numbers.v 13.5 KB
Newer Older
1
(* Copyright (c) 2012-2013, Robbert Krebbers. *)
2
(* This file is distributed under the terms of the BSD license. *)
3 4 5
(** This file collects some trivial facts on the Coq types [nat] and [N] for
natural numbers, and the type [Z] for integers. It also declares some useful
notations. *)
6
Require Export Eqdep PArith NArith ZArith.
7
Require Import Qcanon.
8
Require Export base decidable.
9
Open Scope nat_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
10

11 12
Coercion Z.of_nat : nat >-> Z.

13
(** * Notations and properties of [nat] *)
14 15 16 17 18
Reserved Notation "x ≤ y ≤ z" (at level 70, y at next level).
Reserved Notation "x ≤ y < z" (at level 70, y at next level).
Reserved Notation "x < y < z" (at level 70, y at next level).
Reserved Notation "x < y ≤ z" (at level 70, y at next level).

19
Infix "≤" := le : nat_scope.
20 21 22 23 24 25 26 27 28 29
Notation "x ≤ y ≤ z" := (x  y  y  z)%nat : nat_scope.
Notation "x ≤ y < z" := (x  y  y < z)%nat : nat_scope.
Notation "x < y < z" := (x < y  y < z)%nat : nat_scope.
Notation "x < y ≤ z" := (x < y  y  z)%nat : nat_scope.
Notation "(≤)" := le (only parsing) : nat_scope.
Notation "(<)" := lt (only parsing) : nat_scope.

Infix "`div`" := NPeano.div (at level 35) : nat_scope.
Infix "`mod`" := NPeano.modulo (at level 35) : nat_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
30
Instance nat_eq_dec:  x y : nat, Decision (x = y) := eq_nat_dec.
31 32
Instance nat_le_dec:  x y : nat, Decision (x  y) := le_dec.
Instance nat_lt_dec:  x y : nat, Decision (x < y) := lt_dec.
33
Instance nat_inhabited: Inhabited nat := populate 0%nat.
34

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
Instance nat_le_pi:  x y : nat, ProofIrrel (x  y).
Proof.
  assert ( x y (p : x  y) y' (q : x  y'),
    y = y'  eq_dep nat (le x) y p y' q) as aux.
  { fix 3. intros x ? [|y p] ? [|y' q].
    * done.
    * clear nat_le_pi. omega.
    * clear nat_le_pi. omega.
    * injection 1. intros Hy. by case (nat_le_pi x y p y' q Hy). }
  intros x y p q.
  by apply (eq_dep_eq_dec (λ x y, decide (x = y))), aux.
Qed.
Instance nat_lt_pi:  x y : nat, ProofIrrel (x < y).
Proof. apply _. Qed.

50 51 52 53 54
Lemma lt_n_SS n : n < S (S n).
Proof. auto with arith. Qed.
Lemma lt_n_SSS n : n < S (S (S n)).
Proof. auto with arith. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
55 56 57 58 59 60 61 62
Definition sum_list_with {A} (f : A  nat) : list A  nat :=
  fix go l :=
  match l with
  | [] => 0
  | x :: l => f x + go l
  end.
Notation sum_list := (sum_list_with id).

63 64 65 66 67 68 69 70
Lemma mult_split_eq n x1 x2 y1 y2 :
  x2 < n  y2 < n  x1 * n + x2 = y1 * n + y2  x1 = y1  x2 = y2.
Proof.
  intros Hx2 Hy2 E.
  cut (x1 = y1); [intros; subst;lia |].
  revert y1 E. induction x1; simpl; intros [|?]; simpl; auto with lia.
Qed.

71 72 73
(** * Notations and properties of [positive] *)
Open Scope positive_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
74
Instance positive_eq_dec:  x y : positive, Decision (x = y) := Pos.eq_dec.
75
Instance positive_inhabited: Inhabited positive := populate 1.
76

Robbert Krebbers's avatar
Robbert Krebbers committed
77 78 79
Notation "(~0)" := xO (only parsing) : positive_scope.
Notation "(~1)" := xI (only parsing) : positive_scope.

