fin_maps.v 57.7 KB
Newer Older
1
(* Copyright (c) 2012-2013, Robbert Krebbers. *)
2
3
4
(* This file is distributed under the terms of the BSD license. *)
(** Finite maps associate data to keys. This file defines an interface for
finite maps and collects some theory on it. Most importantly, it proves useful
5
6
induction principles for finite maps and implements the tactic
[simplify_map_equality] to simplify goals involving finite maps. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
7
Require Import Permutation.
8
9
Require Export ars vector orders.

10
11
(** * Axiomatization of finite maps *)
(** We require Leibniz equality to be extensional on finite maps. This of
12
13
14
15
16
course limits the space of finite map implementations, but since we are mainly
interested in finite maps with numbers as indexes, we do not consider this to
be a serious limitation. The main application of finite maps is to implement
the memory, where extensionality of Leibniz equality is very important for a
convenient use in the assertions of our axiomatic semantics. *)
17

Robbert Krebbers's avatar
Robbert Krebbers committed
18
19
(** Finiteness is axiomatized by requiring that each map can be translated
to an association list. The translation to association lists is used to
20
prove well founded recursion on finite maps. *)
21

22
23
24
(** Finite map implementations are required to implement the [merge] function
which enables us to give a generic implementation of [union_with],
[intersection_with], and [difference_with]. *)
25

26
Class FinMapToList K A M := map_to_list: M  list (K * A).
Robbert Krebbers's avatar
Robbert Krebbers committed
27

28
Class FinMap K M `{!FMap M}
Robbert Krebbers's avatar
Robbert Krebbers committed
29
30
31
    `{ A, Lookup K A (M A)}
    `{ A, Empty (M A)}
    `{ A, PartialAlter K A (M A)}
32
    `{!Merge M}
Robbert Krebbers's avatar
Robbert Krebbers committed
33
    `{ A, FinMapToList K A (M A)}
34
    `{ i j : K, Decision (i = j)} := {
35
  map_eq {A} (m1 m2 : M A) :
36
37
38
39
40
41
42
43
44
    ( i, m1 !! i = m2 !! i)  m1 = m2;
  lookup_empty {A} i :
    ( : M A) !! i = None;
  lookup_partial_alter {A} f (m : M A) i :
    partial_alter f i m !! i = f (m !! i);
  lookup_partial_alter_ne {A} f (m : M A) i j :
    i  j  partial_alter f i m !! j = m !! j;
  lookup_fmap {A B} (f : A  B) (m : M A) i :
    (f <$> m) !! i = f <$> m !! i;
45
46
47
48
49
50
51
  map_to_list_nodup {A} (m : M A) :
    NoDup (map_to_list m);
  elem_of_map_to_list {A} (m : M A) i x :
    (i,x)  map_to_list m  m !! i = Some x;
  lookup_merge {A B C} (f : option A  option B  option C)
      `{!PropHolds (f None None = None)} m1 m2 i :
    merge f m1 m2 !! i = f (m1 !! i) (m2 !! i)
Robbert Krebbers's avatar
Robbert Krebbers committed
52
53
}.

54
55
56
(** * Derived operations *)
(** All of the following functions are defined in a generic way for arbitrary
finite map implementations. These generic implementations do not cause a
57
58
significant performance loss to make including them in the finite map interface
worthwhile. *)
59
60
61
62
63
Instance map_insert `{PartialAlter K A M} : Insert K A M :=
  λ i x, partial_alter (λ _, Some x) i.
Instance map_alter `{PartialAlter K A M} : Alter K A M :=
  λ f, partial_alter (fmap f).
Instance map_delete `{PartialAlter K A M} : Delete K M :=
64
  partial_alter (λ _, None).
65
Instance map_singleton `{PartialAlter K A M}
66
  `{Empty M} : Singleton (K * A) M := λ p, <[fst p:=snd p]>.
Robbert Krebbers's avatar
Robbert Krebbers committed
67

68
Definition map_of_list `{Insert K A M} `{Empty M}
69
  (l : list (K * A)) : M := insert_list l .
Robbert Krebbers's avatar
Robbert Krebbers committed
70

71
72
73
74
75
76
Instance map_union_with `{Merge M} {A} : UnionWith A (M A) :=
  λ f, merge (union_with f).
Instance map_intersection_with `{Merge M} {A} : IntersectionWith A (M A) :=
  λ f, merge (intersection_with f).
Instance map_difference_with `{Merge M} {A} : DifferenceWith A (M A) :=
  λ f, merge (difference_with f).
Robbert Krebbers's avatar
Robbert Krebbers committed
77

78
79
(** The relation [intersection_forall R] on finite maps describes that the
relation [R] holds for each pair in the intersection. *)
80
Definition map_forall `{Lookup K A M} (P : K  A  Prop) : M  Prop :=
Robbert Krebbers's avatar
Robbert Krebbers committed
81
  λ m,  i x, m !! i = Some x  P i x.
82
Definition map_intersection_forall `{Lookup K A M}
Robbert Krebbers's avatar
Robbert Krebbers committed
83
84
    (R : relation A) : relation M := λ m1 m2,
   i x1 x2, m1 !! i = Some x1  m2 !! i = Some x2  R x1 x2.
85
86
Instance map_disjoint `{ A, Lookup K A (M A)} : Disjoint (M A) :=
  λ A, map_intersection_forall (λ _ _, False).
Robbert Krebbers's avatar
Robbert Krebbers committed
87
88
89
90
91

(** The union of two finite maps only has a meaningful definition for maps
that are disjoint. However, as working with partial functions is inconvenient
in Coq, we define the union as a total function. In case both finite maps
have a value at the same index, we take the value of the first map. *)
92
Instance map_union `{Merge M} {A} : Union (M A) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
93
  union_with (λ x _, Some x).
94
95
96
Instance map_intersection `{Merge M} {A} : Intersection (M A) :=
  intersection_with (λ x _, Some x).

97
98
(** The difference operation removes all values from the first map whose
index contains a value in the second map as well. *)
99
Instance map_difference `{Merge M} {A} : Difference (M A) :=
100
  difference_with (λ _ _, None).
Robbert Krebbers's avatar
Robbert Krebbers committed
101

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
(** * Theorems *)
Section theorems.
Context `{FinMap K M}.

Global Instance map_subseteq {A} : SubsetEq (M A) := λ m1 m2,
   i x, m1 !! i = Some x  m2 !! i = Some x.
Global Instance: BoundedPreOrder (M A).
Proof. split; [firstorder |]. intros m i x. by rewrite lookup_empty. Qed.
Global Instance : PartialOrder (M A).
Proof.
  split; [apply _ |].
  intros ????. apply map_eq. intros i. apply option_eq. naive_solver.
Qed.

Lemma lookup_weaken {A} (m1 m2 : M A) i x :
  m1 !! i = Some x  m1  m2  m2 !! i = Some x.
Proof. auto. Qed.
Lemma lookup_weaken_is_Some {A} (m1 m2 : M A) i :
  is_Some (m1 !! i)  m1  m2  is_Some (m2 !! i).
Proof. inversion 1. eauto using lookup_weaken. Qed.
Lemma lookup_weaken_None {A} (m1 m2 : M A) i :
  m2 !! i = None  m1  m2  m1 !! i = None.
Proof.
  rewrite eq_None_not_Some. intros Hm2 Hm1m2.
  specialize (Hm1m2 i). destruct (m1 !! i); naive_solver.
Qed.

Lemma lookup_weaken_inv {A} (m1 m2 : M A) i x y :
  m1 !! i = Some x 
  m1  m2 
  m2 !! i = Some y 
  x = y.
Proof.
  intros Hm1 ? Hm2. eapply lookup_weaken in Hm1; eauto.
  congruence.
Qed.

Lemma lookup_ne {A} (m : M A) i j : m !! i  m !! j  i  j.
Proof. congruence. Qed.
Lemma map_empty {A} (m : M A) : ( i, m !! i = None)  m = .
Proof. intros Hm. apply map_eq. intros. by rewrite Hm, lookup_empty. Qed.
Lemma lookup_empty_is_Some {A} i : ¬is_Some (( : M A) !! i).
Proof. rewrite lookup_empty. by inversion 1. Qed.
Lemma lookup_empty_Some {A} i (x : A) : ¬ !! i = Some x.
Proof. by rewrite lookup_empty. Qed.

Lemma map_subset_empty {A} (m : M A) : m  .
Proof. intros [? []]. intros i x. by rewrite lookup_empty. Qed.

(** ** Properties of the [partial_alter] operation *)
Lemma partial_alter_compose {A} (m : M A) i f g :
  partial_alter (f  g) i m = partial_alter f i (partial_alter g i m).
Proof.
  intros. apply map_eq. intros ii. case (decide (i = ii)).
  * intros. subst. by rewrite !lookup_partial_alter.
  * intros. by rewrite !lookup_partial_alter_ne.
Qed.
Lemma partial_alter_commute {A} (m : M A) i j f g :
  i  j 
  partial_alter f i (partial_alter g j m) =
    partial_alter g j (partial_alter f i m).
Proof.
  intros. apply map_eq. intros jj.
  destruct (decide (jj = j)).
  * subst. by rewrite lookup_partial_alter_ne,
      !lookup_partial_alter, lookup_partial_alter_ne.
  * destruct (decide (jj = i)).
    + subst. by rewrite lookup_partial_alter,
       !lookup_partial_alter_ne, lookup_partial_alter by congruence.
    + by rewrite !lookup_partial_alter_ne by congruence.
Qed.
Lemma partial_alter_self_alt {A} (m : M A) i x :
  x = m !! i  partial_alter (λ _, x) i m = m.
Proof.
  intros. apply map_eq. intros ii.
  destruct (decide (i = ii)).
  * subst. by rewrite lookup_partial_alter.
  * by rewrite lookup_partial_alter_ne.
Qed.
Lemma partial_alter_self {A} (m : M A) i :
  partial_alter (λ _, m !! i) i m = m.
Proof. by apply partial_alter_self_alt. Qed.

