base.v 33.9 KB
Newer Older
1
(* Copyright (c) 2012-2013, Robbert Krebbers. *)
2
3
4
5
6
(* This file is distributed under the terms of the BSD license. *)
(** This file collects type class interfaces, notations, and general theorems
that are used throughout the whole development. Most importantly it contains
abstract interfaces for ordered structures, collections, and various other data
structures. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
7
8
9
10
Global Generalizable All Variables.
Global Set Automatic Coercions Import.
Require Export Morphisms RelationClasses List Bool Utf8 Program Setoid NArith.

11
12
13
14
(** * General *)
(** The following coercion allows us to use Booleans as propositions. *)
Coercion Is_true : bool >-> Sortclass.

15
16
(** Ensure that [simpl] unfolds [id], [compose], and [flip] when fully
applied. *)
17
18
Arguments id _ _/.
Arguments compose _ _ _ _ _ _ /.
19
Arguments flip _ _ _ _ _ _/.
20

21
22
23
24
(** Change [True] and [False] into notations in order to enable overloading.
We will use this in the file [assertions] to give [True] and [False] a
different interpretation in [assert_scope] used for assertions of our axiomatic
semantics. *)
25
26
Notation "'True'" := True : type_scope.
Notation "'False'" := False : type_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
27

28
29
30
Notation curry := prod_curry.
Notation uncurry := prod_uncurry.

31
32
(** Throughout this development we use [C_scope] for all general purpose
notations that do not belong to a more specific scope. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
33
34
35
Delimit Scope C_scope with C.
Global Open Scope C_scope.

36
(** Introduce some Haskell style like notations. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
37
38
39
40
41
42
43
44
45
Notation "(=)" := eq (only parsing) : C_scope.
Notation "( x =)" := (eq x) (only parsing) : C_scope.
Notation "(= x )" := (λ y, eq y x) (only parsing) : C_scope.
Notation "(≠)" := (λ x y, x  y) (only parsing) : C_scope.
Notation "( x ≠)" := (λ y, x  y) (only parsing) : C_scope.
Notation "(≠ x )" := (λ y, y  x) (only parsing) : C_scope.

Hint Extern 0 (?x = ?x) => reflexivity.

46
47
48
49
Notation "(→)" := (λ A B, A  B) (only parsing) : C_scope.
Notation "( A →)" := (λ B, A  B) (only parsing) : C_scope.
Notation "(→ B )" := (λ A, A  B) (only parsing) : C_scope.

50
Notation "t $ r" := (t r)
51
  (at level 65, right associativity, only parsing) : C_scope.
52
53
54
Notation "($)" := (λ f x, f x) (only parsing) : C_scope.
Notation "($ x )" := (λ f, f x) (only parsing) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
55
56
57
58
Infix "∘" := compose : C_scope.
Notation "(∘)" := compose (only parsing) : C_scope.
Notation "( f ∘)" := (compose f) (only parsing) : C_scope.
Notation "(∘ f )" := (λ g, compose g f) (only parsing) : C_scope.
59

60
61
62
63
64
65
66
67
68
69
70
71
Notation "(∧)" := and (only parsing) : C_scope.
Notation "( A ∧)" := (and A) (only parsing) : C_scope.
Notation "(∧ B )" := (λ A, A  B) (only parsing) : C_scope.

Notation "(∨)" := or (only parsing) : C_scope.
Notation "( A ∨)" := (or A) (only parsing) : C_scope.
Notation "(∨ B )" := (λ A, A  B) (only parsing) : C_scope.

Notation "(↔)" := iff (only parsing) : C_scope.
Notation "( A ↔)" := (iff A) (only parsing) : C_scope.
Notation "(↔ B )" := (λ A, A  B) (only parsing) : C_scope.

72
73
(** Set convenient implicit arguments for [existT] and introduce notations. *)
Arguments existT {_ _} _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
74
75
76
Notation "x ↾ p" := (exist _ x p) (at level 20) : C_scope.
Notation "` x" := (proj1_sig x) : C_scope.

77
78
79
80
(** * Type classes *)
(** ** Provable propositions *)
(** This type class collects provable propositions. It is useful to constraint
type classes by arbitrary propositions. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
81
82
Class PropHolds (P : Prop) := prop_holds: P.

83
84
Hint Extern 0 (PropHolds _) => assumption : typeclass_instances.
Instance: Proper (iff ==> iff) PropHolds.
85
Proof. repeat intro; trivial. Qed.
86
87
88

Ltac solve_propholds :=
  match goal with
89
90
  | |- PropHolds (?P) => apply _
  | |- ?P => change (PropHolds P); apply _
91
92
93
94
95
96
97
  end.

(** ** Decidable propositions *)
(** This type class by (Spitters/van der Weegen, 2011) collects decidable
propositions. For example to declare a parameter expressing decidable equality
on a type [A] we write [`{∀ x y : A, Decision (x = y)}] and use it by writing
[decide (x = y)]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
98
99
100
Class Decision (P : Prop) := decide : {P} + {¬P}.
Arguments decide _ {_}.

101
102
103
104
105
106
107
108
109
(** ** Inhabited types *)
(** This type class collects types that are inhabited. *)
Class Inhabited (A : Type) : Prop := populate { _ : A }.
Arguments populate {_} _.

Instance unit_inhabited: Inhabited unit := populate ().
Instance list_inhabited {A} : Inhabited (list A) := populate [].
Instance prod_inhabited {A B} (iA : Inhabited A)
    (iB : Inhabited B) : Inhabited (A * B) :=
110
  match iA, iB with populate x, populate y => populate (x,y) end.
111
Instance sum_inhabited_l {A B} (iA : Inhabited A) : Inhabited (A + B) :=
112
  match iA with populate x => populate (inl x) end.
113
Instance sum_inhabited_r {A B} (iB : Inhabited A) : Inhabited (A + B) :=
114
  match iB with populate y => populate (inl y) end.
115
116
Instance option_inhabited {A} : Inhabited (option A) := populate None.