80
Instance: Injective (=) (=) (~0).
Robbert Krebbers's avatar
Robbert Krebbers committed
81
Proof. by injection 1. Qed.
82
Instance: Injective (=) (=) (~1).
Robbert Krebbers's avatar
Robbert Krebbers committed
83 84
Proof. by injection 1. Qed.

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
(** Since [positive] represents lists of bits, we define list operations
on it. These operations are in reverse, as positives are treated as snoc
lists instead of cons lists. *)
Fixpoint Papp (p1 p2 : positive) : positive :=
  match p2 with
  | 1 => p1
  | p2~0 => (Papp p1 p2)~0
  | p2~1 => (Papp p1 p2)~1
  end.
Infix "++" := Papp : positive_scope.
Notation "(++)" := Papp (only parsing) : positive_scope.
Notation "( p ++)" := (Papp p) (only parsing) : positive_scope.
Notation "(++ q )" := (λ p, Papp p q) (only parsing) : positive_scope.

Fixpoint Preverse_go (p1 p2 : positive) : positive :=
  match p2 with
  | 1 => p1
  | p2~0 => Preverse_go (p1~0) p2
  | p2~1 => Preverse_go (p1~1) p2
  end.
Definition Preverse : positive  positive := Preverse_go 1.

Global Instance: LeftId (=) 1 (++).
Proof. intros p. induction p; simpl; intros; f_equal; auto. Qed.
Global Instance: RightId (=) 1 (++).
Proof. done. Qed.
Global Instance: Associative (=) (++).
Proof. intros ?? p. induction p; simpl; intros; f_equal; auto. Qed.
Global Instance:  p : positive, Injective (=) (=) (++ p).
Proof. intros p ???. induction p; simplify_equality; auto. Qed.

Lemma Preverse_go_app_cont p1 p2 p3 :
  Preverse_go (p2 ++ p1) p3 = p2 ++ Preverse_go p1 p3.
Proof.
  revert p1. induction p3; simpl; intros.
  * apply (IHp3 (_~1)).
  * apply (IHp3 (_~0)).
  * done.
Qed.
Lemma Preverse_go_app p1 p2 p3 :
  Preverse_go p1 (p2 ++ p3) = Preverse_go p1 p3 ++ Preverse_go 1 p2.
Proof.
  revert p1. induction p3; intros p1; simpl; auto.
  by rewrite <-Preverse_go_app_cont.
Qed.
Lemma Preverse_app p1 p2 :
  Preverse (p1 ++ p2) = Preverse p2 ++ Preverse p1.
Proof. unfold Preverse. by rewrite Preverse_go_app. Qed.

Lemma Preverse_xO p : Preverse (p~0) = (1~0) ++ Preverse p.
Proof Preverse_app p (1~0).
Lemma Preverse_xI p : Preverse (p~1) = (1~1) ++ Preverse p.
Proof Preverse_app p (1~1).

Fixpoint Plength (p : positive) : nat :=
  match p with
  | 1 => 0%nat
  | p~0 | p~1 => S (Plength p)
  end.
Lemma Papp_length p1 p2 :
  Plength (p1 ++ p2) = (Plength p2 + Plength p1)%nat.
Proof. induction p2; simpl; f_equal; auto. Qed.

Close Scope positive_scope.

(** * Notations and properties of [N] *)
Robbert Krebbers's avatar
Robbert Krebbers committed
151
Infix "≤" := N.le : N_scope.
152 153 154 155
Notation "x ≤ y ≤ z" := (x  y  y  z)%N : N_scope.
Notation "x ≤ y < z" := (x  y  y < z)%N : N_scope.
Notation "x < y < z" := (x < y  y < z)%N : N_scope.
Notation "x < y ≤ z" := (x < y  y  z)%N : N_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
156
Notation "(≤)" := N.le (only parsing) : N_scope.
157
Notation "(<)" := N.lt (only parsing) : N_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
158