Lemma partial_alter_subseteq {A} (m : M A) i f :
  m !! i = None 
  m  partial_alter f i m.
Proof.
  intros Hi j x Hj. rewrite lookup_partial_alter_ne; congruence.
Qed.
Lemma partial_alter_subset {A} (m : M A) i f :
  m !! i = None 
  is_Some (f (m !! i)) 
  m  partial_alter f i m.
Proof.
  intros Hi Hfi. split.
  * by apply partial_alter_subseteq.
  * inversion Hfi as [x Hx]. intros Hm.
    apply (Some_ne_None x). rewrite <-(Hm i x); [done|].
    by rewrite lookup_partial_alter.
Qed.

(** ** Properties of the [alter] operation *)
Lemma lookup_alter {A} (f : A  A) m i :
  alter f i m !! i = f <$> m !! i.
Proof. apply lookup_partial_alter. Qed.
Lemma lookup_alter_ne {A} (f : A  A) m i j :
  i  j  alter f i m !! j = m !! j.
Proof. apply lookup_partial_alter_ne. Qed.

Lemma lookup_alter_Some {A} (f : A  A) m i j y :
  alter f i m !! j = Some y 
    (i = j   x, m !! j = Some x  y = f x)  (i  j  m !! j = Some y).
Proof.
  destruct (decide (i = j)); subst.
  * rewrite lookup_alter. naive_solver (simplify_option_equality; eauto).
  * rewrite lookup_alter_ne by done. naive_solver.
Qed.
Lemma lookup_alter_None {A} (f : A  A) m i j :
  alter f i m !! j = None  m !! j = None.
Proof.
  destruct (decide (i = j)); subst.
  * by rewrite lookup_alter, fmap_None.
  * by rewrite lookup_alter_ne.
Qed.

Lemma alter_None {A} (f : A  A) m i :
  m !! i = None  alter f i m = m.
Proof.
  intros Hi. apply map_eq. intros j. destruct (decide (i = j)); subst.
  * by rewrite lookup_alter, !Hi.
  * by rewrite lookup_alter_ne.
Qed.

(** ** Properties of the [delete] operation *)
Lemma lookup_delete {A} (m : M A) i : delete i m !! i = None.
Proof. apply lookup_partial_alter. Qed.
Lemma lookup_delete_ne {A} (m : M A) i j : i  j  delete i m !! j = m !! j.
Proof. apply lookup_partial_alter_ne. Qed.

Lemma lookup_delete_Some {A} (m : M A) i j y :
  delete i m !! j = Some y  i  j  m !! j = Some y.
Proof.
  split.
  * destruct (decide (i = j)); subst;
      rewrite ?lookup_delete, ?lookup_delete_ne; intuition congruence.
  * intros [??]. by rewrite lookup_delete_ne.
Qed.
Lemma lookup_delete_None {A} (m : M A) i j :
  delete i m !! j = None  i = j  m !! j = None.
Proof.
  destruct (decide (i = j)).
  * subst. rewrite lookup_delete. tauto.
  * rewrite lookup_delete_ne; tauto.
Qed.

Lemma delete_empty {A} i : delete i ( : M A) = .
Proof. rewrite <-(partial_alter_self ) at 2. by rewrite lookup_empty. Qed.
Lemma delete_singleton {A} i (x : A) : delete i {[(i, x)]} = .
Proof. setoid_rewrite <-partial_alter_compose. apply delete_empty. Qed.
Lemma delete_commute {A} (m : M A) i j :
  delete i (delete j m) = delete j (delete i m).
Proof. destruct (decide (i = j)). by subst. by apply partial_alter_commute. Qed.
Lemma delete_insert_ne {A} (m : M A) i j x :
  i  j  delete i (<[j:=x]>m) = <[j:=x]>(delete i m).
Proof. intro. by apply partial_alter_commute. Qed.

Lemma delete_notin {A} (m : M A) i :
  m !! i = None  delete i m = m.
Proof.
  intros. apply map_eq. intros j.
  destruct (decide (i = j)).
  * subst. by rewrite lookup_delete.
  * by apply lookup_delete_ne.
Qed.

Lemma delete_partial_alter {A} (m : M A) i f :
  m !! i = None  delete i (partial_alter f i m) = m.
Proof.
  intros. unfold delete, map_delete. rewrite <-partial_alter_compose.
  unfold compose. by apply partial_alter_self_alt.
Qed.
Lemma delete_insert {A} (m : M A) i x :
  m !! i = None  delete i (<[i:=x]>m) = m.
Proof. apply delete_partial_alter. Qed.
Lemma insert_delete {A} (m : M A) i x :
  m !! i = Some x  <[i:=x]>(delete i m) = m.
Proof.
  intros Hmi. unfold delete, map_delete, insert, map_insert.
  rewrite <-partial_alter_compose. unfold compose. rewrite <-Hmi.
  by apply partial_alter_self_alt.
Qed.

Lemma delete_subseteq {A} (m : M A) i :
  delete i m  m.
Proof. intros j x. rewrite lookup_delete_Some. tauto. Qed.
Lemma delete_subseteq_compat {A} (m1 m2 : M A) i :
  m1  m2 
  delete i m1  delete i m2.
Proof. intros ? j x. rewrite !lookup_delete_Some. intuition eauto. Qed.
Lemma delete_subset_alt {A} (m : M A) i x :
  m !! i = Some x 
  delete i m  m.
Proof.
  split.
  * apply delete_subseteq.
  * intros Hi. apply (None_ne_Some x).
    by rewrite <-(lookup_delete m i), (Hi i x).
Qed.
Lemma delete_subset {A} (m : M A) i :
  is_Some (m !! i) 
  delete i m  m.
Proof. inversion 1. eauto using delete_subset_alt. Qed.

(** ** Properties of the [insert] operation *)
Lemma lookup_insert {A} (m : M A) i x : <[i:=x]>m !! i = Some x.
Proof. unfold insert. apply lookup_partial_alter. Qed.
Lemma lookup_insert_rev {A}  (m : M A) i x y :
  <[i:=x]>m !! i = Some y  x = y.
Proof. rewrite lookup_insert. congruence. Qed.
Lemma lookup_insert_ne {A} (m : M A) i j x :
  i  j  <[i:=x]>m !! j = m !! j.
Proof. unfold insert. apply lookup_partial_alter_ne. Qed.
Lemma insert_commute {A} (m : M A) i j x y :
  i  j  <[i:=x]>(<[j:=y]>m) = <[j:=y]>(<[i:=x]>m).
Proof. apply partial_alter_commute. Qed.

Lemma lookup_insert_Some {A} (m : M A) i j x y :
  <[i:=x]>m !! j = Some y  (i = j  x = y)  (i  j  m !! j = Some y).
Proof.
  split.
  * destruct (decide (i = j)); subst;
      rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
  * intros [[??]|[??]].
    + subst. apply lookup_insert.
    + by rewrite lookup_insert_ne.
Qed.
Lemma lookup_insert_None {A} (m : M A) i j x :
  <[i:=x]>m !! j = None  m !! j = None  i  j.
Proof.
  split.
  * destruct (decide (i = j)); subst;
      rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
  * intros [??]. by rewrite lookup_insert_ne.
Qed.

Lemma insert_subseteq {A} (m : M A) i x :
  m !! i = None 
  m  <[i:=x]>m.
Proof. apply partial_alter_subseteq. Qed.
Lemma insert_subset {A} (m : M A) i x :
  m !! i = None 
  m  <[i:=x]>m.
Proof. intro. apply partial_alter_subset; eauto. Qed.
Lemma insert_subseteq_r {A} (m1 m2 : M A) i x :
  m1 !! i = None 
  m1  m2 
  m1  <[i:=x]>m2.
Proof.
  intros ?? j ?. destruct (decide (j = i)); subst.
  * congruence.
  * rewrite lookup_insert_ne; auto.
Qed.

Lemma insert_delete_subseteq {A} (m1 m2 : M A) i x :
  m1 !! i = None 
  <[i:=x]> m1  m2 
  m1  delete i m2.
Proof.
  intros Hi Hix j y Hj. destruct (decide (i = j)); subst.
  * congruence.
  * rewrite lookup_delete_ne by done. apply Hix.
    by rewrite lookup_insert_ne by done.
Qed.
Lemma delete_insert_subseteq {A} (m1 m2 : M A) i x :
  m1 !! i = Some x 
  delete i m1  m2 
  m1  <[i:=x]> m2.
Proof.
  intros Hix Hi j y Hj. destruct (decide (i = j)); subst.
  * rewrite lookup_insert. congruence.
  * rewrite lookup_insert_ne by done. apply Hi.
    by rewrite lookup_delete_ne.
Qed.