117
118
119
120
121
122
(** ** Proof irrelevant types *)
(** This type class collects types that are proof irrelevant. That means, all
elements of the type are equal. We use this notion only used for propositions,
but by universe polymorphism we can generalize it. *)
Class ProofIrrel (A : Type) : Prop := proof_irrel (x y : A) : x = y.

123
124
125
(** ** Setoid equality *)
(** We define an operational type class for setoid equality. This is based on
(Spitters/van der Weegen, 2011). *)
Robbert Krebbers's avatar
Robbert Krebbers committed
126
127
128
129
130
131
132
133
134
135
Class Equiv A := equiv: relation A.
Infix "≡" := equiv (at level 70, no associativity) : C_scope.
Notation "(≡)" := equiv (only parsing) : C_scope.
Notation "( x ≡)" := (equiv x) (only parsing) : C_scope.
Notation "(≡ x )" := (λ y, y  x) (only parsing) : C_scope.
Notation "(≢)" := (λ x y, ¬x  y) (only parsing) : C_scope.
Notation "x ≢ y":= (¬x  y) (at level 70, no associativity) : C_scope.
Notation "( x ≢)" := (λ y, x  y) (only parsing) : C_scope.
Notation "(≢ x )" := (λ y, y  x) (only parsing) : C_scope.

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
(** The type class [LeibnizEquiv] collects setoid equalities that coincide
with Leibniz equality. We provide the tactic [fold_leibniz] to transform such
setoid equalities into Leibniz equalities, and [unfold_leibniz] for the
reverse. *)
Class LeibnizEquiv A `{Equiv A} := leibniz_equiv x y : x  y  x = y.

Ltac fold_leibniz := repeat
  match goal with
  | H : context [ @equiv ?A _ _ _ ] |- _ =>
    setoid_rewrite (leibniz_equiv (A:=A)) in H
  | |- context [ @equiv ?A _ _ _ ] =>
    setoid_rewrite (leibniz_equiv (A:=A))
  end.
Ltac unfold_leibniz := repeat
  match goal with
  | H : context [ @eq ?A _ _ ] |- _ =>
    setoid_rewrite <-(leibniz_equiv (A:=A)) in H
  | |- context [ @eq ?A _ _ ] =>
    setoid_rewrite <-(leibniz_equiv (A:=A))
  end.

157
158
159
160
161
162
163
164
(** A [Params f n] instance forces the setoid rewriting mechanism not to
rewrite in the first [n] arguments of the function [f]. We will declare such
instances for all operational type classes in this development. *)
Instance: Params (@equiv) 2.

(** The following instance forces [setoid_replace] to use setoid equality
(for types that have an [Equiv] instance) rather than the standard Leibniz
equality. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
165
Instance equiv_default_relation `{Equiv A} : DefaultRelation () | 3.
166
167
Hint Extern 0 (_  _) => reflexivity.
Hint Extern 0 (_  _) => symmetry; assumption.
Robbert Krebbers's avatar
Robbert Krebbers committed
168

169
(** ** Operations on collections *)
170
(** We define operational type classes for the traditional operations and
171
relations on collections: the empty collection [∅], the union [(∪)],
172
173
intersection [(∩)], and difference [(∖)], the singleton [{[_]}], the subset
[(⊆)] and element of [(∈)] relation, and disjointess [(⊥)]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
174
175
176
177
Class Empty A := empty: A.
Notation "∅" := empty : C_scope.

Class Union A := union: A  A  A.
178
Instance: Params (@union) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
179
180
181
182
183
Infix "∪" := union (at level 50, left associativity) : C_scope.
Notation "(∪)" := union (only parsing) : C_scope.
Notation "( x ∪)" := (union x) (only parsing) : C_scope.
Notation "(∪ x )" := (λ y, union y x) (only parsing) : C_scope.

184
Definition union_list `{Empty A} `{Union A} : list A  A := fold_right () .
185
186
187
Arguments union_list _ _ _ !_ /.
Notation "⋃ l" := (union_list l) (at level 20, format "⋃  l") : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
188
Class Intersection A := intersection: A  A  A.
189
Instance: Params (@intersection) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
190
191
192
193
194
195
Infix "∩" := intersection (at level 40) : C_scope.
Notation "(∩)" := intersection (only parsing) : C_scope.
Notation "( x ∩)" := (intersection x) (only parsing) : C_scope.
Notation "(∩ x )" := (λ y, intersection y x) (only parsing) : C_scope.

Class Difference A := difference: A  A  A.
196
Instance: Params (@difference) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
197
198
199
200
201
Infix "∖" := difference (at level 40) : C_scope.
Notation "(∖)" := difference (only parsing) : C_scope.
Notation "( x ∖)" := (difference x) (only parsing) : C_scope.
Notation "(∖ x )" := (λ y, difference y x) (only parsing) : C_scope.

