option.v 13.1 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2014, Robbert Krebbers. *)
2
3
4
(* This file is distributed under the terms of the BSD license. *)
(** This file collects general purpose definitions and theorems on the option
data type that are not in the Coq standard library. *)
5
Require Export base tactics decidable.
6

7
8
9
10
Inductive option_reflect {A} (P : A  Prop) (Q : Prop) : option A  Type :=
  | ReflectSome x : P x  option_reflect P Q (Some x)
  | ReflectNone : Q  option_reflect P Q None.

11
12
(** * General definitions and theorems *)
(** Basic properties about equality. *)
13
Lemma None_ne_Some {A} (a : A) : None  Some a.
Robbert Krebbers's avatar
Robbert Krebbers committed
14
Proof. congruence. Qed.
15
Lemma Some_ne_None {A} (a : A) : Some a  None.
Robbert Krebbers's avatar
Robbert Krebbers committed
16
Proof. congruence. Qed.
17
Lemma eq_None_ne_Some {A} (x : option A) a : x = None  x  Some a.
Robbert Krebbers's avatar
Robbert Krebbers committed
18
Proof. congruence. Qed.
19
Instance Some_inj {A} : Injective (=) (=) (@Some A).
Robbert Krebbers's avatar
Robbert Krebbers committed
20
21
Proof. congruence. Qed.

22
(** The non dependent elimination principle on the option type. *)
23
24
Definition default {A B} (b : B) (x : option A) (f : A  B)  : B :=
  match x with None => b | Some a => f a end.
Robbert Krebbers's avatar
Robbert Krebbers committed
25

Robbert Krebbers's avatar
Robbert Krebbers committed
26
27
28
(** The [from_option] function allows us to get the value out of the option
type by specifying a default value. *)
Definition from_option {A} (a : A) (x : option A) : A :=
29
  match x with None => a | Some b => b end.
30

31
32
(** An alternative, but equivalent, definition of equality on the option
data type. This theorem is useful to prove that two options are the same. *)
33
34
Lemma option_eq {A} (x y : option A) : x = y   a, x = Some a  y = Some a.
Proof. split; [by intros; by subst |]. destruct x, y; naive_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
35
36
37
38
Lemma option_eq_1 {A} (x y : option A) a : x = y  x = Some a  y = Some a.
Proof. congruence. Qed.
Lemma option_eq_1_alt {A} (x y : option A) a : x = y  y = Some a  x = Some a.
Proof. congruence. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
39

40
41
42
43
44
45
46
Definition is_Some {A} (x : option A) :=  y, x = Some y.
Lemma mk_is_Some {A} (x : option A) y : x = Some y  is_Some x.
Proof. intros; red; subst; eauto. Qed.
Hint Resolve mk_is_Some.
Lemma is_Some_None {A} : ¬is_Some (@None A).
Proof. by destruct 1. Qed.
Hint Resolve is_Some_None.
Robbert Krebbers's avatar
Robbert Krebbers committed
47

48
49
Instance is_Some_pi {A} (x : option A) : ProofIrrel (is_Some x).
Proof.
50
51
52
53
54
55
56
  set (P (y : option A) := match y with Some _ => True | _ => False end).
  set (f x := match x return P x  is_Some x with
    Some _ => λ _, ex_intro _ _ eq_refl | None => False_rect _ end).
  set (g x (H : is_Some x) :=
    match H return P x with ex_intro _ p => eq_rect _ _ I _ (eq_sym p) end).
  assert ( x H, f x (g x H) = H) as f_g by (by intros ? [??]; subst).
  intros p1 p2. rewrite <-(f_g _ p1), <-(f_g _ p2). by destruct x, p1.
57
Qed.
58
Instance is_Some_dec {A} (x : option A) : Decision (is_Some x) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
59
  match x with
60
61
  | Some x => left (ex_intro _ x eq_refl)
  | None => right is_Some_None
62
  end.
63
64
65
66

Definition is_Some_proj {A} {x : option A} : is_Some x  A :=
  match x with Some a => λ _, a | None => False_rect _  is_Some_None end.
Definition Some_dec {A} (x : option A) : { a | x = Some a } + { x = None } :=
Robbert Krebbers's avatar
Robbert Krebbers committed
67
68
69
70
  match x return { a | x = Some a } + { x = None } with
  | Some a => inleft (a  eq_refl _)
  | None => inright eq_refl
  end.
Robbert Krebbers's avatar
Robbert Krebbers committed
71

72
73
Lemma eq_None_not_Some {A} (x : option A) : x = None  ¬is_Some x.
Proof. destruct x; unfold is_Some; naive_solver. Qed.
74
Lemma not_eq_None_Some `(x : option A) : x  None  is_Some x.
Robbert Krebbers's avatar
Robbert Krebbers committed
75
Proof. rewrite eq_None_not_Some. split. apply dec_stable. tauto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
76