Lemma insert_delete_subset {A} (m1 m2 : M A) i x :
  m1 !! i = None 
  <[i:=x]> m1  m2 
  m1  delete i m2.
Proof.
  intros ? [Hm12 Hm21]. split.
  * eauto using insert_delete_subseteq.
  * contradict Hm21. apply delete_insert_subseteq; auto.
    apply Hm12. by rewrite lookup_insert.
Qed.

Lemma insert_subset_inv {A} (m1 m2 : M A) i x :
  m1 !! i = None 
  <[i:=x]> m1  m2 
   m2', m2 = <[i:=x]>m2'  m1  m2'  m2' !! i = None.
Proof.
  intros Hi Hm1m2. exists (delete i m2). split_ands.
  * rewrite insert_delete. done.
    eapply lookup_weaken, subset_subseteq; eauto.
    by rewrite lookup_insert.
  * eauto using insert_delete_subset.
  * by rewrite lookup_delete.
Qed.

(** ** Properties of the singleton maps *)
Lemma lookup_singleton_Some {A} i j (x y : A) :
  {[(i, x)]} !! j = Some y  i = j  x = y.
Proof.
  unfold singleton, map_singleton.
  rewrite lookup_insert_Some, lookup_empty. simpl.
  intuition congruence.
Qed.
Lemma lookup_singleton_None {A} i j (x : A) :
  {[(i, x)]} !! j = None  i  j.
Proof.
  unfold singleton, map_singleton.
  rewrite lookup_insert_None, lookup_empty. simpl. tauto.
Qed.
Lemma lookup_singleton {A} i (x : A) : {[(i, x)]} !! i = Some x.
Proof. by rewrite lookup_singleton_Some. Qed.
Lemma lookup_singleton_ne {A} i j (x : A) : i  j  {[(i, x)]} !! j = None.
Proof. by rewrite lookup_singleton_None. Qed.

Lemma insert_singleton {A} i (x y : A) : <[i:=y]>{[(i, x)]} = {[(i, y)]}.
Proof.
  unfold singleton, map_singleton, insert, map_insert.
  by rewrite <-partial_alter_compose.
Qed.
Lemma alter_singleton {A} (f : A  A) i x :
  alter f i {[ (i,x) ]} = {[ (i, f x) ]}.
Proof.
  intros. apply map_eq. intros i'. destruct (decide (i = i')); subst.
  * by rewrite lookup_alter, !lookup_singleton.
  * by rewrite lookup_alter_ne, !lookup_singleton_ne.
Qed.
Lemma alter_singleton_ne {A} (f : A  A) i j x :
  i  j  alter f i {[ (j,x) ]} = {[ (j, x) ]}.
Proof.
  intros. apply map_eq. intros i'. destruct (decide (i = i')); subst.
  * by rewrite lookup_alter, lookup_singleton_ne.
  * by rewrite lookup_alter_ne.
Qed.

(** ** Properties of conversion to lists *)
Lemma map_to_list_unique {A} (m : M A) i x y :
  (i,x)  map_to_list m 
  (i,y)  map_to_list m 
  x = y.
Proof. rewrite !elem_of_map_to_list. congruence. Qed.
Lemma map_to_list_key_nodup {A} (m : M A) :
  NoDup (fst <$> map_to_list m).
Proof.
  eauto using NoDup_fmap_fst, map_to_list_unique, map_to_list_nodup.
Qed.

Lemma elem_of_map_of_list_1 {A} (l : list (K * A)) i x :
  NoDup (fst <$> l) 
  (i,x)  l 
  map_of_list l !! i = Some x.
Proof.
  induction l as [|[j y] l IH]; simpl.
  { by rewrite elem_of_nil. }
  rewrite NoDup_cons, elem_of_cons, elem_of_list_fmap.
  intros [Hl ?] [?|?]; simplify_equality.
  { by rewrite lookup_insert. }
  destruct (decide (i = j)); simplify_equality.
  * destruct Hl. by exists (j,x).
  * rewrite lookup_insert_ne; auto.
Qed.
Lemma elem_of_map_of_list_2 {A} (l : list (K * A)) i x :
  map_of_list l !! i = Some x 
  (i,x)  l.
Proof.
  induction l as [|[j y] l IH]; simpl.
  { by rewrite lookup_empty. }
  rewrite elem_of_cons. destruct (decide (i = j)); simplify_equality.
  * rewrite lookup_insert; intuition congruence.
  * rewrite lookup_insert_ne; intuition congruence.
Qed.
Lemma elem_of_map_of_list {A} (l : list (K * A)) i x :
  NoDup (fst <$> l) 
  (i,x)  l  map_of_list l !! i = Some x.
Proof.
  split; auto using elem_of_map_of_list_1, elem_of_map_of_list_2.
Qed.

Lemma not_elem_of_map_of_list_1 {A} (l : list (K * A)) i :
  i  fst <$> l 
  map_of_list l !! i = None.
Proof.
  rewrite elem_of_list_fmap, eq_None_not_Some, is_Some_alt.
  intros Hi [x ?]. destruct Hi. exists (i,x). simpl.
  auto using elem_of_map_of_list_2.
Qed.
Lemma not_elem_of_map_of_list_2 {A} (l : list (K * A)) i :
  map_of_list l !! i = None 
  i  fst <$> l.
Proof.
  induction l as [|[j y] l IH]; simpl.
  { rewrite elem_of_nil. tauto. }
  rewrite elem_of_cons. destruct (decide (i = j)); simplify_equality.
  * by rewrite lookup_insert.
  * by rewrite lookup_insert_ne; intuition.
Qed.
Lemma not_elem_of_map_of_list {A} (l : list (K * A)) i :
  i  fst <$> l  map_of_list l !! i = None.
Proof.
  split; auto using not_elem_of_map_of_list_1,
    not_elem_of_map_of_list_2.
Qed.

Lemma map_of_list_proper {A} (l1 l2 : list (K * A)) :
  NoDup (fst <$> l1) 
  Permutation l1 l2 
  map_of_list l1 = map_of_list l2.
Proof.
  intros ? Hperm. apply map_eq. intros i. apply option_eq. intros x.
  by rewrite <-!elem_of_map_of_list; rewrite <-?Hperm.
Qed.
Lemma map_of_list_inj {A} (l1 l2 : list (K * A)) :
  NoDup (fst <$> l1) 
  NoDup (fst <$> l2) 
  map_of_list l1 = map_of_list l2 
  Permutation l1 l2.
Proof.
  intros ?? Hl1l2.
  apply NoDup_Permutation; auto using (NoDup_fmap_1 fst).
  intros [i x]. by rewrite !elem_of_map_of_list, Hl1l2.
Qed.
Lemma map_of_to_list {A} (m : M A) :
  map_of_list (map_to_list m) = m.
Proof.
  apply map_eq. intros i. apply option_eq. intros x.
  by rewrite <-elem_of_map_of_list, elem_of_map_to_list
    by auto using map_to_list_key_nodup.
Qed.
Lemma map_to_of_list {A} (l : list (K * A)) :
  NoDup (fst <$> l) 
  Permutation (map_to_list (map_of_list l)) l.
Proof.
  auto using map_of_list_inj, map_to_list_key_nodup, map_of_to_list.
Qed.
Lemma map_to_list_inj {A} (m1 m2 : M A) :
  Permutation (map_to_list m1) (map_to_list m2) 
  m1 = m2.
Proof.
  intros.
  rewrite <-(map_of_to_list m1), <-(map_of_to_list m2).
  auto using map_of_list_proper, map_to_list_key_nodup.
Qed.

Lemma map_to_list_empty {A} :
  map_to_list  = @nil (K * A).
Proof.
  apply elem_of_nil_inv. intros [i x].
  rewrite elem_of_map_to_list. apply lookup_empty_Some.
Qed.
Lemma map_to_list_insert {A} (m : M A) i x :
  m !! i = None 
  Permutation (map_to_list (<[i:=x]>m)) ((i,x) :: map_to_list m).
Proof.
  intros. apply map_of_list_inj; simpl.
  * apply map_to_list_key_nodup.
  * constructor; auto using map_to_list_key_nodup.
    rewrite elem_of_list_fmap.
    intros [[??] [? Hlookup]]; subst; simpl in *.
    rewrite elem_of_map_to_list in Hlookup. congruence.
  * by rewrite !map_of_to_list.
Qed.

Lemma map_of_list_nil {A} :
  map_of_list (@nil (K * A)) = .
Proof. done. Qed.
Lemma map_of_list_cons {A} (l : list (K * A)) i x :
  map_of_list ((i, x) :: l) = <[i:=x]>(map_of_list l).
Proof. done. Qed.

Lemma map_to_list_empty_inv_alt {A}  (m : M A) :
  Permutation (map_to_list m) []  m = .
Proof. rewrite <-map_to_list_empty. apply map_to_list_inj. Qed.
Lemma map_to_list_empty_inv {A} (m : M A) :
  map_to_list m = []  m = .
Proof. intros Hm. apply map_to_list_empty_inv_alt. by rewrite Hm. Qed.