202
203
Class Singleton A B := singleton: A  B.
Instance: Params (@singleton) 3.
204
Notation "{[ x ]}" := (singleton x) (at level 1) : C_scope.
205
Notation "{[ x ; y ; .. ; z ]}" :=
206
207
208
209
210
211
  (union .. (union (singleton x) (singleton y)) .. (singleton z))
  (at level 1) : C_scope.
Notation "{[ x , y ]}" := (singleton (x,y))
  (at level 1, y at next level) : C_scope.
Notation "{[ x , y , z ]}" := (singleton (x,y,z))
  (at level 1, y at next level, z at next level) : C_scope.
212

Robbert Krebbers's avatar
Robbert Krebbers committed
213
Class SubsetEq A := subseteq: A  A  Prop.
214
Instance: Params (@subseteq) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
215
216
217
218
219
220
221
222
Infix "⊆" := subseteq (at level 70) : C_scope.
Notation "(⊆)" := subseteq (only parsing) : C_scope.
Notation "( X ⊆ )" := (subseteq X) (only parsing) : C_scope.
Notation "( ⊆ X )" := (λ Y, subseteq Y X) (only parsing) : C_scope.
Notation "X ⊈ Y" := (¬X  Y) (at level 70) : C_scope.
Notation "(⊈)" := (λ X Y, X  Y) (only parsing) : C_scope.
Notation "( X ⊈ )" := (λ Y, X  Y) (only parsing) : C_scope.
Notation "( ⊈ X )" := (λ Y, Y  X) (only parsing) : C_scope.
223
224
Infix "⊆*" := (Forall2 subseteq) (at level 70) : C_scope.
Notation "(⊆*)" := (Forall2 subseteq) (only parsing) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
225

226
227
228
229
230
231
232
233
234
235
236
237
Hint Extern 0 (_  _) => reflexivity.

Class Subset A := subset: A  A  Prop.
Instance: Params (@subset) 2.
Infix "⊂" := subset (at level 70) : C_scope.
Notation "(⊂)" := subset (only parsing) : C_scope.
Notation "( X ⊂ )" := (subset X) (only parsing) : C_scope.
Notation "( ⊂ X )" := (λ Y, subset Y X) (only parsing) : C_scope.
Notation "X ⊄  Y" := (¬X  Y) (at level 70) : C_scope.
Notation "(⊄)" := (λ X Y, X  Y) (only parsing) : C_scope.
Notation "( X ⊄ )" := (λ Y, X  Y) (only parsing) : C_scope.
Notation "( ⊄ X )" := (λ Y, Y  X) (only parsing) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
238
239

Class ElemOf A B := elem_of: A  B  Prop.
240
Instance: Params (@elem_of) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
241
242
243
244
245
246
247
248
249
Infix "∈" := elem_of (at level 70) : C_scope.
Notation "(∈)" := elem_of (only parsing) : C_scope.
Notation "( x ∈)" := (elem_of x) (only parsing) : C_scope.
Notation "(∈ X )" := (λ x, elem_of x X) (only parsing) : C_scope.
Notation "x ∉ X" := (¬x  X) (at level 80) : C_scope.
Notation "(∉)" := (λ x X, x  X) (only parsing) : C_scope.
Notation "( x ∉)" := (λ X, x  X) (only parsing) : C_scope.
Notation "(∉ X )" := (λ x, x  X) (only parsing) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
250
251
252
253
Class Disjoint A := disjoint : A  A  Prop.
Instance: Params (@disjoint) 2.
Infix "⊥" := disjoint (at level 70) : C_scope.
Notation "(⊥)" := disjoint (only parsing) : C_scope.
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
Notation "( X ⊥.)" := (disjoint X) (only parsing) : C_scope.
Notation "(.⊥ X )" := (λ Y, disjoint Y X) (only parsing) : C_scope.

Class DisjointList A := disjoint_list : list A  Prop.
Instance: Params (@disjoint_list) 2.
Notation "⊥ l" := (disjoint_list l) (at level 20, format "⊥  l") : C_scope.

Section default_disjoint_list.
  Context `{Empty A} `{Union A} `{Disjoint A}.
  Inductive default_disjoint_list : DisjointList A :=
    | disjoint_nil_2 :  []
    | disjoint_cons_2 X Xs : X   Xs   Xs   (X :: Xs).
  Global Existing Instance default_disjoint_list.

  Lemma disjoint_list_nil :  @nil A  True.
  Proof. split; constructor. Qed.
  Lemma disjoint_list_cons X Xs :  (X :: Xs)  X   Xs   Xs.
  Proof. split. inversion_clear 1; auto. intros [??]. constructor; auto. Qed.
End default_disjoint_list.

Class Filter A B := filter:  (P : A  Prop) `{ x, Decision (P x)}, B  B.
275

276
277
278
279
280
(** We define variants of the relations [(≡)] and [(⊆)] that are indexed by
an environment. *)
Class EquivEnv A B := equiv_env : A  relation B.
Notation "X ≡@{ E } Y" := (equiv_env E X Y)
  (at level 70, format "X  ≡@{ E }  Y") : C_scope.
281
Notation "(≡@{ E } )" := (equiv_env E) (E at level 1, only parsing) : C_scope.
282
283
284
Instance: Params (@equiv_env) 4.

Class SubsetEqEnv A B := subseteq_env : A  relation B.
285
286
287
288
289
290
291
292
Instance: Params (@subseteq_env) 4.
Notation "X ⊑@{ E } Y" := (subseteq_env E X Y)
  (at level 70, format "X  ⊑@{ E }  Y") : C_scope.
Notation "(⊑@{ E } )" := (subseteq_env E)
  (E at level 1, only parsing) : C_scope.
Notation "X ⊑@{ E }* Y" := (Forall2 (subseteq_env E) X Y)
  (at level 70, format "X  ⊑@{ E }*  Y") : C_scope.
Notation "(⊑@{ E }*)" := (Forall2 (subseteq_env E))
293
294
295
  (E at level 1, only parsing) : C_scope.
Instance: Params (@subseteq_env) 4.