159 160 161
Infix "`div`" := N.div (at level 35) : N_scope.
Infix "`mod`" := N.modulo (at level 35) : N_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
162 163 164
Instance: Injective (=) (=) Npos.
Proof. by injection 1. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
165 166 167 168 169 170 171
Instance N_eq_dec:  x y : N, Decision (x = y) := N.eq_dec.
Program Instance N_le_dec (x y : N) : Decision (x  y)%N :=
  match Ncompare x y with
  | Gt => right _
  | _ => left _
  end.
Next Obligation. congruence. Qed.
172 173 174 175 176 177
Program Instance N_lt_dec (x y : N) : Decision (x < y)%N :=
  match Ncompare x y with
  | Lt => left _
  | _ => right _
  end.
Next Obligation. congruence. Qed.
178
Instance N_inhabited: Inhabited N := populate 1%N.
Robbert Krebbers's avatar
Robbert Krebbers committed
179

180
(** * Notations and properties of [Z] *)
Robbert Krebbers's avatar
Robbert Krebbers committed
181
Infix "≤" := Z.le : Z_scope.
182 183 184 185
Notation "x ≤ y ≤ z" := (x  y  y  z)%Z : Z_scope.
Notation "x ≤ y < z" := (x  y  y < z)%Z : Z_scope.
Notation "x < y < z" := (x < y  y < z)%Z : Z_scope.
Notation "x < y ≤ z" := (x < y  y  z)%Z : Z_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
186
Notation "(≤)" := Z.le (only parsing) : Z_scope.
187
Notation "(<)" := Z.lt (only parsing) : Z_scope.
188

Robbert Krebbers's avatar
Robbert Krebbers committed
189 190
Infix "`div`" := Z.div (at level 35) : Z_scope.
Infix "`mod`" := Z.modulo (at level 35) : Z_scope.
191 192
Infix "`quot`" := Z.quot (at level 35) : Z_scope.
Infix "`rem`" := Z.rem (at level 35) : Z_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
193

Robbert Krebbers's avatar
Robbert Krebbers committed
194 195
Instance Z_eq_dec:  x y : Z, Decision (x = y) := Z.eq_dec.
Instance Z_le_dec:  x y : Z, Decision (x  y)%Z := Z_le_dec.
196
Instance Z_lt_dec:  x y : Z, Decision (x < y)%Z := Z_lt_dec.
197
Instance Z_inhabited: Inhabited Z := populate 1%Z.
Robbert Krebbers's avatar
Robbert Krebbers committed
198

199 200 201 202 203 204 205 206 207 208 209 210
(* Note that we cannot disable simpl for [Z.of_nat] as that would break
[omega] and [lia]. *)
Arguments Z.to_nat _ : simpl never.
Arguments Z.mul _ _ : simpl never.
Arguments Z.add _ _ : simpl never.
Arguments Z.opp _ : simpl never.
Arguments Z.pow _ _ : simpl never.
Arguments Z.div _ _ : simpl never.
Arguments Z.modulo _ _ : simpl never.
Arguments Z.quot _ _ : simpl never.
Arguments Z.rem _ _ : simpl never.

211 212 213 214 215 216 217 218 219 220
Lemma Zmod_pos a b : (0 < b)%Z  (0  a `mod` b)%Z.
Proof. apply Z.mod_pos_bound. Qed.

Hint Resolve Z.lt_le_incl : zpos.
Hint Resolve Z.add_nonneg_pos Z.add_pos_nonneg Z.add_nonneg_nonneg : zpos.
Hint Resolve Z.mul_nonneg_nonneg Z.mul_pos_pos : zpos.
Hint Resolve Z.pow_pos_nonneg : zpos.
Hint Resolve Zmod_pos Z.div_pos : zpos.
Hint Extern 1000 => lia : zpos.

221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
(** * Notations and properties of [Qc] *)
Notation "2" := (1+1)%Qc : Qc_scope.
Infix "≤" := Qcle : Qc_scope.
Notation "x ≤ y ≤ z" := (x  y  y  z)%Qc : Qc_scope.
Notation "x ≤ y < z" := (x  y  y < z)%Qc : Qc_scope.
Notation "x < y < z" := (x < y  y < z)%Qc : Qc_scope.
Notation "x < y ≤ z" := (x < y  y  z)%Qc : Qc_scope.
Notation "(≤)" := Qcle (only parsing) : Qc_scope.
Notation "(<)" := Qclt (only parsing) : Qc_scope.