Lemma map_to_list_insert_inv {A} (m : M A) l i x :
  Permutation (map_to_list m) ((i,x) :: l) 
  m = <[i:=x]>(map_of_list l).
Proof.
  intros Hperm. apply map_to_list_inj.
  assert (NoDup (fst <$> (i, x) :: l)) as Hnodup.
  { rewrite <-Hperm. auto using map_to_list_key_nodup. }
  simpl in Hnodup. rewrite NoDup_cons in Hnodup. destruct Hnodup.
  rewrite Hperm, map_to_list_insert, map_to_of_list;
    auto using not_elem_of_map_of_list_1.
Qed.

(** * Induction principles *)
Lemma map_ind {A} (P : M A  Prop) :
  P  
  ( i x m, m !! i = None  P m  P (<[i:=x]>m)) 
   m, P m.
Proof.
  intros Hemp Hins.
  cut ( l, NoDup (fst <$> l)   m, Permutation (map_to_list m) l  P m).
  { intros help m.
    apply (help (map_to_list m)); auto using map_to_list_key_nodup. }
  induction l as [|[i x] l IH]; intros Hnodup m Hml.
  { apply map_to_list_empty_inv_alt in Hml. by subst. }
  inversion_clear Hnodup.
  apply map_to_list_insert_inv in Hml. subst. apply Hins.
  * by apply not_elem_of_map_of_list_1.
  * apply IH; auto using map_to_of_list.
Qed.

Lemma map_to_list_length {A} (m1 m2 : M A) :
  m1  m2 
  length (map_to_list m1) < length (map_to_list m2).
Proof.
  revert m2. induction m1 as [|i x m ? IH] using map_ind.
  { intros m2 Hm2. rewrite map_to_list_empty. simpl.
    apply neq_0_lt. intros Hlen. symmetry in Hlen.
    apply nil_length, map_to_list_empty_inv in Hlen.
    rewrite Hlen in Hm2. destruct (irreflexivity ()  Hm2). }
  intros m2 Hm2.
  destruct (insert_subset_inv m m2 i x) as (m2'&?&?&?); auto; subst.
  rewrite !map_to_list_insert; simpl; auto with arith.
Qed.

Lemma map_wf {A} : wf (@subset (M A) _).
Proof.
  apply (wf_projected (<) (length  map_to_list)).
  * by apply map_to_list_length.
  * by apply lt_wf.
Qed.

(** ** Properties of the [map_forall] predicate *)
Section map_forall.
Context {A} (P : K  A  Prop).

Lemma map_forall_to_list m :
  map_forall P m  Forall (curry P) (map_to_list m).
Proof.
  rewrite Forall_forall. split.
  * intros Hforall [i x].
    rewrite elem_of_map_to_list. by apply (Hforall i x).
  * intros Hforall i x.
    rewrite <-elem_of_map_to_list. by apply (Hforall (i,x)).
Qed.

Context `{ i x, Decision (P i x)}.
Global Instance map_forall_dec m : Decision (map_forall P m).
Proof.
  refine (cast_if (decide (Forall (curry P) (map_to_list m))));
    by rewrite map_forall_to_list.
Defined.

Lemma map_not_forall (m : M A) :
  ¬map_forall P m   i x, m !! i = Some x  ¬P i x.
Proof.
  split.
  * rewrite map_forall_to_list. intros Hm.
    apply (not_Forall_Exists _), Exists_exists in Hm.
    destruct Hm as ([i x]&?&?). exists i x. by rewrite <-elem_of_map_to_list.
  * intros (i&x&?&?) Hm. specialize (Hm i x). tauto.
Qed.
End map_forall.

(** ** Properties of the [merge] operation *)
Lemma merge_Some {A B C} (f : option A  option B  option C)
    `{!PropHolds (f None None = None)} m1 m2 m :
  ( i, m !! i = f (m1 !! i) (m2 !! i))  merge f m1 m2 = m.
Proof.
  split; [| intro; subst; apply (lookup_merge _) ].
  intros Hlookup. apply map_eq. intros. rewrite Hlookup.
  apply (lookup_merge _).
Qed.

Section merge.
Context {A} (f : option A  option A  option A).

Global Instance: LeftId (=) None f  LeftId (=)  (merge f).
Proof.
  intros ??. apply map_eq. intros.
  by rewrite !(lookup_merge f), lookup_empty, (left_id None f).
Qed.
Global Instance: RightId (=) None f  RightId (=)  (merge f).
Proof.
  intros ??. apply map_eq. intros.
  by rewrite !(lookup_merge f), lookup_empty, (right_id None f).
Qed.

Context `{!PropHolds (f None None = None)}.

Lemma merge_commutative m1 m2 :
  ( i, f (m1 !! i) (m2 !! i) = f (m2 !! i) (m1 !! i)) 
  merge f m1 m2 = merge f m2 m1.
Proof. intros. apply map_eq. intros. by rewrite !(lookup_merge f). Qed.
Global Instance: Commutative (=) f  Commutative (=) (merge f).
Proof.
  intros ???. apply merge_commutative. intros. by apply (commutative f).
Qed.
Lemma merge_associative m1 m2 m3 :
  ( i, f (m1 !! i) (f (m2 !! i) (m3 !! i)) =
        f (f (m1 !! i) (m2 !! i)) (m3 !! i)) 
  merge f m1 (merge f m2 m3) = merge f (merge f m1 m2) m3.
Proof. intros. apply map_eq. intros. by rewrite !(lookup_merge f). Qed.
Global Instance: Associative (=) f  Associative (=) (merge f).
Proof.
  intros ????. apply merge_associative. intros. by apply (associative f).
Qed.
Lemma merge_idempotent m1 :
  ( i, f (m1 !! i) (m1 !! i) = m1 !! i) 
  merge f m1 m1 = m1.
Proof. intros. apply map_eq. intros. by rewrite !(lookup_merge f). Qed.
Global Instance: Idempotent (=) f  Idempotent (=) (merge f).
Proof.
  intros ??. apply merge_idempotent. intros. by apply (idempotent f).
Qed.

Lemma partial_alter_merge (g g1 g2 : option A  option A) m1 m2 i :
  g (f (m1 !! i) (m2 !! i)) = f (g1 (m1 !! i)) (g2 (m2 !! i)) 
  partial_alter g i (merge f m1 m2) =
    merge f (partial_alter g1 i m1) (partial_alter g2 i m2).
Proof.
  intro. apply map_eq. intros j. destruct (decide (i = j)); subst.
  * by rewrite (lookup_merge _), !lookup_partial_alter, !(lookup_merge _).
  * by rewrite (lookup_merge _), !lookup_partial_alter_ne, (lookup_merge _).
Qed.
Lemma partial_alter_merge_l (g g1 : option A  option A) m1 m2 i :
  g (f (m1 !! i) (m2 !! i)) = f (g1 (m1 !! i)) (m2 !! i) 
  partial_alter g i (merge f m1 m2) = merge f (partial_alter g1 i m1) m2.
Proof.
  intro. apply map_eq. intros j. destruct (decide (i = j)); subst.
  * by rewrite (lookup_merge _), !lookup_partial_alter, !(lookup_merge _).
  * by rewrite (lookup_merge _), !lookup_partial_alter_ne, (lookup_merge _).
Qed.
Lemma partial_alter_merge_r (g g2 : option A  option A) m1 m2 i :
  g (f (m1 !! i) (m2 !! i)) = f (m1 !! i) (g2 (m2 !! i)) 
  partial_alter g i (merge f m1 m2) = merge f m1 (partial_alter g2 i m2).
Proof.
  intro. apply map_eq. intros j. destruct (decide (i = j)); subst.
  * by rewrite (lookup_merge _), !lookup_partial_alter, !(lookup_merge _).
  * by rewrite (lookup_merge _), !lookup_partial_alter_ne, (lookup_merge _).
Qed.

Lemma insert_merge_l m1 m2 i x :
  f (Some x) (m2 !! i) = Some x 
  <[i:=x]>(merge f m1 m2) = merge f (<[i:=x]>m1) m2.
Proof.
  intros. unfold insert, map_insert, alter, map_alter.
  by apply partial_alter_merge_l.
Qed.
Lemma insert_merge_r m1 m2 i x :
  f (m1 !! i) (Some x) = Some x 
  <[i:=x]>(merge f m1 m2) = merge f m1 (<[i:=x]>m2).
Proof.
  intros. unfold insert, map_insert, alter, map_alter.
  by apply partial_alter_merge_r.
Qed.
End merge.

(** ** Properties on the [map_intersection_forall] relation *)
Section intersection_forall.
Context {A} (R : relation A).

Global Instance map_intersection_forall_sym:
  Symmetric R  Symmetric (map_intersection_forall R).
Proof. firstorder auto. Qed.
Lemma map_intersection_forall_empty_l (m : M A) :
  map_intersection_forall R  m.
Proof. intros ???. by rewrite lookup_empty. Qed.
Lemma map_intersection_forall_empty_r (m : M A) :
  map_intersection_forall R m .
Proof. intros ???. by rewrite lookup_empty. Qed.