77
(** Equality on [option] is decidable. *)
78
79
80
81
Instance option_eq_None_dec {A} (x : option A) : Decision (x = None) :=
  match x with Some _ => right (Some_ne_None _) | None => left eq_refl end.
Instance option_None_eq_dec {A} (x : option A) : Decision (None = x) :=
  match x with Some _ => right (None_ne_Some _) | None => left eq_refl end.
82
Instance option_eq_dec `{dec :  x y : A, Decision (x = y)}
83
84
85
  (x y : option A) : Decision (x = y).
Proof.
 refine
86
  match x, y with
87
88
89
90
  | Some a, Some b => cast_if (decide (a = b))
  | None, None => left _ | _, _ => right _
  end; abstract congruence.
Defined.
Robbert Krebbers's avatar
Robbert Krebbers committed
91

92
(** * Monadic operations *)
93
94
Instance option_ret: MRet option := @Some.
Instance option_bind: MBind option := λ A B f x,
95
  match x with Some a => f a | None => None end.
96
Instance option_join: MJoin option := λ A x,
97
  match x with Some x => x | None => None end.
98
99
Instance option_fmap: FMap option := @option_map.
Instance option_guard: MGuard option := λ P dec A x,
100
  match dec with left H => x H | _ => None end.
Robbert Krebbers's avatar
Robbert Krebbers committed
101

102
103
104
Lemma fmap_is_Some {A B} (f : A  B) x : is_Some (f <$> x)  is_Some x.
Proof. unfold is_Some; destruct x; naive_solver. Qed.
Lemma fmap_Some {A B} (f : A  B) x y :
105
  f <$> x = Some y   x', x = Some x'  y = f x'.
106
107
108
Proof. destruct x; naive_solver. Qed.
Lemma fmap_None {A B} (f : A  B) x : f <$> x = None  x = None.
Proof. by destruct x. Qed.
109
Lemma option_fmap_id {A} (x : option A) : id <$> x = x.
110
Proof. by destruct x. Qed.
111
112
113
Lemma option_fmap_compose {A B} (f : A  B) {C} (g : B  C) x :
  g  f <$> x = g <$> f <$> x.
Proof. by destruct x. Qed.
114
115
116
Lemma option_fmap_bind {A B C} (f : A  B) (g : B  option C) x :
  (f <$> x) = g = x = g  f.
Proof. by destruct x. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
117
Lemma option_bind_assoc {A B C} (f : A  option B)
118
  (g : B  option C) (x : option A) : (x = f) = g = x = (mbind g  f).
Robbert Krebbers's avatar
Robbert Krebbers committed
119
Proof. by destruct x; simpl. Qed.
120
Lemma option_bind_ext {A B} (f g : A  option B) x y :
121
  ( a, f a = g a)  x = y  x = f = y = g.
122
Proof. intros. destruct x, y; simplify_equality; csimpl; auto. Qed.
123
Lemma option_bind_ext_fun {A B} (f g : A  option B) x :
124
  ( a, f a = g a)  x = f = x = g.
125
Proof. intros. by apply option_bind_ext. Qed.
126
127
128
129
130
131
Lemma bind_Some {A B} (f : A  option B) (x : option A) b :
  x = f = Some b   a, x = Some a  f a = Some b.
Proof. split. by destruct x as [a|]; [exists a|]. by intros (?&->&?). Qed.
Lemma bind_None {A B} (f : A  option B) (x : option A) :
  x = f = None  x = None   a, x = Some a  f a = None.
Proof.
132
133
  split; [|by intros [->|(?&->&?)]].
  destruct x; intros; simplify_equality'; eauto.
134
Qed.
135
136
Lemma bind_with_Some {A} (x : option A) : x = Some = x.
Proof. by destruct x. Qed.
137

138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
(** ** Inverses of constructors *)
(** We can do this in a fancy way using dependent types, but rewrite does
not particularly like type level reductions. *)
Class Maybe {A B : Type} (c : A  B) :=
  maybe : B  option A.
Arguments maybe {_ _} _ {_} !_ /.
Class Maybe2 {A1 A2 B : Type} (c : A1  A2  B) :=
  maybe2 : B  option (A1 * A2).
Arguments maybe2 {_ _ _} _ {_} !_ /.
Class Maybe3 {A1 A2 A3 B : Type} (c : A1  A2  A3  B) :=
  maybe3 : B  option (A1 * A2 * A3).
Arguments maybe3 {_ _ _ _} _ {_} !_ /.
Class Maybe4 {A1 A2 A3 A4 B : Type} (c : A1  A2  A3  A4  B) :=
  maybe4 : B  option (A1 * A2 * A3 * A4).
Arguments maybe4 {_ _ _ _ _} _ {_} !_ /.