Instance Qc_eq_dec:  x y : Qc, Decision (x = y) := Qc_eq_dec.
Program Instance Qc_le_dec (x y : Qc) : Decision (x  y)%Qc :=
  if Qclt_le_dec y x then right _ else left _.
Next Obligation. by apply Qclt_not_le. Qed.
Program Instance Qc_lt_dec (x y : Qc) : Decision (x < y)%Qc :=
  if Qclt_le_dec x y then left _ else right _.
Next Obligation. by apply Qcle_not_lt. Qed.

Instance: Reflexive Qcle.
Proof. red. apply Qcle_refl. Qed.
Instance: Transitive Qcle.
Proof. red. apply Qcle_trans. Qed.

Lemma Qcle_ngt (x y : Qc) : (x  y  ¬y < x)%Qc.
Proof. split; auto using Qcle_not_lt, Qcnot_lt_le. Qed.
Lemma Qclt_nge (x y : Qc) : (x < y  ¬y  x)%Qc.
Proof. split; auto using Qclt_not_le, Qcnot_le_lt. Qed.

249
Lemma Qcplus_le_mono_l (x y z : Qc) : (x  y  z + x  z + y)%Qc.
250 251 252 253 254 255 256
Proof.
  split; intros.
  * by apply Qcplus_le_compat.
  * replace x with ((0 - z) + (z + x))%Qc by ring.
    replace y with ((0 - z) + (z + y))%Qc by ring.
    by apply Qcplus_le_compat.
Qed.
257
Lemma Qcplus_le_mono_r (x y z : Qc) : (x  y  x + z  y + z)%Qc.
258
Proof. rewrite !(Qcplus_comm _ z). apply Qcplus_le_mono_l. Qed.
259
Lemma Qcplus_lt_mono_l (x y z : Qc) : (x < y  z + x < z + y)%Qc.
260
Proof. by rewrite !Qclt_nge, <-Qcplus_le_mono_l. Qed.
261
Lemma Qcplus_lt_mono_r (x y z : Qc) : (x < y  x + z < y + z)%Qc.
262 263
Proof. by rewrite !Qclt_nge, <-Qcplus_le_mono_r. Qed.

264
(** * Conversions *)
265 266 267 268 269 270
Lemma Z_to_nat_nonpos x : (x  0)%Z  Z.to_nat x = 0.
Proof.
  destruct x; simpl; auto using Z2Nat.inj_neg.
  by intros [].
Qed.

271 272
(** The function [Z_to_option_N] converts an integer [x] into a natural number
by giving [None] in case [x] is negative. *)
273
Definition Z_to_option_N (x : Z) : option N :=
Robbert Krebbers's avatar
Robbert Krebbers committed
274 275 276 277 278
  match x with
  | Z0 => Some N0
  | Zpos p => Some (Npos p)
  | Zneg _ => None
  end.
279 280 281 282 283 284
Definition Z_to_option_nat (x : Z) : option nat :=
  match x with
  | Z0 => Some 0
  | Zpos p => Some (Pos.to_nat p)
  | Zneg _ => None
  end.
Robbert Krebbers's avatar
Robbert Krebbers committed
285

286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
Lemma Z_to_option_N_Some x y :
  Z_to_option_N x = Some y  (0  x)%Z  y = Z.to_N x.
Proof.
  split.
  * intros. by destruct x; simpl in *; simplify_equality;
      auto using Zle_0_pos.
  * intros [??]. subst. destruct x; simpl; auto; lia.
Qed.
Lemma Z_to_option_N_Some_alt x y :
  Z_to_option_N x = Some y  (0  x)%Z  x = Z.of_N y.
Proof.
  rewrite Z_to_option_N_Some.
  split; intros [??]; subst; auto using N2Z.id, Z2N.id, eq_sym.
Qed.

Lemma Z_to_option_nat_Some x y :
  Z_to_option_nat x = Some y  (0  x)%Z  y = Z.to_nat x.
Proof.
  split.
  * intros. by destruct x; simpl in *; simplify_equality;
      auto using Zle_0_pos.
  * intros [??]. subst. destruct x; simpl; auto; lia.
Qed.
Lemma Z_to_option_nat_Some_alt x y :
  Z_to_option_nat x = Some y  (0  x)%Z  x = Z.of_nat y.
Proof.
  rewrite Z_to_option_nat_Some.
  split; intros [??]; subst; auto using Nat2Z.id, Z2Nat.id, eq_sym.
Qed.
315
Lemma Z_to_option_of_nat x : Z_to_option_nat (Z.of_nat x) = Some x.
316 317 318 319 320 321
Proof. apply Z_to_option_nat_Some_alt. auto using Nat2Z.is_nonneg. Qed.