296
297
298
Hint Extern 0 (_ @{_} _) => reflexivity.
Hint Extern 0 (_ @{_} _) => reflexivity.

299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
(** ** Monadic operations *)
(** We define operational type classes for the monadic operations bind, join 
and fmap. These type classes are defined in a non-standard way by taking the
function as a parameter of the class. For example, we define
<<
  Class FMapD := fmap: ∀ {A B}, (A → B) → M A → M B.
>>
instead of
<<
  Class FMap {A B} (f : A → B) := fmap: M A → M B.
>>
This approach allows us to define [fmap] on lists such that [simpl] unfolds it
in the appropriate way, and so that it can be used for mutual recursion
(the mapped function [f] is not part of the fixpoint) as well. This is a hack,
and should be replaced by something more appropriate in future versions. *)

315
(** We use these type classes merely for convenient overloading of notations and
316
317
318
319
320
321
322
323
324
do not formalize any theory on monads (we do not even define a class with the
monad laws). *)
Class MRet (M : Type  Type) := mret:  {A}, A  M A.
Instance: Params (@mret) 3.
Arguments mret {_ _ _} _.

Class MBindD (M : Type  Type) {A B} (f : A  M B) := mbind: M A  M B.
Notation MBind M := ( {A B} (f : A  M B), MBindD M f)%type.
Instance: Params (@mbind) 5.
325
Arguments mbind {_ _ _} _ {_} !_ /.
326
327
328

Class MJoin (M : Type  Type) := mjoin:  {A}, M (M A)  M A.
Instance: Params (@mjoin) 3.
329
Arguments mjoin {_ _ _} !_ /.
330
331
332
333

Class FMapD (M : Type  Type) {A B} (f : A  B) := fmap: M A  M B.
Notation FMap M := ( {A B} (f : A  B), FMapD M f)%type.
Instance: Params (@fmap) 6.
334
Arguments fmap {_ _ _} _ {_} !_ /.
335
336
337
338
339
340
341

Notation "m ≫= f" := (mbind f m) (at level 60, right associativity) : C_scope.
Notation "( m ≫=)" := (λ f, mbind f m) (only parsing) : C_scope.
Notation "(≫= f )" := (mbind f) (only parsing) : C_scope.
Notation "(≫=)" := (λ m f, mbind f m) (only parsing) : C_scope.

Notation "x ← y ; z" := (y = (λ x : _, z))
342
  (at level 65, next at level 35, only parsing, right associativity) : C_scope.
343
Infix "<$>" := fmap (at level 60, right associativity) : C_scope.
344
345

Class MGuard (M : Type  Type) :=
346
347
348
349
350
351
  mguard:  P {dec : Decision P} {A}, (P  M A)  M A.
Arguments mguard _ _ _ !_ _ _ /.
Notation "'guard' P ; o" := (mguard P (λ _, o))
  (at level 65, next at level 35, only parsing, right associativity) : C_scope.
Notation "'guard' P 'as' H ; o" := (mguard P (λ H, o))
  (at level 65, next at level 35, only parsing, right associativity) : C_scope.
352

353
(** ** Operations on maps *)
354
355
(** In this section we define operational type classes for the operations
on maps. In the file [fin_maps] we will axiomatize finite maps.
356
The function look up [m !! k] should yield the element at key [k] in [m]. *)
357
Class Lookup (K A M : Type) := lookup: K  M  option A.
358
359
360
361
362
363
Instance: Params (@lookup) 4.

Notation "m !! i" := (lookup i m) (at level 20) : C_scope.
Notation "(!!)" := lookup (only parsing) : C_scope.
Notation "( m !!)" := (λ i, lookup i m) (only parsing) : C_scope.
Notation "(!! i )" := (lookup i) (only parsing) : C_scope.
364
Arguments lookup _ _ _ _ !_ !_ / : simpl nomatch.
365
366
367

(** The function insert [<[k:=a]>m] should update the element at key [k] with
value [a] in [m]. *)
368
Class Insert (K A M : Type) := insert: K  A  M  M.
369
370
371
Instance: Params (@insert) 4.
Notation "<[ k := a ]>" := (insert k a)
  (at level 5, right associativity, format "<[ k := a ]>") : C_scope.
372
Arguments insert _ _ _ _ !_ _ !_ / : simpl nomatch.
373

374
375
376
(** The function delete [delete k m] should delete the value at key [k] in
[m]. If the key [k] is not a member of [m], the original map should be
returned. *)
377
Class Delete (K M : Type) := delete: K  M  M.
378
379
Instance: Params (@delete) 3.
Arguments delete _ _ _ !_ !_ / : simpl nomatch.
380
381

(** The function [alter f k m] should update the value at key [k] using the
382
function [f], which is called with the original value. *)
383
Class AlterD (K A M : Type) (f : A  A) := alter: K  M  M.
384
385
386
Notation Alter K A M := ( (f : A  A), AlterD K A M f)%type.
Instance: Params (@alter) 5.
Arguments alter {_ _ _} _ {_} !_ !_ / : simpl nomatch.
387
388

(** The function [alter f k m] should update the value at key [k] using the
389
390
391
function [f], which is called with the original value at key [k] or [None]
if [k] is not a member of [m]. The value at [k] should be deleted if [f] 
yields [None]. *)
392
393
Class PartialAlter (K A M : Type) :=
  partial_alter: (option A  option A)  K  M  M.
394
Instance: Params (@partial_alter) 4.
395
Arguments partial_alter _ _ _ _ _ !_ !_ / : simpl nomatch.
396
397
398

