
      assoc_cons i (f (Some x) (Some y)) (assoc_merge_raw f l k)
    | (**i j ⊂ i *) inright _ =>
      assoc_cons j (f None (Some y)) (go k)
    end
  end.
Section assoc_merge_raw.
191
  Context {A B C} (f : option A  option B  option C).
192
  Lemma assoc_merge_nil_l k :
193
    assoc_merge_raw f [] k = assoc_omap_raw (f None  Some) k.
194 195
  Proof. by destruct k. Qed.
  Lemma assoc_merge_nil_r l :
196
    assoc_merge_raw f l [] = assoc_omap_raw (flip f None  Some) l.
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
  Proof. by destruct l as [|[??]]. Qed.
  Lemma assoc_merge_cons i x j y l k :
    assoc_merge_raw f ((i,x) :: l) ((j,y) :: k) =
      match trichotomyT lexico i j with
      | (**i i ⊂ j *) inleft (left _) =>
        assoc_cons i (f (Some x) None) (assoc_merge_raw f l ((j,y) :: k))
      | (**i i = j *) inleft (right _) =>
        assoc_cons i (f (Some x) (Some y)) (assoc_merge_raw f l k)
      | (**i j ⊂ i *) inright _ =>
        assoc_cons j (f None (Some y)) (assoc_merge_raw f ((i,x) :: l) k)
      end.
  Proof. done. Qed.
End assoc_merge_raw.
Arguments assoc_merge_raw _ _ _ _ _ _ : simpl never.
Hint Rewrite @assoc_merge_nil_l @assoc_merge_nil_r @assoc_merge_cons : assoc.
Lemma assoc_merge_before {A B C} (f : option A  option B  option C) l1 l2 j :
  assoc_before j l1  assoc_before j l2 
  assoc_before j (assoc_merge_raw f l1 l2).
Proof.
  revert l2. induction l1 as [|[??] l1 IH];
    intros l2; induction l2 as [|[??] l2 IH2]; simplify_assoc.
Qed.
Hint Resolve assoc_merge_before.
Lemma assoc_merge_wf {A B C} (f : option A  option B  option C) l1 l2 :
  assoc_wf l1  assoc_wf l2  assoc_wf (assoc_merge_raw f l1 l2).
Proof.
223
  revert l2. induction l1 as [|[i x] l1 IH];
224 225 226
    intros l2; induction l2 as [|[j y] l2 IH2]; simplify_assoc.
Qed.
Global Instance assoc_merge: Merge (assoc K) := λ A B C f m1 m2,
227
  dexist _ (assoc_merge_wf f _ _ (proj2_dsig m1) (proj2_dsig m2)).
228 229 230 231 232 233 234 235 236
Lemma assoc_merge_spec {A B C} (f : option A  option B  option C) l1 l2 i :
  f None None = None  assoc_wf l1  assoc_wf l2 
  assoc_lookup_raw i (assoc_merge_raw f l1 l2) =
    f (assoc_lookup_raw i l1) (assoc_lookup_raw i l2).
Proof.
  intros ?. revert l2. induction l1 as [|[??] l1 IH]; intros l2;
    induction l2 as [|[??] l2 IH2]; simplify_assoc; rewrite ?IH; simplify_assoc.
Qed.

237
Global Instance assoc_to_list {A} : FinMapToList K A (assoc K A) := proj1_sig.
238 239 240 241
Lemma assoc_to_list_nodup {A} (l : list (K * A)) : assoc_wf l  NoDup l.
Proof.
  revert l. assert ( i x (l : list (K * A)), assoc_before i l  (i,x)  l).
  { intros i x l. rewrite Forall_fmap, Forall_forall. intros Hl Hi.
242
    destruct (irreflexivity (lexico) i). by apply (Hl (i,x) Hi). }
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
  induction l as [|[??]]; simplify_assoc; constructor; auto.
Qed.
Lemma assoc_to_list_elem_of {A} (l : list (K * A)) i x :
  assoc_wf l  (i,x)  l  assoc_lookup_raw i l = Some x.
Proof.
  split.
  * induction l as [|[??]]; simplify_assoc; naive_solver.
  * induction l as [|[??]]; simplify_assoc; [left| right]; eauto.
Qed.

(** * Instantiation of the finite map interface *)
Hint Extern 1 (assoc_wf _) => by apply (bool_decide_unpack _).
Global Instance: FinMap K (assoc K).
Proof.
  split.
  * intros ? [l1 ?] [l2 ?] ?. apply (sig_eq_pi _), assoc_eq; auto.
  * done.
  * intros ?? [??] ?. apply assoc_lookup_raw_alter; auto. 
  * intros ?? [??] ???. apply assoc_lookup_raw_alter_ne; auto.
  * intros ??? [??] ?. apply assoc_lookup_fmap.
  * intros ? [??]. apply assoc_to_list_nodup; auto.
  * intros ? [??] ??. apply assoc_to_list_elem_of; auto.
265
  * intros ??? [??] ?. apply assoc_omap_spec; auto.
266 267 268 269 270 271
  * intros ????? [??] [??] ?. apply assoc_merge_spec; auto.
Qed.
End assoc.

(** * Finite sets *)
(** We construct finite sets using the above implementation of maps. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
272
Notation assoc_set K := (mapset (assoc K)).
273 274
Instance assoc_map_dom `{Lexico K, !TrichotomyT (@lexico K _),
  !StrictOrder lexico} {A} : Dom (assoc K A) (assoc_set K) := mapset_dom.
275
Instance assoc_map_dom_spec `{Lexico K} `{!TrichotomyT (@lexico K _)}
276
    `{!StrictOrder lexico,  x y : K, Decision (x = y)} :
277
  FinMapDom K (assoc K) (assoc_set K) := mapset_dom_spec.