Instance maybe_comp `{Maybe B C c1, Maybe A B c2} : Maybe (c1  c2) := λ x,
  maybe c1 x = maybe c2.
Arguments maybe_comp _ _ _ _ _ _ _ !_ /.

Instance maybe_inl {A B} : Maybe (@inl A B) := λ xy,
  match xy with inl x => Some x | _ => None end.
Instance maybe_inr {A B} : Maybe (@inr A B) := λ xy,
  match xy with inr y => Some y | _ => None end.

163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
(** * Union, intersection and difference *)
Instance option_union_with {A} : UnionWith A (option A) := λ f x y,
  match x, y with
  | Some a, Some b => f a b
  | Some a, None => Some a
  | None, Some b => Some b
  | None, None => None
  end.
Instance option_intersection_with {A} : IntersectionWith A (option A) :=
  λ f x y, match x, y with Some a, Some b => f a b | _, _ => None end.
Instance option_difference_with {A} : DifferenceWith A (option A) := λ f x y,
  match x, y with
  | Some a, Some b => f a b
  | Some a, None => Some a
  | None, _ => None
  end.
Instance option_union {A} : Union (option A) := union_with (λ x _, Some x).
Lemma option_union_Some {A} (x y : option A) z :
  x  y = Some z  x = Some z  y = Some z.
Proof. destruct x, y; intros; simplify_equality; auto. Qed.

Section option_union_intersection_difference.
  Context {A} (f : A  A  option A).
  Global Instance: LeftId (=) None (union_with f).
  Proof. by intros [?|]. Qed.
  Global Instance: RightId (=) None (union_with f).
  Proof. by intros [?|]. Qed.
  Global Instance: Commutative (=) f  Commutative (=) (union_with f).
  Proof. by intros ? [?|] [?|]; compute; rewrite 1?(commutative f). Qed.
  Global Instance: LeftAbsorb (=) None (intersection_with f).
  Proof. by intros [?|]. Qed.
  Global Instance: RightAbsorb (=) None (intersection_with f).
  Proof. by intros [?|]. Qed.
  Global Instance: Commutative (=) f  Commutative (=) (intersection_with f).
  Proof. by intros ? [?|] [?|]; compute; rewrite 1?(commutative f). Qed.
  Global Instance: RightId (=) None (difference_with f).
  Proof. by intros [?|]. Qed.
End option_union_intersection_difference.

(** * Tactics *)
203
204
205
206
207
208
209
210
211
212
213
Tactic Notation "case_option_guard" "as" ident(Hx) :=
  match goal with
  | H : context C [@mguard option _ ?P ?dec _ ?x] |- _ =>
    let X := context C [ match dec with left H => x H | _ => None end ] in
    change X in H; destruct_decide dec as Hx
  | |- context C [@mguard option _ ?P ?dec _ ?x] =>
    let X := context C [ match dec with left H => x H | _ => None end ] in
    change X; destruct_decide dec as Hx
  end.
Tactic Notation "case_option_guard" :=
  let H := fresh in case_option_guard as H.
Robbert Krebbers's avatar
Robbert Krebbers committed
214

Robbert Krebbers's avatar
Robbert Krebbers committed
215
Lemma option_guard_True {A} P `{Decision P} (x : option A) :
Robbert Krebbers's avatar
Robbert Krebbers committed
216
217
  P  guard P; x = x.
Proof. intros. by case_option_guard. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
218
Lemma option_guard_False {A} P `{Decision P} (x : option A) :
Robbert Krebbers's avatar
Robbert Krebbers committed
219
220
  ¬P  guard P; x = None.
Proof. intros. by case_option_guard. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
221
222
223
Lemma option_guard_iff {A} P Q `{Decision P, Decision Q} (x : option A) :
  (P  Q)  guard P; x = guard Q; x.
Proof. intros [??]. repeat case_option_guard; intuition. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
224