(** The function [dom C m] should yield the domain of [m]. That is a finite
collection of type [C] that contains the keys that are a member of [m]. *)
399
400
401
Class Dom (M C : Type) := dom: M  C.
Instance: Params (@dom) 3.
Arguments dom {_} _ {_} !_ / : simpl nomatch, clear implicits.
402
403

(** The function [merge f m1 m2] should merge the maps [m1] and [m2] by
404
405
406
407
408
constructing a new map whose value at key [k] is [f (m1 !! k) (m2 !! k)].*)
Class Merge (M : Type  Type) :=
  merge:  {A B C}, (option A  option B  option C)  M A  M B  M C.
Instance: Params (@merge) 4.
Arguments merge _ _ _ _ _ _ !_ !_ / : simpl nomatch.
409
410

(** We lift the insert and delete operation to lists of elements. *)
411
Definition insert_list `{Insert K A M} (l : list (K * A)) (m : M) : M :=
412
413
  fold_right (λ p, <[ fst p := snd p ]>) m l.
Instance: Params (@insert_list) 4.
414
Definition delete_list `{Delete K M} (l : list K) (m : M) : M :=
415
  fold_right delete m l.
416
417
Instance: Params (@delete_list) 3.

418
419
Definition insert_consecutive `{Insert nat A M} (i : nat) (l : list A)
  (m : M) : M := fold_right (λ x f i, <[i:=x]>(f (S i))) (λ _, m) l i.
420
421
422
423
424
425
426
Instance: Params (@insert_consecutive) 3.

(** The function [union_with f m1 m2] is supposed to yield the union of [m1]
and [m2] using the function [f] to combine values of members that are in
both [m1] and [m2]. *)
Class UnionWith (A M : Type) :=
  union_with: (A  A  option A)  M  M  M.
427
Instance: Params (@union_with) 3.
428
Arguments union_with {_ _ _} _ !_ !_ / : simpl nomatch.
429

430
431
432
(** Similarly for intersection and difference. *)
Class IntersectionWith (A M : Type) :=
  intersection_with: (A  A  option A)  M  M  M.
433
Instance: Params (@intersection_with) 3.
434
435
Arguments intersection_with {_ _ _} _ !_ !_ / : simpl nomatch.

436
437
Class DifferenceWith (A M : Type) :=
  difference_with: (A  A  option A)  M  M  M.
438
Instance: Params (@difference_with) 3.
439
Arguments difference_with {_ _ _} _ !_ !_ / : simpl nomatch.
Robbert Krebbers's avatar
Robbert Krebbers committed
440

441
442
443
444
Definition intersection_with_list `{IntersectionWith A M}
  (f : A  A  option A) : M  list M  M := fold_right (intersection_with f).
Arguments intersection_with_list _ _ _ _ _ !_ /.

445
446
447
448
(** ** Common properties *)
(** These operational type classes allow us to refer to common mathematical
properties in a generic way. For example, for injectivity of [(k ++)] it
allows us to write [injective (k ++)] instead of [app_inv_head k]. *)
449
450
451
452
453
Class Injective {A B} (R : relation A) (S : relation B) (f : A  B) : Prop :=
  injective:  x y, S (f x) (f y)  R x y.
Class Injective2 {A B C} (R1 : relation A) (R2 : relation B)
    (S : relation C) (f : A  B  C) : Prop :=
  injective2:  x1 x2  y1 y2, S (f x1 x2) (f y1 y2)  R1 x1 y1  R2 x2 y2.
454
Class Idempotent {A} (R : relation A) (f : A  A  A) : Prop :=
455
  idempotent:  x, R (f x x) x.
456
Class Commutative {A B} (R : relation A) (f : B  B  A) : Prop :=
457
  commutative:  x y, R (f x y) (f y x).
458
Class LeftId {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
459
  left_id:  x, R (f i x) x.
460
Class RightId {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
461
  right_id:  x, R (f x i) x.
462
Class Associative {A} (R : relation A) (f : A  A  A) : Prop :=
463
  associative:  x y z, R (f x (f y z)) (f (f x y) z).
464
Class LeftAbsorb {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
465
  left_absorb:  x, R (f i x) i.
466
Class RightAbsorb {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
467
  right_absorb:  x, R (f x i) i.
468
469
470
471
Class LeftDistr {A} (R : relation A) (f g : A  A  A) : Prop :=
  left_distr:  x y z, R (f x (g y z)) (g (f x y) (f x z)).
Class RightDistr {A} (R : relation A) (f g : A  A  A) : Prop :=
  right_distr:  y z x, R (f (g y z) x) (g (f y x) (f z x)).
472
473
Class AntiSymmetric {A} (R S : relation A) : Prop :=
  anti_symmetric:  x y, S x y  S y x  R x y.
Robbert Krebbers's avatar
Robbert Krebbers committed
474

475
Arguments irreflexivity {_} _ {_} _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
476
Arguments injective {_ _ _ _} _ {_} _ _ _.
477
Arguments injective2 {_ _ _ _ _ _} _ {_} _ _ _ _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
478
479
480
481
482
Arguments idempotent {_ _} _ {_} _.
Arguments commutative {_ _ _} _ {_} _ _.
Arguments left_id {_ _} _ _ {_} _.
Arguments right_id {_ _} _ _ {_} _.
Arguments associative {_ _} _ {_} _ _ _.
483
484
Arguments left_absorb {_ _} _ _ {_} _.
Arguments right_absorb {_ _} _ _ {_} _.
485
486
Arguments left_distr {_ _} _ _ {_} _ _ _.
Arguments right_distr {_ _} _ _ {_} _ _ _.
487
Arguments anti_symmetric {_ _} _ {_} _ _ _ _.
488