Lemma map_intersection_forall_alt (m1 m2 : M A) :
  map_intersection_forall R m1 m2 
    map_forall (λ _, curry R) (merge (λ x y,
      match x, y with
      | Some x, Some y => Some (x,y)
      | _, _ => None
      end) m1 m2).
Proof.
  split.
  * intros Hm12 i [x y]. rewrite lookup_merge by done. intros.
    destruct (m1 !! i) eqn:?, (m2 !! i) eqn:?; simplify_equality.
    eapply Hm12; eauto.
  * intros Hm12 i x y ??. apply (Hm12 i (x,y)).
    rewrite lookup_merge by done. by simplify_option_equality.
Qed.

(** Due to the finiteness of finite maps, we can extract a witness if the
relation does not hold. *)
Lemma map_not_intersection_forall `{ x y, Decision (R x y)} (m1 m2 : M A) :
  ¬map_intersection_forall R m1 m2
      i x1 x2, m1 !! i = Some x1  m2 !! i = Some x2  ¬R x1 x2.
Proof.
  split.
  * rewrite map_intersection_forall_alt, (map_not_forall _).
    intros (i & [x y] & Hm12 & ?). rewrite lookup_merge in Hm12 by done.
    exists i x y. by destruct (m1 !! i), (m2 !! i); simplify_equality.
  * intros (i & x1 & x2 & Hx1 & Hx2 & Hx1x2) Hm12.
    by apply Hx1x2, (Hm12 i x1 x2).
Qed.
End intersection_forall.

(** ** Properties on the disjoint maps *)
Lemma map_disjoint_alt {A} (m1 m2 : M A) :
  m1  m2   i, m1 !! i = None  m2 !! i = None.
Proof.
  split; intros Hm1m2 i; specialize (Hm1m2 i);
    destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
Lemma map_not_disjoint {A} (m1 m2 : M A) :
  ¬m1  m2   i x1 x2, m1 !! i = Some x1  m2 !! i = Some x2.
Proof.
  unfold disjoint, map_disjoint.
  rewrite map_not_intersection_forall.
  * naive_solver.
  * right. auto.
Qed.

Global Instance: Symmetric (@disjoint (M A) _).
Proof. intro. apply map_intersection_forall_sym. auto. Qed.
Lemma map_disjoint_empty_l {A} (m : M A) :   m.
Proof. apply map_intersection_forall_empty_l. Qed.
Lemma map_disjoint_empty_r {A} (m : M A) : m  .
Proof. apply map_intersection_forall_empty_r. Qed.

Lemma map_disjoint_weaken {A} (m1 m1' m2 m2' : M A) :
  m1'  m2' 
  m1  m1'  m2  m2' 
  m1  m2.
Proof.
  intros Hdisjoint Hm1 Hm2 i x1 x2 Hx1 Hx2.
  destruct (Hdisjoint i x1 x2); auto.
Qed.
Lemma map_disjoint_weaken_l {A} (m1 m1' m2  : M A) :
  m1'  m2  m1  m1'  m1  m2.
Proof. eauto using map_disjoint_weaken. Qed.
Lemma map_disjoint_weaken_r {A} (m1 m2 m2' : M A) :
  m1  m2'  m2  m2'  m1  m2.
Proof. eauto using map_disjoint_weaken. Qed.

Lemma map_disjoint_Some_l {A} (m1 m2 : M A) i x:
  m1  m2 
  m1 !! i = Some x 
  m2 !! i = None.
Proof.
  intros Hdisjoint ?. rewrite eq_None_not_Some, is_Some_alt.
  intros [x2 ?]. by apply (Hdisjoint i x x2).
Qed.
Lemma map_disjoint_Some_r {A} (m1 m2 : M A) i x:
  m1  m2 
  m2 !! i = Some x 
  m1 !! i = None.
Proof. rewrite (symmetry_iff ()). apply map_disjoint_Some_l. Qed.

Lemma map_disjoint_singleton_l {A} (m : M A) i x :
  {[(i, x)]}  m  m !! i = None.
Proof.
  split.
  * intro. apply (map_disjoint_Some_l {[(i, x)]} _ _ x);
      auto using lookup_singleton.
  * intros ? j y1 y2. destruct (decide (i = j)); subst.
    + rewrite lookup_singleton. intuition congruence.
    + by rewrite lookup_singleton_ne.
Qed.
Lemma map_disjoint_singleton_r {A} (m : M A) i x :
  m  {[(i, x)]}  m !! i = None.
Proof. by rewrite (symmetry_iff ()), map_disjoint_singleton_l. Qed.

Lemma map_disjoint_singleton_l_2 {A} (m : M A) i x :
  m !! i = None  {[(i, x)]}  m.
Proof. by rewrite map_disjoint_singleton_l. Qed.
Lemma map_disjoint_singleton_r_2 {A} (m : M A) i x :
  m !! i = None  m  {[(i, x)]}.
Proof. by rewrite map_disjoint_singleton_r. Qed.

Lemma map_disjoint_delete_l {A} (m1 m2 : M A) i :
  m1  m2  delete i m1  m2.
Proof.
  rewrite !map_disjoint_alt.
  intros Hdisjoint j. destruct (Hdisjoint j); auto.
  rewrite lookup_delete_None. tauto.
Qed.
Lemma map_disjoint_delete_r {A} (m1 m2 : M A) i :
  m1  m2  m1  delete i m2.
Proof. symmetry. by apply map_disjoint_delete_l. Qed.

(** ** Properties of the [union_with] operation *)
Section union_with.
Context {A} (f : A  A  option A).

Lemma lookup_union_with m1 m2 i z :
  union_with f m1 m2 !! i = z 
    (m1 !! i = None  m2 !! i = None  z = None) 
    ( x, m1 !! i = Some x  m2 !! i = None  z = Some x) 
    ( y, m1 !! i = None  m2 !! i = Some y  z = Some y) 
    ( x y, m1 !! i = Some x  m2 !! i = Some y  z = f x y).
Proof.
  unfold union_with, map_union_with. rewrite (lookup_merge _).
  destruct (m1 !! i), (m2 !! i); compute; naive_solver.
Qed.
Lemma lookup_union_with_Some m1 m2 i z :
  union_with f m1 m2 !! i = Some z 
    (m1 !! i = Some z  m2 !! i = None) 
    (m1 !! i = None  m2 !! i = Some z) 
    ( x y, m1 !! i = Some x  m2 !! i = Some y  f x y = Some z).
Proof. rewrite lookup_union_with. naive_solver. Qed.
Lemma lookup_union_with_None m1 m2 i :
  union_with f m1 m2 !! i = None 
    (m1 !! i = None  m2 !! i = None) 
    ( x y, m1 !! i = Some x  m2 !! i = Some y  f x y = None).
Proof. rewrite lookup_union_with. naive_solver. Qed.

Lemma lookup_union_with_Some_lr m1 m2 i x y z :
  m1 !! i = Some x 
  m2 !! i = Some y 
  f x y = Some z 
  union_with f m1 m2 !! i = Some z.
Proof. rewrite lookup_union_with. naive_solver. Qed.
Lemma lookup_union_with_Some_l m1 m2 i x :
  m1 !! i = Some x 
  m2 !! i = None 
  union_with f m1 m2 !! i = Some x.
Proof. rewrite lookup_union_with. naive_solver. Qed.
Lemma lookup_union_with_Some_r m1 m2 i y :
  m1 !! i = None 
  m2 !! i = Some y 
  union_with f m1 m2 !! i = Some y.
Proof. rewrite lookup_union_with. naive_solver. Qed.

Global Instance: LeftId (@eq (M A))  (union_with f).
Proof. unfold union_with, map_union_with. apply _. Qed.
Global Instance: RightId (@eq (M A))  (union_with f).
Proof. unfold union_with, map_union_with. apply _. Qed.

Lemma union_with_commutative m1 m2 :
  ( i x y, m1 !! i = Some x  m2 !! i = Some y  f x y = f y x) 
  union_with f m1 m2 = union_with f m2 m1.
Proof.
  intros. apply (merge_commutative _). intros i.
  destruct (m1 !! i) eqn:?, (m2 !! i) eqn:?; simpl; eauto.
Qed.
Global Instance: Commutative (=) f  Commutative (@eq (M A)) (union_with f).
Proof. intros ???. apply union_with_commutative. eauto. Qed.

Lemma union_with_idempotent m :
  ( i x, m !! i = Some x  f x x = Some x) 
  union_with f m m = m.
Proof.
  intros. apply (merge_idempotent _). intros i.
  destruct (m !! i) eqn:?; simpl; eauto.
Qed.

Lemma alter_union_with (g : A  A) m1 m2 i :
  ( x y, m1 !! i = Some x  m2 !! i = Some y  g <$> f x y = f (g x) (g y)) 
  alter g i (union_with f m1 m2) =
    union_with f (alter g i m1) (alter g i m2).
Proof.
  intros. apply (partial_alter_merge _).
  destruct (m1 !! i) eqn:?, (m2 !! i) eqn:?; simpl; eauto.
Qed.
Lemma alter_union_with_l (g : A  A) m1 m2 i :
  ( x y, m1 !! i = Some x  m2 !! i = Some y  g <$> f x y = f (g x) y) 
  ( y, m1 !! i = None  m2 !! i = Some y  g y = y) 
  alter g i (union_with f m1 m2) = union_with f (alter g i m1) m2.
Proof.
  intros. apply (partial_alter_merge_l _).
  destruct (m1 !! i) eqn:?, (m2 !! i) eqn:?; simpl; eauto using f_equal.
Qed.
Lemma alter_union_with_r (g : A  A) m1 m2 i :
  ( x y, m1 !! i = Some x  m2 !! i = Some y  g <$> f x y = f x (g y)) 
  ( x, m1 !! i = Some x  m2 !! i = None  g x = x) 
  alter g i (union_with f m1 m2) = union_with f m1 (alter g i m2).
Proof.
  intros. apply (partial_alter_merge_r _).
  destruct (m1 !! i) eqn:?, (m2 !! i) eqn:?; simpl; eauto using f_equal.
Qed.