Robbert Krebbers's avatar
Robbert Krebbers committed
225
Tactic Notation "simpl_option_monad" "by" tactic3(tac) :=
226
227
228
229
230
  let assert_Some_None A o H := first
    [ let x := fresh in evar (x:A); let x' := eval unfold x in x in clear x;
      assert (o = Some x') as H by tac
    | assert (o = None) as H by tac ]
  in repeat match goal with
231
232
233
  | H : appcontext [@mret _ _ ?A] |- _ =>
     change (@mret _ _ A) with (@Some A) in H
  | |- appcontext [@mret _ _ ?A] => change (@mret _ _ A) with (@Some A)
Robbert Krebbers's avatar
Robbert Krebbers committed
234
  | H : context [mbind (M:=option) (A:=?A) ?f ?o] |- _ =>
235
    let Hx := fresh in assert_Some_None A o Hx; rewrite Hx in H; clear Hx
Robbert Krebbers's avatar
Robbert Krebbers committed
236
  | H : context [fmap (M:=option) (A:=?A) ?f ?o] |- _ =>
237
238
239
    let Hx := fresh in assert_Some_None A o Hx; rewrite Hx in H; clear Hx
  | H : context [default (A:=?A) _ ?o _] |- _ =>
    let Hx := fresh in assert_Some_None A o Hx; rewrite Hx in H; clear Hx
Robbert Krebbers's avatar
Robbert Krebbers committed
240
241
242
  | H : context [ match ?o with _ => _ end ] |- _ =>
    match type of o with
    | option ?A =>
243
      let Hx := fresh in assert_Some_None A o Hx; rewrite Hx in H; clear Hx
Robbert Krebbers's avatar
Robbert Krebbers committed
244
245
    end
  | |- context [mbind (M:=option) (A:=?A) ?f ?o] =>
246
    let Hx := fresh in assert_Some_None A o Hx; rewrite Hx; clear Hx
Robbert Krebbers's avatar
Robbert Krebbers committed
247
  | |- context [fmap (M:=option) (A:=?A) ?f ?o] =>
248
249
250
251
252
    let Hx := fresh in assert_Some_None A o Hx; rewrite Hx; clear Hx
  | |- context [default (A:=?A) _ ?o _] =>
    let Hx := fresh in assert_Some_None A o Hx; rewrite Hx; clear Hx
  | |- context [from_option (A:=?A) _ ?o] =>
    let Hx := fresh in assert_Some_None A o Hx; rewrite Hx; clear Hx
Robbert Krebbers's avatar
Robbert Krebbers committed
253
254
255
  | |- context [ match ?o with _ => _ end ] =>
    match type of o with
    | option ?A =>
256
      let Hx := fresh in assert_Some_None A o Hx; rewrite Hx; clear Hx
Robbert Krebbers's avatar
Robbert Krebbers committed
257
    end
258
259
260
261
  | _ => rewrite decide_True by tac
  | _ => rewrite decide_False by tac
  | _ => rewrite option_guard_True by tac
  | _ => rewrite option_guard_False by tac
Robbert Krebbers's avatar
Robbert Krebbers committed
262
263
  end.
Tactic Notation "simplify_option_equality" "by" tactic3(tac) :=
264
  repeat match goal with
Robbert Krebbers's avatar
Robbert Krebbers committed
265
266
  | _ => progress simplify_equality'
  | _ => progress simpl_option_monad by tac
267
268
269
270
  | _ : maybe _ ?x = Some _ |- _ => is_var x; destruct x
  | _ : maybe2 _ ?x = Some _ |- _ => is_var x; destruct x
  | _ : maybe3 _ ?x = Some _ |- _ => is_var x; destruct x
  | _ : maybe4 _ ?x = Some _ |- _ => is_var x; destruct x
271
  | H : _  _ = Some _ |- _ => apply option_union_Some in H; destruct H
272
  | H : mbind (M:=option) ?f ?o = ?x |- _ =>
Robbert Krebbers's avatar
Robbert Krebbers committed
273
274
    match o with Some _ => fail 1 | None => fail 1 | _ => idtac end;
    match x with Some _ => idtac | None => idtac | _ => fail 1 end;
275
276
277
    let y := fresh in destruct o as [y|] eqn:?;
      [change (f y = x) in H|change (None = x) in H]
  | H : ?x = mbind (M:=option) ?f ?o |- _ =>
Robbert Krebbers's avatar
Robbert Krebbers committed
278
279
    match o with Some _ => fail 1 | None => fail 1 | _ => idtac end;
    match x with Some _ => idtac | None => idtac | _ => fail 1 end;
280
281
    let y := fresh in destruct o as [y|] eqn:?;
      [change (x = f y) in H|change (x = None) in H]
282
  | H : fmap (M:=option) ?f ?o = ?x |- _ =>
Robbert Krebbers's avatar
Robbert Krebbers committed
283
284
    match o with Some _ => fail 1 | None => fail 1 | _ => idtac end;
    match x with Some _ => idtac | None => idtac | _ => fail 1 end;
285
286
287
    let y := fresh in destruct o as [y|] eqn:?;
      [change (Some (f y) = x) in H|change (None = x) in H]
  | H : ?x = fmap (M:=option) ?f ?o |- _ =>
Robbert Krebbers's avatar
Robbert Krebbers committed
288
289
    match o with Some _ => fail 1 | None => fail 1 | _ => idtac end;
    match x with Some _ => idtac | None => idtac | _ => fail 1 end;
290
291
    let y := fresh in destruct o as [y|] eqn:?;
      [change (x = Some (f y)) in H|change (x = None) in H]
292
  | _ => progress case_decide
293
  | _ => progress case_option_guard
294
  end.
295
Tactic Notation "simplify_option_equality" := simplify_option_equality by eauto.