489
490
Lemma impl_transitive (P Q R : Prop) : (P  Q)  (Q  R)  (P  R).
Proof. tauto. Qed.
491
492
493
494
Instance: Commutative () (@eq A).
Proof. red. intuition. Qed.
Instance: Commutative () (λ x y, @eq A y x).
Proof. red. intuition. Qed.
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
Instance: Commutative () ().
Proof. red. intuition. Qed.
Instance: Commutative () ().
Proof. red. intuition. Qed.
Instance: Associative () ().
Proof. red. intuition. Qed.
Instance: Idempotent () ().
Proof. red. intuition. Qed.
Instance: Commutative () ().
Proof. red. intuition. Qed.
Instance: Associative () ().
Proof. red. intuition. Qed.
Instance: Idempotent () ().
Proof. red. intuition. Qed.
Instance: LeftId () True ().
Proof. red. intuition. Qed.
Instance: RightId () True ().
Proof. red. intuition. Qed.
Instance: LeftAbsorb () False ().
Proof. red. intuition. Qed.
Instance: RightAbsorb () False ().
Proof. red. intuition. Qed.
Instance: LeftId () False ().
Proof. red. intuition. Qed.
Instance: RightId () False ().
Proof. red. intuition. Qed.
Instance: LeftAbsorb () True ().
Proof. red. intuition. Qed.
Instance: RightAbsorb () True ().
Proof. red. intuition. Qed.
Instance: LeftId () True impl.
Proof. unfold impl. red. intuition. Qed.
Instance: RightAbsorb () True impl.
Proof. unfold impl. red. intuition. Qed.
529
530
531
532
533
534
535
536
Instance: LeftDistr () () ().
Proof. red. intuition. Qed.
Instance: RightDistr () () ().
Proof. red. intuition. Qed.
Instance: LeftDistr () () ().
Proof. red. intuition. Qed.
Instance: RightDistr () () ().
Proof. red. intuition. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
537

538
539
540
541
(** The following lemmas are specific versions of the projections of the above
type classes for Leibniz equality. These lemmas allow us to enforce Coq not to
use the setoid rewriting mechanism. *)
Lemma idempotent_L {A} (f : A  A  A) `{!Idempotent (=) f} x : f x x = x.
542
Proof. auto. Qed.
543
Lemma commutative_L {A B} (f : B  B  A) `{!Commutative (=) f} x y :
544
  f x y = f y x.
545
Proof. auto. Qed.
546
Lemma left_id_L {A} (i : A) (f : A  A  A) `{!LeftId (=) i f} x : f i x = x.
547
Proof. auto. Qed.
548
Lemma right_id_L {A} (i : A) (f : A  A  A) `{!RightId (=) i f} x : f x i = x.
549
Proof. auto. Qed.
550
Lemma associative_L {A} (f : A  A  A) `{!Associative (=) f} x y z :
551
  f x (f y z) = f (f x y) z.
552
Proof. auto. Qed.
553
Lemma left_absorb_L {A} (i : A) (f : A  A  A) `{!LeftAbsorb (=) i f} x :
554
555
  f i x = i.
Proof. auto. Qed.
556
Lemma right_absorb_L {A} (i : A) (f : A  A  A) `{!RightAbsorb (=) i f} x :
557
558
  f x i = i.
Proof. auto. Qed.
559
Lemma left_distr_L {A} (f g : A  A  A) `{!LeftDistr (=) f g} x y z :
560
561
  f x (g y z) = g (f x y) (f x z).
Proof. auto. Qed.
562
Lemma right_distr_L {A} (f g : A  A  A) `{!RightDistr (=) f g} y z x :
563
564
  f (g y z) x = g (f y x) (f z x).
Proof. auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
565

566
(** ** Axiomatization of ordered structures *)
567
568
(** A pre-order equipped with a smallest element. *)
Class BoundedPreOrder A `{Empty A} `{SubsetEq A} : Prop := {
Robbert Krebbers's avatar
Robbert Krebbers committed
569
570
571
  bounded_preorder :>> PreOrder ();
  subseteq_empty x :   x
}.
572
573
574
Class PartialOrder {A} (R : relation A) : Prop := {
  po_preorder :> PreOrder R;
  po_antisym :> AntiSymmetric (=) R
575
}.
Robbert Krebbers's avatar
Robbert Krebbers committed
576

577
(** We do not include equality in the following interfaces so as to avoid the
578
need for proofs that the relations and operations respect setoid equality.
579
580
Instead, we will define setoid equality in a generic way as
[λ X Y, X ⊆ Y ∧ Y ⊆ X]. *)
581
Class BoundedJoinSemiLattice A `{Empty A} `{SubsetEq A} `{Union A} : Prop := {
582
  bjsl_preorder :>> BoundedPreOrder A;
583
584
  union_subseteq_l x y : x  x  y;
  union_subseteq_r x y : y  x  y;
Robbert Krebbers's avatar
Robbert Krebbers committed
585
586
  union_least x y z : x  z  y  z  x  y  z
}.
587
Class MeetSemiLattice A `{Empty A} `{SubsetEq A} `{Intersection A} : Prop := {
Robbert Krebbers's avatar
Robbert Krebbers committed
588
  msl_preorder :>> BoundedPreOrder A;
589
590
  intersection_subseteq_l x y : x  y  x;
  intersection_subseteq_r x y : x  y  y;
Robbert Krebbers's avatar
Robbert Krebbers committed
591
592
  intersection_greatest x y z : z  x  z  y  z  x  y
}.
593
594
595
596