Lemma delete_union_with m1 m2 i :
  delete i (union_with f m1 m2) = union_with f (delete i m1) (delete i m2).
Proof. by apply (partial_alter_merge _). Qed.

Lemma delete_list_union_with (m1 m2 : M A) is :
  delete_list is (union_with f m1 m2) =
    union_with f (delete_list is m1) (delete_list is m2).
Proof. induction is; simpl. done. by rewrite IHis, delete_union_with. Qed.

Lemma insert_union_with m1 m2 i x :
  ( x, f x x = Some x) 
  <[i:=x]>(union_with f m1 m2) = union_with f (<[i:=x]>m1) (<[i:=x]>m2).
Proof. intros. apply (partial_alter_merge _). simpl. auto. Qed.
Lemma insert_union_with_l m1 m2 i x :
  m2 !! i = None 
  <[i:=x]>(union_with f m1 m2) = union_with f (<[i:=x]>m1) m2.
Proof.
  intros Hm2. unfold union_with, map_union_with.
  rewrite (insert_merge_l _). done. by rewrite Hm2.
Qed.
Lemma insert_union_with_r m1 m2 i x :
  m1 !! i = None 
  <[i:=x]>(union_with f m1 m2) = union_with f m1 (<[i:=x]>m2).
Proof.
  intros Hm1. unfold union_with, map_union_with.
  rewrite (insert_merge_r _). done. by rewrite Hm1.
Qed.
End union_with.

(** ** Properties of the [union] operation *)
Global Instance: LeftId (@eq (M A))  () := _.
Global Instance: RightId (@eq (M A))  () := _.
Global Instance: Associative (@eq (M A)) ().
Proof.
  intros A m1 m2 m3. unfold union, map_union, union_with, map_union_with.
  apply (merge_associative _). intros i.
  by destruct (m1 !! i), (m2 !! i), (m3 !! i).
Qed.
Global Instance: Idempotent (@eq (M A)) ().
Proof. intros A ?. by apply union_with_idempotent. Qed.

Lemma lookup_union_Some_raw {A} (m1 m2 : M A) i x :
  (m1  m2) !! i = Some x 
    m1 !! i = Some x  (m1 !! i = None  m2 !! i = Some x).
Proof.
  unfold union, map_union, union_with, map_union_with.
  rewrite (lookup_merge _).
  destruct (m1 !! i), (m2 !! i); compute; intuition congruence.
Qed.
Lemma lookup_union_None {A} (m1 m2 : M A) i :
  (m1  m2) !! i = None  m1 !! i = None  m2 !! i = None.
Proof.
  unfold union, map_union, union_with, map_union_with.
  rewrite (lookup_merge _).
  destruct (m1 !! i), (m2 !! i); compute; intuition congruence.
Qed.

Lemma lookup_union_Some {A} (m1 m2 : M A) i x :
  m1  m2 
  (m1  m2) !! i = Some x  m1 !! i = Some x  m2 !! i = Some x.
Proof.
  intros Hdisjoint. rewrite lookup_union_Some_raw.
  intuition eauto using map_disjoint_Some_r.
Qed.

Lemma lookup_union_Some_l {A} (m1 m2 : M A) i x :
  m1 !! i = Some x 
  (m1  m2) !! i = Some x.
Proof. intro. rewrite lookup_union_Some_raw; intuition. Qed.
Lemma lookup_union_Some_r {A} (m1 m2 : M A) i x :
  m1  m2 
  m2 !! i = Some x 
  (m1  m2) !! i = Some x.
Proof. intro. rewrite lookup_union_Some; intuition. Qed.

Lemma map_union_commutative {A} (m1 m2 : M A) :
  m1  m2 
  m1  m2 = m2  m1.
Proof.
  intros Hdisjoint. apply (merge_commutative (union_with (λ x _, Some x))).
  intros i. specialize (Hdisjoint i).
  destruct (m1 !! i), (m2 !! i); compute; naive_solver.
Qed.

Lemma map_subseteq_union {A} (m1 m2 : M A) :
  m1  m2 
  m1  m2 = m2.
Proof.
  intros Hm1m2.
  apply map_eq. intros i. apply option_eq. intros x.
  rewrite lookup_union_Some_raw. split; [by intuition |].
  intros Hm2. specialize (Hm1m2 i).
  destruct (m1 !! i) as [y|]; [| by auto].
  rewrite (Hm1m2 y eq_refl) in Hm2. intuition congruence.
Qed.

Lemma map_union_subseteq_l {A} (m1 m2 : M A) :
  m1  m1  m2.
Proof. intros ? i x. rewrite lookup_union_Some_raw. intuition. Qed.
Lemma map_union_subseteq_r {A} (m1 m2 : M A) :
  m1  m2 
  m2  m1  m2.
Proof.
  intros. rewrite map_union_commutative by done.
  by apply map_union_subseteq_l.
Qed.

Lemma map_union_subseteq_l_alt {A} (m1 m2 m3 : M A) :
  m1  m2 
  m1  m2  m3.
Proof. intros. transitivity m2; auto using map_union_subseteq_l. Qed.
Lemma map_union_subseteq_r_alt {A} (m1 m2 m3 : M A) :
  m2  m3 
  m1  m3 
  m1  m2  m3.
Proof. intros. transitivity m3; auto using map_union_subseteq_r. Qed.

Lemma map_union_preserving_l {A} (m1 m2 m3 : M A) :
  m1  m2 
  m3  m1  m3  m2.
Proof. intros ???. rewrite !lookup_union_Some_raw. naive_solver. Qed.
Lemma map_union_preserving_r {A} (m1 m2 m3 : M A) :
  m2  m3 
  m1  m2 
  m1  m3  m2  m3.
Proof.
  intros. rewrite !(map_union_commutative _ m3)
    by eauto using map_disjoint_weaken_l.
  by apply map_union_preserving_l.
Qed.

Lemma map_union_reflecting_l {A} (m1 m2 m3 : M A) :
  m3  m1 
  m3  m2 
  m3  m1  m3  m2 
  m1  m2.
Proof.
  intros Hm3m1 Hm3m2 E b x ?.
  specialize (E b x). rewrite !lookup_union_Some in E by done.
  destruct E; auto. by destruct (Hm3m1 b x x).
Qed.
Lemma map_union_reflecting_r {A} (m1 m2 m3 : M A) :
  m1  m3 
  m2  m3 
  m1  m3  m2  m3 
  m1  m2.
Proof.
  intros ??. rewrite !(map_union_commutative _ m3) by done.
  by apply map_union_reflecting_l.
Qed.

Lemma map_union_cancel_l {A} (m1 m2 m3 : M A) :
  m1  m3 
  m2  m3 
  m3  m1 = m3  m2 
  m1 = m2.
Proof.
  intros. by apply (anti_symmetric _);
    apply map_union_reflecting_l with m3; auto with congruence.
Qed.
Lemma map_union_cancel_r {A} (m1 m2 m3 : M A) :
  m1  m3 
  m2  m3 
  m1  m3 = m2  m3 
  m1 = m2.
Proof.
  intros. apply (anti_symmetric _);
    apply map_union_reflecting_r with m3; auto with congruence.
Qed.

Lemma map_disjoint_union_l {A} (m1 m2 m3 : M A) :
  m1  m2  m3  m1  m3  m2  m3.
Proof.
  rewrite !map_disjoint_alt.
  setoid_rewrite lookup_union_None. naive_solver.
Qed.
Lemma map_disjoint_union_r {A} (m1 m2 m3 : M A) :
  m1  m2  m3  m1  m2  m1  m3.
Proof.
  rewrite !map_disjoint_alt.
  setoid_rewrite lookup_union_None. naive_solver.
Qed.
Lemma map_disjoint_union_l_2 {A} (m1 m2 m3 : M A) :
  m1  m3  m2  m3  m1  m2  m3.
Proof. by rewrite map_disjoint_union_l. Qed.
Lemma map_disjoint_union_r_2 {A} (m1 m2 m3 : M A) :
  m1  m2  m1  m3  m1  m2  m3.
Proof. by rewrite map_disjoint_union_r. Qed.

Lemma insert_union_singleton_l {A} (m : M A) i x :
  <[i:=x]>m = {[(i,x)]}  m.
Proof.
  apply map_eq. intros j. apply option_eq. intros y.
  rewrite lookup_union_Some_raw.
  destruct (decide (i = j)); subst.
  * rewrite !lookup_singleton, lookup_insert. intuition congruence.
  * rewrite !lookup_singleton_ne, lookup_insert_ne; intuition congruence.
Qed.
Lemma insert_union_singleton_r {A} (m : M A) i x :
  m !! i = None 
  <[i:=x]>m = m  {[(i,x)]}.
Proof.
  intro. rewrite insert_union_singleton_l, map_union_commutative; [done |].
  by apply map_disjoint_singleton_l.
Qed.