(** The function [Z_of_sumbool] converts a sumbool [P] into an integer
by yielding one if [P] and zero if [Q]. *)
Definition Z_of_sumbool {P Q : Prop} (p : {P} + {Q}) : Z :=
  (if p then 1 else 0)%Z.
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344

(** Some correspondence lemmas between [nat] and [N] that are not part of the
standard library. We declare a hint database [natify] to rewrite a goal
involving [N] into a corresponding variant involving [nat]. *)
Lemma N_to_nat_lt x y : N.to_nat x < N.to_nat y  (x < y)%N.
Proof. by rewrite <-N.compare_lt_iff, nat_compare_lt, N2Nat.inj_compare. Qed.
Lemma N_to_nat_le x y : N.to_nat x  N.to_nat y  (x  y)%N.
Proof. by rewrite <-N.compare_le_iff, nat_compare_le, N2Nat.inj_compare. Qed.
Lemma N_to_nat_0 : N.to_nat 0 = 0.
Proof. done. Qed.
Lemma N_to_nat_1 : N.to_nat 1 = 1.
Proof. done. Qed.
Lemma N_to_nat_div x y : N.to_nat (x `div` y) = N.to_nat x `div` N.to_nat y.
Proof.
  destruct (decide (y = 0%N)).
  { subst. by destruct x. }
  apply NPeano.Nat.div_unique with (N.to_nat (x `mod` y)).
  { by apply N_to_nat_lt, N.mod_lt. }
  rewrite (N.div_unique_exact (x * y) y x), N.div_mul by lia.
  by rewrite <-N2Nat.inj_mul, <-N2Nat.inj_add, <-N.div_mod.
Qed.
(* We have [x `mod` 0 = 0] on [nat], and [x `mod` 0 = x] on [N]. *)
Lemma N_to_nat_mod x y :
345
  y  0%N  N.to_nat (x `mod` y) = N.to_nat x `mod` N.to_nat y.
346
Proof.
347
  intros. apply NPeano.Nat.mod_unique with (N.to_nat (x `div` y)).
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
  { by apply N_to_nat_lt, N.mod_lt. }
  rewrite (N.div_unique_exact (x * y) y x), N.div_mul by lia.
  by rewrite <-N2Nat.inj_mul, <-N2Nat.inj_add, <-N.div_mod.
Qed.

Hint Rewrite <-N2Nat.inj_iff : natify.
Hint Rewrite <-N_to_nat_lt : natify.
Hint Rewrite <-N_to_nat_le : natify.
Hint Rewrite Nat2N.id : natify.
Hint Rewrite N2Nat.inj_add : natify.
Hint Rewrite N2Nat.inj_mul : natify.
Hint Rewrite N2Nat.inj_sub : natify.
Hint Rewrite N2Nat.inj_succ : natify.
Hint Rewrite N2Nat.inj_pred : natify.
Hint Rewrite N_to_nat_div : natify.
Hint Rewrite N_to_nat_0 : natify.
Hint Rewrite N_to_nat_1 : natify.
Ltac natify := repeat autorewrite with natify in *.

Hint Extern 100 (Nlt _ _) => natify : natify.
Hint Extern 100 (Nle _ _) => natify : natify.
Hint Extern 100 (@eq N _ _) => natify : natify.
Hint Extern 100 (lt _ _) => natify : natify.
Hint Extern 100 (le _ _) => natify : natify.
Hint Extern 100 (@eq nat _ _) => natify : natify.

Instance:  x, PropHolds (0 < x)%N  PropHolds (0 < N.to_nat x).
Proof. unfold PropHolds. intros. by natify. Qed.
Instance:  x, PropHolds (0  x)%N  PropHolds (0  N.to_nat x).
Proof. unfold PropHolds. intros. by natify. Qed.