(** A join distributive lattice with distributivity stated in the order
theoretic way. We will prove that distributivity of join, and distributivity
as an equality can be derived. *)
597
Class LowerBoundedLattice A `{Empty A} `{SubsetEq A}
598
    `{Union A} `{Intersection A} : Prop := {
599
  lbl_bjsl :>> BoundedJoinSemiLattice A;
600
601
  lbl_msl :>> MeetSemiLattice A;
  lbl_distr x y z : (x  y)  (x  z)  x  (y  z)
602
}.
603

604
(** ** Axiomatization of collections *)
605
606
(** The class [SimpleCollection A C] axiomatizes a collection of type [C] with
elements of type [A]. *)
607
Instance: Params (@map) 3.
608
Class SimpleCollection A C `{ElemOf A C}
609
    `{Empty C} `{Singleton A C} `{Union C} : Prop := {
610
  not_elem_of_empty (x : A) : x  ;
611
  elem_of_singleton (x y : A) : x  {[ y ]}  x = y;
612
613
614
  elem_of_union X Y (x : A) : x  X  Y  x  X  x  Y
}.
Class Collection A C `{ElemOf A C} `{Empty C} `{Singleton A C}
615
    `{Union C} `{Intersection C} `{Difference C} : Prop := {
616
  collection_simple :>> SimpleCollection A C;
Robbert Krebbers's avatar
Robbert Krebbers committed
617
  elem_of_intersection X Y (x : A) : x  X  Y  x  X  x  Y;
618
619
620
621
622
623
624
  elem_of_difference X Y (x : A) : x  X  Y  x  X  x  Y
}.
Class CollectionOps A C
    `{ElemOf A C} `{Empty C} `{Singleton A C}
    `{Union C} `{Intersection C} `{Difference C}
    `{IntersectionWith A C} `{Filter A C} : Prop := {
  collection_ops :>> Collection A C;
625
  elem_of_intersection_with (f : A  A  option A) X Y (x : A) :
626
627
628
    x  intersection_with f X Y   x1 x2, x1  X  x2  Y  f x1 x2 = Some x;
  elem_of_filter X P `{ x, Decision (P x)} x :
    x  filter P X  P x  x  X
Robbert Krebbers's avatar
Robbert Krebbers committed
629
630
}.

631
632
633
(** We axiomative a finite collection as a collection whose elements can be
enumerated as a list. These elements, given by the [elements] function, may be
in any order and should not contain duplicates. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
634
Class Elements A C := elements: C  list A.
635
Instance: Params (@elements) 3.
636
637
638
639
640
641
642
643
644
645
646
647
648
649

(** We redefine the standard library's [In] and [NoDup] using type classes. *)
Inductive elem_of_list {A} : ElemOf A (list A) :=
  | elem_of_list_here (x : A) l : x  x :: l
  | elem_of_list_further (x y : A) l : x  l  x  y :: l.
Existing Instance elem_of_list.

Inductive NoDup {A} : list A  Prop :=
  | NoDup_nil_2 : NoDup []
  | NoDup_cons_2 x l : x  l  NoDup l  NoDup (x :: l).

(** Decidability of equality of the carrier set is admissible, but we add it
anyway so as to avoid cycles in type class search. *)
Class FinCollection A C `{ElemOf A C} `{Empty C} `{Singleton A C}
650
651
    `{Union C} `{Intersection C} `{Difference C}
    `{Elements A C} `{ x y : A, Decision (x = y)} : Prop := {
Robbert Krebbers's avatar
Robbert Krebbers committed
652
  fin_collection :>> Collection A C;
653
  elements_spec X x : x  X  x  elements X;
Robbert Krebbers's avatar
Robbert Krebbers committed
654
  elements_nodup X : NoDup (elements X)
655
656
}.
Class Size C := size: C  nat.
657
Arguments size {_ _} !_ / : simpl nomatch.
658
Instance: Params (@size) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
659

660
661
662
663
664
665
666
667
668
669
(** The class [Collection M] axiomatizes a type constructor [M] that can be
used to construct a collection [M A] with elements of type [A]. The advantage
of this class, compared to [Collection], is that it also axiomatizes the
the monadic operations. The disadvantage, is that not many inhabits are
possible (we will only provide an inhabitant using unordered lists without
duplicates removed). More interesting implementations typically need
decidability of equality, or a total order on the elements, which do not fit
in a type constructor of type [Type → Type]. *)
Class CollectionMonad M `{ A, ElemOf A (M A)}
    `{ A, Empty (M A)} `{ A, Singleton A (M A)} `{ A, Union (M A)}
670
    `{!MBind M} `{!MRet M} `{!FMap M} `{!MJoin M} : Prop := {
671
672
673
  collection_monad_simple A :> SimpleCollection A (M A);
  elem_of_bind {A B} (f : A  M B) (X : M A) (x : B) :
    x  X = f   y, x  f y  y  X;
674
  elem_of_ret {A} (x y : A) : x  mret y  x = y;
675
676
  elem_of_fmap {A B} (f : A  B) (X : M A) (x : B) :
    x  f <$> X   y, x = f y  y  X;
677
  elem_of_join {A} (X : M (M A)) (x : A) : x  mjoin X   Y, x  Y  Y  X
678
679
}.

680
681
682
(** The function [fresh X] yields an element that is not contained in [X]. We
will later prove that [fresh] is [Proper] with respect to the induced setoid
equality on collections. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
683
Class Fresh A C := fresh: C  A.
684
Instance: Params (@fresh) 3.
685
Class FreshSpec A C `{ElemOf A C}
686
    `{Empty C} `{Singleton A C} `{Union C} `{Fresh A C} : Prop := {
687
  fresh_collection_simple :>> SimpleCollection A C;
688
  fresh_proper_alt X Y : ( x, x  X  x  Y)  fresh X = fresh Y;
Robbert Krebbers's avatar
Robbert Krebbers committed
689
690
691
  is_fresh (X : C) : fresh X  X
}.