Lemma map_disjoint_insert_l {A} (m1 m2 : M A) i x :
  <[i:=x]>m1  m2  m2 !! i = None  m1  m2.
Proof.
  rewrite insert_union_singleton_l.
  by rewrite map_disjoint_union_l, map_disjoint_singleton_l.
Qed.
Lemma map_disjoint_insert_r {A} (m1 m2 : M A) i x :
  m1  <[i:=x]>m2  m1 !! i = None  m1  m2.
Proof.
  rewrite insert_union_singleton_l.
  by rewrite map_disjoint_union_r, map_disjoint_singleton_r.
Qed.

Lemma map_disjoint_insert_l_2 {A} (m1 m2 : M A) i x :
  m2 !! i = None  m1  m2  <[i:=x]>m1  m2.
Proof. by rewrite map_disjoint_insert_l. Qed.
Lemma map_disjoint_insert_r_2 {A} (m1 m2 : M A) i x :
  m1 !! i = None  m1  m2  m1  <[i:=x]>m2.
Proof. by rewrite map_disjoint_insert_r. Qed.

Lemma insert_union_l {A} (m1 m2 : M A) i x :
  <[i:=x]>(m1  m2) = <[i:=x]>m1  m2.
Proof. by rewrite !insert_union_singleton_l, (associative ()). Qed.
Lemma insert_union_r {A} (m1 m2 : M A) i x :
  m1 !! i = None 
  <[i:=x]>(m1  m2) = m1  <[i:=x]>m2.
Proof.
  intro. rewrite !insert_union_singleton_l, !(associative ()).
  rewrite (map_union_commutative m1); [done |].
  by apply map_disjoint_singleton_r.
Qed.

Lemma insert_list_union {A} (m : M A) l :
  insert_list l m = map_of_list l  m.
Proof.
  induction l; simpl.
  * by rewrite (left_id _ _).
  * by rewrite IHl, insert_union_l.
Qed.

Lemma delete_union {A} (m1 m2 : M A) i :
  delete i (m1  m2) = delete i m1  delete i m2.
Proof. apply delete_union_with. Qed.

(** ** Properties of the [union_list] operation *)
Lemma map_disjoint_union_list_l {A} (ms : list (M A)) (m : M A) :
   ms  m  Forall ( m) ms.
Proof.
  split.
  * induction ms; simpl; rewrite ?map_disjoint_union_l; intuition.
  * induction 1; simpl.
    + apply map_disjoint_empty_l.
    + by rewrite map_disjoint_union_l.
Qed.
Lemma map_disjoint_union_list_r {A} (ms : list (M A)) (m : M A) :
  m   ms  Forall ( m) ms.
Proof. by rewrite (symmetry_iff ()), map_disjoint_union_list_l. Qed.

Lemma map_disjoint_union_list_l_2 {A} (ms : list (M A)) (m : M A) :
  Forall ( m) ms   ms  m.
Proof. by rewrite map_disjoint_union_list_l. Qed.
Lemma map_disjoint_union_list_r_2 {A} (ms : list (M A)) (m : M A) :
  Forall ( m) ms  m   ms.
Proof. by rewrite map_disjoint_union_list_r. Qed.

Lemma map_union_sublist {A} (ms1 ms2 : list (M A)) :
  list_disjoint ms2 
  sublist ms1 ms2 
   ms1   ms2.
Proof.
  intros Hms2. revert ms1.
  induction Hms2 as [|m2 ms2]; intros ms1; [by inversion 1|].
  rewrite sublist_cons_r. intros [?|(ms1' &?&?)]; subst; simpl.
  * transitivity ( ms2); auto. by apply map_union_subseteq_r.
  * apply map_union_preserving_l; auto.
Qed.

(** ** Properties of the [intersection] operation *)
Lemma lookup_intersection_Some {A} (m1 m2 : M A) i x :
  (m1  m2) !! i = Some x  m1 !! i = Some x  is_Some (m2 !! i).
Proof.
  unfold intersection, map_intersection,
    intersection_with, map_intersection_with.
  rewrite (lookup_merge _).
  rewrite is_Some_alt.
  destruct (m1 !! i), (m2 !! i); compute; naive_solver.
Qed.

(** ** Properties of the [delete_list] function *)
Lemma lookup_delete_list {A} (m : M A) is j :
  j  is  delete_list is m !! j = None.
Proof.
  induction 1 as [|i j is]; simpl.
  * by rewrite lookup_delete.
  * destruct (decide (i = j)).
    + subst. by rewrite lookup_delete.
    + rewrite lookup_delete_ne; auto.
Qed.
Lemma lookup_delete_list_not_elem_of {A} (m : M A) is j :
  j  is  delete_list is m !! j = m !! j.
Proof.
  induction is; simpl; [done |].
  rewrite elem_of_cons. intros.
  intros. rewrite lookup_delete_ne; intuition.
Qed.
Lemma delete_list_notin {A} (m : M A) is :
  Forall (λ i, m !! i = None) is  delete_list is m = m.
Proof.
  induction 1; simpl; [done |].
  rewrite delete_notin; congruence.
Qed.

Lemma delete_list_insert_ne {A} (m : M A) is j x :
  j  is  delete_list is (<[j:=x]>m) = <[j:=x]>(delete_list is m).
Proof.
  induction is; simpl; [done |].
  rewrite elem_of_cons. intros.
  rewrite IHis, delete_insert_ne; intuition.
Qed.

Lemma map_disjoint_delete_list_l {A} (m1 m2 : M A) is :
  m1  m2  delete_list is m1  m2.
Proof. induction is; simpl; auto using map_disjoint_delete_l. Qed.
Lemma map_disjoint_delete_list_r {A} (m1 m2 : M A) is :
  m1  m2  m1  delete_list is m2.
Proof. induction is; simpl; auto using map_disjoint_delete_r. Qed.

Lemma delete_list_union {A} (m1 m2 : M A) is :
  delete_list is (m1  m2) = delete_list is m1  delete_list is m2.
Proof. apply delete_list_union_with. Qed.

(** ** Properties on disjointness of conversion to lists *)
Lemma map_disjoint_of_list_l {A} (m : M A) ixs :
  map_of_list ixs  m  Forall (λ ix, m !! fst ix = None) ixs.
Proof.
  split.
  * induction ixs; simpl; rewrite ?map_disjoint_insert_l in *; intuition.
  * induction 1; simpl.
    + apply map_disjoint_empty_l.
    + rewrite map_disjoint_insert_l. auto.
Qed.
Lemma map_disjoint_of_list_r {A} (m : M A) ixs :
  m  map_of_list ixs  Forall (λ ix, m !! fst ix = None) ixs.
Proof. by rewrite (symmetry_iff ()), map_disjoint_of_list_l. Qed.

Lemma map_disjoint_of_list_zip_l {A} (m : M A) is xs :
  same_length is xs 
  map_of_list (zip is xs)  m  Forall (λ i, m !! i = None) is.
Proof.
  intro. rewrite map_disjoint_of_list_l.
  rewrite <-(zip_fst is xs) at 2 by done.
  by rewrite Forall_fmap.
Qed.
Lemma map_disjoint_of_list_zip_r {A} (m : M A) is xs :
  same_length is xs 
  m  map_of_list (zip is xs)  Forall (λ i, m !! i = None) is.
Proof.
  intro. by rewrite (symmetry_iff ()), map_disjoint_of_list_zip_l.
Qed.
Lemma map_disjoint_of_list_zip_l_2 {A} (m : M A) is xs :
  same_length is xs 
  Forall (λ i, m !! i = None) is 
  map_of_list (zip is xs)  m.
Proof. intro. by rewrite map_disjoint_of_list_zip_l. Qed.
Lemma map_disjoint_of_list_zip_r_2 {A} (m : M A) is xs :
  same_length is xs 
  Forall (λ i, m !! i = None) is 
  m  map_of_list (zip is xs).
Proof. intro. by rewrite map_disjoint_of_list_zip_r. Qed.

(** ** Properties with respect to vectors *)
Lemma union_delete_vec {A n} (ms : vec (M A) n) (i : fin n) :
  list_disjoint ms 
  ms !!! i   delete (fin_to_nat i) (vec_to_list ms) =  ms.
Proof.
  induction ms as [|m ? ms]; inversion_clear 1;
    inv_fin i; simpl; [done | intros i].
  rewrite (map_union_commutative m), (associative_eq _ _), IHms.
  * by rewrite map_union_commutative.
  * done.
  * apply map_disjoint_weaken_r with ( ms); [done |].
    apply map_union_sublist; auto using sublist_delete.
Qed.

Lemma union_insert_vec {A n} (ms : vec (M A) n) (i : fin n) m :
  m   delete (fin_to_nat i) (vec_to_list ms) 
   vinsert i m ms = m   delete (fin_to_nat i) (vec_to_list ms).
Proof.
  induction ms as [|m' ? ms IH];
    inv_fin i; simpl; [done | intros i Hdisjoint].
  rewrite map_disjoint_union_r in Hdisjoint.
  rewrite IH, !(associative_eq ()), (map_union_commutative m); intuition.
Qed.

(** ** Properties of the [difference_with] operation *)
Section difference_with.
Context {A} (f : A  A  option A).