692
(** * Miscellaneous *)
693
694
695
Class Half A := half: A  A.
Notation "x .½" := (half x) (at level 20, format "x .½") : C_scope.

696
697
Lemma proj1_sig_inj {A} (P : A  Prop) x (Px : P x) y (Py : P y) :
  xPx = yPy  x = y.
698
Proof. injection 1; trivial. Qed.
699
700
701
Lemma not_symmetry `{R : relation A} `{!Symmetric R} (x y : A) :
  ¬R x y  ¬R y x.
Proof. intuition. Qed.
702
703
704
705
Lemma symmetry_iff `(R : relation A) `{!Symmetric R} (x y : A) :
  R x y  R y x.
Proof. intuition. Qed.

706
707
708
(** ** Pointwise relations *)
(** These instances are in Coq trunk since revision 15455, but are not in Coq
8.4 yet. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
709
710
711
712
713
714
715
716
717
718
Instance pointwise_reflexive {A} `{R : relation B} :
  Reflexive R  Reflexive (pointwise_relation A R) | 9.
Proof. firstorder. Qed.
Instance pointwise_symmetric {A} `{R : relation B} :
  Symmetric R  Symmetric (pointwise_relation A R) | 9.
Proof. firstorder. Qed.
Instance pointwise_transitive {A} `{R : relation B} :
  Transitive R  Transitive (pointwise_relation A R) | 9.
Proof. firstorder. Qed.

719
(** ** Products *)
720
721
722
723
Definition fst_map {A A' B} (f : A  A') (p : A * B) : A' * B :=
  (f (fst p), snd p).
Definition snd_map {A B B'} (f : B  B') (p : A * B) : A * B' :=
  (fst p, f (snd p)).
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
Arguments fst_map {_ _ _} _ !_ /.
Arguments snd_map {_ _ _} _ !_ /.

Instance:  {A A' B} (f : A  A'),
  Injective (=) (=) f  Injective (=) (=) (@fst_map A A' B f).
Proof.
  intros ????? [??] [??]; simpl; intro; f_equal.
  * apply (injective f). congruence.
  * congruence.
Qed.
Instance:  {A B B'} (f : B  B'),
  Injective (=) (=) f  Injective (=) (=) (@snd_map A B B' f).
Proof.
  intros ????? [??] [??]; simpl; intro; f_equal.
  * congruence.
  * apply (injective f). congruence.
Qed.

742
743
Definition prod_relation {A B} (R1 : relation A) (R2 : relation B) :
  relation (A * B) := λ x y, R1 (fst x) (fst y)  R2 (snd x) (snd y).
Robbert Krebbers's avatar
Robbert Krebbers committed
744
745
746

Section prod_relation.
  Context `{R1 : relation A} `{R2 : relation B}.
747
748
  Global Instance:
    Reflexive R1  Reflexive R2  Reflexive (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
749
  Proof. firstorder eauto. Qed.
750
751
  Global Instance:
    Symmetric R1  Symmetric R2  Symmetric (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
752
  Proof. firstorder eauto. Qed.
753
754
  Global Instance:
    Transitive R1  Transitive R2  Transitive (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
755
  Proof. firstorder eauto. Qed.
756
757
  Global Instance:
    Equivalence R1  Equivalence R2  Equivalence (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
758
759
760
761
762
763
764
765
766
  Proof. split; apply _. Qed.
  Global Instance: Proper (R1 ==> R2 ==> prod_relation R1 R2) pair.
  Proof. firstorder eauto. Qed.
  Global Instance: Proper (prod_relation R1 R2 ==> R1) fst.
  Proof. firstorder eauto. Qed.
  Global Instance: Proper (prod_relation R1 R2 ==> R2) snd.
  Proof. firstorder eauto. Qed.
End prod_relation.

767
(** ** Other *)
768
Definition proj_relation {A B} (R : relation A)
769
  (f : B  A) : relation B := λ x y, R (f x) (f y).
770
771
772
Definition proj_relation_equivalence {A B} (R : relation A) (f : B  A) :
  Equivalence R  Equivalence (proj_relation R f).
Proof. unfold proj_relation. firstorder auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
773
774

Instance:  A B (x : B), Commutative (=) (λ _ _ : A, x).
775
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
776
Instance:  A (x : A), Associative (=) (λ _ _ : A, x).
777
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
778
Instance:  A, Associative (=) (λ x _ : A, x).
779
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
780
Instance:  A, Associative (=) (λ _ x : A, x).
781
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
782
Instance:  A, Idempotent (=) (λ x _ : A, x).
783
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
784
Instance:  A, Idempotent (=) (λ _ x : A, x).
785
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
786

787
788
Instance left_id_propholds {A} (R : relation A) i f :
  LeftId R i f   x, PropHolds (R (f i x) x).
789
Proof. red. trivial. Qed.
790
791
Instance right_id_propholds {A} (R : relation A) i f :
  RightId R i f   x, PropHolds (R (f x i) x).
792
Proof. red. trivial. Qed.
793
794
795
796
797
798
Instance left_absorb_propholds {A} (R : relation A) i f :
  LeftAbsorb R i f   x, PropHolds (R (f i x) i).
Proof. red. trivial. Qed.
Instance right_absorb_propholds {A} (R : relation A) i f :
  RightAbsorb R i f   x, PropHolds (R (f x i) i).
Proof. red. trivial. Qed.
799
800
Instance idem_propholds {A} (R : relation A) f :
  Idempotent R f   x, PropHolds (R (f x x) x).
801
Proof. red. trivial. Qed.