Lemma lookup_difference_with m1 m2 i z :
  difference_with f m1 m2 !! i = z 
    (m1 !! i = None  z = None) 
    ( x, m1 !! i = Some x  m2 !! i = None  z = Some x) 
    ( x y, m1 !! i = Some x  m2 !! i = Some y  z = f x y).
Proof.
  unfold difference_with, map_difference_with. rewrite (lookup_merge _).
  destruct (m1 !! i), (m2 !! i); compute; naive_solver.
Qed.
Lemma lookup_difference_with_Some m1 m2 i z :
  difference_with f m1 m2 !! i = Some z 
    (m1 !! i = Some z  m2 !! i = None) 
    ( x y, m1 !! i = Some x  m2 !! i = Some y  f x y = Some z).
Proof. rewrite lookup_difference_with. naive_solver. Qed.
Lemma lookup_difference_with_None m1 m2 i :
  difference_with f m1 m2 !! i = None 
    (m1 !! i = None) 
    ( x y, m1 !! i = Some x  m2 !! i = Some y  f x y = None).
Proof. rewrite lookup_difference_with. naive_solver. Qed.

Lemma lookup_difference_with_Some_lr m1 m2 i x y z :
  m1 !! i = Some x 
  m2 !! i = Some y 
  f x y = Some z 
  difference_with f m1 m2 !! i = Some z.
Proof. rewrite lookup_difference_with. naive_solver. Qed.
Lemma lookup_difference_with_None_lr m1 m2 i x y :
  m1 !! i = Some x 
  m2 !! i = Some y 
  f x y = None 
  difference_with f m1 m2 !! i = None.
Proof. rewrite lookup_difference_with. naive_solver. Qed.
Lemma lookup_difference_with_Some_l m1 m2 i x :
  m1 !! i = Some x 
  m2 !! i = None 
  difference_with f m1 m2 !! i = Some x.
Proof. rewrite lookup_difference_with. naive_solver. Qed.
End difference_with.

(** ** Properties of the [difference] operation *)
Lemma lookup_difference_Some {A} (m1 m2 : M A) i x :
  (m1  m2) !! i = Some x  m1 !! i = Some x  m2 !! i = None.
Proof.
  unfold difference, map_difference, difference_with, map_difference_with.
  rewrite (lookup_merge _).
  destruct (m1 !! i), (m2 !! i); compute; intuition congruence.
Qed.

Lemma map_disjoint_difference_l {A} (m1 m2 : M A) :
  m1  m2 
  m2  m1  m1.
Proof.
  intros E i. specialize (E i).
  unfold difference, map_difference. intros x1 x2.
  rewrite lookup_difference_with_Some. intros [?| (?&?&?&?&?)] ?.
  * specialize (E x2). intuition congruence.
  * done.
Qed.
Lemma map_disjoint_difference_r {A} (m1 m2 : M A) :
  m1  m2 
  m1  m2  m1.
Proof. intros. symmetry. by apply map_disjoint_difference_l. Qed.

Lemma map_difference_union {A} (m1 m2 : M A) :
  m1  m2  m1  m2  m1 = m2.
Proof.
  intro Hm1m2. apply map_eq. intros i.
  apply option_eq. intros v. specialize (Hm1m2 i).
  unfold difference, map_difference,
    difference_with, map_difference_with.
  rewrite lookup_union_Some_raw, (lookup_merge _).
  destruct (m1 !! i) as [v'|], (m2 !! i);
    try specialize (Hm1m2 v'); compute; intuition congruence.
Qed.
End theorems.

(** * Tactics *)
(** The tactic [decompose_map_disjoint] simplifies occurrences of [disjoint]
in the hypotheses that involve the empty map [∅], the union [(∪)] or insert
[<[_:=_]>] operation, the singleton [{[ _ ]}] map, and disjointness of lists of
maps. This tactic does not yield any information loss as all simplifications
performed are reversible. *)
Ltac decompose_map_disjoint := repeat
  match goal with
  | H : _  _  _ |- _ =>
    apply map_disjoint_union_l in H; destruct H
  | H : _  _  _ |- _ =>
    apply map_disjoint_union_r in H; destruct H
  | H : {[ _ ]}  _ |- _ => apply map_disjoint_singleton_l in H
  | H : _  {[ _ ]} |- _ =>  apply map_disjoint_singleton_r in H
  | H : <[_:=_]>_  _ |- _ =>
    apply map_disjoint_insert_l in H; destruct H
  | H : _  <[_:=_]>_ |- _ =>
    apply map_disjoint_insert_r in H; destruct H
  | H :  _  _ |- _ => apply map_disjoint_union_list_l in H
  | H : _   _ |- _ => apply map_disjoint_union_list_r in H
  | H :   _ |- _ => clear H
  | H : _   |- _ => clear H
  | H : list_disjoint [] |- _ => clear H
  | H : list_disjoint [_] |- _ => clear H
  | H : list_disjoint (_ :: _) |- _ =>
    apply list_disjoint_cons_inv in H; destruct H
  | H : Forall ( _) _ |- _ => rewrite Forall_vlookup in H
  | H : Forall ( _) [] |- _ => clear H
  | H : Forall ( _) (_ :: _) |- _ =>
    rewrite Forall_cons in H; destruct H
  | H : Forall ( _) (_ :: _) |- _ =>
    rewrite Forall_app in H; destruct H
  end.

(** To prove a disjointness property, we first decompose all hypotheses, and
then use an auto database to prove the required property. *)
Create HintDb map_disjoint.
Ltac solve_map_disjoint :=
  solve [decompose_map_disjoint; auto with map_disjoint].

(** We declare these hints using [Hint Extern] instead of [Hint Resolve] as
[eauto] works badly with hints parametrized by type class constraints. *)
Hint Extern 1 (_  _) => done : map_disjoint.
Hint Extern 2 (  _) => apply map_disjoint_empty_l : map_disjoint.
Hint Extern 2 (_  ) => apply map_disjoint_empty_r : map_disjoint.
Hint Extern 2 ({[ _ ]}  _) =>
  apply map_disjoint_singleton_l_2 : map_disjoint.
Hint Extern 2 (_  {[ _ ]}) =>
  apply map_disjoint_singleton_r_2 : map_disjoint.
Hint Extern 2 (list_disjoint []) => apply disjoint_nil : map_disjoint.
Hint Extern 2 (list_disjoint (_ :: _)) => apply disjoint_cons : map_disjoint.
Hint Extern 2 (_  _  _) => apply map_disjoint_union_l_2 : map_disjoint.
Hint Extern 2 (_  _  _) => apply map_disjoint_union_r_2 : map_disjoint.
Hint Extern 2 (<[_:=_]>_  _) => apply map_disjoint_insert_l_2 : map_disjoint.
Hint Extern 2 (_  <[_:=_]>_) => apply map_disjoint_insert_r_2 : map_disjoint.
Hint Extern 2 (delete _ _  _) => apply map_disjoint_delete_l : map_disjoint.
Hint Extern 2 (_  delete _ _) => apply map_disjoint_delete_r : map_disjoint.
Hint Extern 2 (map_of_list _  _) =>
  apply map_disjoint_of_list_zip_l_2 : mem_disjoint.
Hint Extern 2 (_  map_of_list _) =>
  apply map_disjoint_of_list_zip_r_2 : mem_disjoint.
Hint Extern 2 ( _  _) => apply map_disjoint_union_list_l_2 : mem_disjoint.
Hint Extern 2 (_   _) => apply map_disjoint_union_list_r_2 : mem_disjoint.
Hint Extern 2 (delete_list _ _  _) =>
  apply map_disjoint_delete_list_l : map_disjoint.
Hint Extern 2 (_  delete_list _ _) =>
  apply map_disjoint_delete_list_r : map_disjoint.

(** The tactic [simpl_map by tac] simplifies occurrences of finite map look 
ups. It uses [tac] to discharge generated inequalities. Look ups in unions do
not have nice equational properties, hence it invokes [tac] to prove that such
look ups yield [Some]. *)
1539
Tactic Notation "simpl_map" "by" tactic3(tac) := repeat
1540
1541
1542
  match goal with
  | H : context[  !! _ ] |- _ => rewrite lookup_empty in H
  | H : context[ (<[_:=_]>_) !! _ ] |- _ => rewrite lookup_insert in H
1543
1544
  | H : context[ (<[_:=_]>_) !! _ ] |- _ =>
   rewrite lookup_insert_ne in H by tac
1545
  | H : context[ (delete _ _) !! _] |- _ => rewrite lookup_delete in H
1546
1547
  | H : context[ (delete _ _) !! _] |- _ =>
    rewrite lookup_delete_ne in H by tac
1548
  | H : context[ {[ _ ]} !! _ ] |- _ => rewrite lookup_singleton in H
1549
1550
1551
1552
1553
1554
1555
1556
  | H : context[ {[ _ ]} !! _ ] |- _ =>
    rewrite lookup_singleton_ne in H by tac
  | H : context[ lookup (A:=?A) ?i (?m1  ?m2) ] |- _ =>
    let x := fresh in evar (x:A);
    let x' := eval unfold x in x in clear x;
    let E := fresh in
    assert ((m1  m2) !! i = Some x') as E by (clear H; by tac);
    rewrite E in H; clear E
1557
1558
  |