base.v 33.9 KB
Newer Older
1
(* Copyright (c) 2012-2013, Robbert Krebbers. *)
2 3 4 5 6
(* This file is distributed under the terms of the BSD license. *)
(** This file collects type class interfaces, notations, and general theorems
that are used throughout the whole development. Most importantly it contains
abstract interfaces for ordered structures, collections, and various other data
structures. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
7 8 9 10
Global Generalizable All Variables.
Global Set Automatic Coercions Import.
Require Export Morphisms RelationClasses List Bool Utf8 Program Setoid NArith.

11 12 13 14
(** * General *)
(** The following coercion allows us to use Booleans as propositions. *)
Coercion Is_true : bool >-> Sortclass.

15 16
(** Ensure that [simpl] unfolds [id], [compose], and [flip] when fully
applied. *)
17 18
Arguments id _ _/.
Arguments compose _ _ _ _ _ _ /.
19
Arguments flip _ _ _ _ _ _/.
20

21 22 23 24
(** Change [True] and [False] into notations in order to enable overloading.
We will use this in the file [assertions] to give [True] and [False] a
different interpretation in [assert_scope] used for assertions of our axiomatic
semantics. *)
25 26
Notation "'True'" := True : type_scope.
Notation "'False'" := False : type_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
27

28 29 30
Notation curry := prod_curry.
Notation uncurry := prod_uncurry.

31 32
(** Throughout this development we use [C_scope] for all general purpose
notations that do not belong to a more specific scope. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
33 34 35
Delimit Scope C_scope with C.
Global Open Scope C_scope.

36
(** Introduce some Haskell style like notations. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
37 38 39 40 41 42 43 44 45
Notation "(=)" := eq (only parsing) : C_scope.
Notation "( x =)" := (eq x) (only parsing) : C_scope.
Notation "(= x )" := (λ y, eq y x) (only parsing) : C_scope.
Notation "(≠)" := (λ x y, x  y) (only parsing) : C_scope.
Notation "( x ≠)" := (λ y, x  y) (only parsing) : C_scope.
Notation "(≠ x )" := (λ y, y  x) (only parsing) : C_scope.

Hint Extern 0 (?x = ?x) => reflexivity.

46 47 48 49
Notation "(→)" := (λ A B, A  B) (only parsing) : C_scope.
Notation "( A →)" := (λ B, A  B) (only parsing) : C_scope.
Notation "(→ B )" := (λ A, A  B) (only parsing) : C_scope.

50
Notation "t $ r" := (t r)
51
  (at level 65, right associativity, only parsing) : C_scope.
52 53 54
Notation "($)" := (λ f x, f x) (only parsing) : C_scope.
Notation "($ x )" := (λ f, f x) (only parsing) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
55 56 57 58
Infix "∘" := compose : C_scope.
Notation "(∘)" := compose (only parsing) : C_scope.
Notation "( f ∘)" := (compose f) (only parsing) : C_scope.
Notation "(∘ f )" := (λ g, compose g f) (only parsing) : C_scope.
59

60 61 62 63 64 65 66 67 68 69 70 71
Notation "(∧)" := and (only parsing) : C_scope.
Notation "( A ∧)" := (and A) (only parsing) : C_scope.
Notation "(∧ B )" := (λ A, A  B) (only parsing) : C_scope.

Notation "(∨)" := or (only parsing) : C_scope.
Notation "( A ∨)" := (or A) (only parsing) : C_scope.
Notation "(∨ B )" := (λ A, A  B) (only parsing) : C_scope.

Notation "(↔)" := iff (only parsing) : C_scope.
Notation "( A ↔)" := (iff A) (only parsing) : C_scope.
Notation "(↔ B )" := (λ A, A  B) (only parsing) : C_scope.

72 73
(** Set convenient implicit arguments for [existT] and introduce notations. *)
Arguments existT {_ _} _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
74 75 76
Notation "x ↾ p" := (exist _ x p) (at level 20) : C_scope.
Notation "` x" := (proj1_sig x) : C_scope.

77 78 79 80
(** * Type classes *)
(** ** Provable propositions *)
(** This type class collects provable propositions. It is useful to constraint
type classes by arbitrary propositions. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
81 82
Class PropHolds (P : Prop) := prop_holds: P.

83 84
Hint Extern 0 (PropHolds _) => assumption : typeclass_instances.
Instance: Proper (iff ==> iff) PropHolds.
85
Proof. repeat intro; trivial. Qed.
86 87 88

Ltac solve_propholds :=
  match goal with
89 90
  | |- PropHolds (?P) => apply _
  | |- ?P => change (PropHolds P); apply _
91 92 93 94 95 96 97
  end.

(** ** Decidable propositions *)
(** This type class by (Spitters/van der Weegen, 2011) collects decidable
propositions. For example to declare a parameter expressing decidable equality
on a type [A] we write [`{∀ x y : A, Decision (x = y)}] and use it by writing
[decide (x = y)]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
98 99 100
Class Decision (P : Prop) := decide : {P} + {¬P}.
Arguments decide _ {_}.

101 102 103 104 105 106 107 108 109
(** ** Inhabited types *)
(** This type class collects types that are inhabited. *)
Class Inhabited (A : Type) : Prop := populate { _ : A }.
Arguments populate {_} _.

Instance unit_inhabited: Inhabited unit := populate ().
Instance list_inhabited {A} : Inhabited (list A) := populate [].
Instance prod_inhabited {A B} (iA : Inhabited A)
    (iB : Inhabited B) : Inhabited (A * B) :=
110
  match iA, iB with populate x, populate y => populate (x,y) end.
111
Instance sum_inhabited_l {A B} (iA : Inhabited A) : Inhabited (A + B) :=
112
  match iA with populate x => populate (inl x) end.
113
Instance sum_inhabited_r {A B} (iB : Inhabited A) : Inhabited (A + B) :=
114
  match iB with populate y => populate (inl y) end.
115 116
Instance option_inhabited {A} : Inhabited (option A) := populate None.

117 118 119 120 121 122
(** ** Proof irrelevant types *)
(** This type class collects types that are proof irrelevant. That means, all
elements of the type are equal. We use this notion only used for propositions,
but by universe polymorphism we can generalize it. *)
Class ProofIrrel (A : Type) : Prop := proof_irrel (x y : A) : x = y.

123 124 125
(** ** Setoid equality *)
(** We define an operational type class for setoid equality. This is based on
(Spitters/van der Weegen, 2011). *)
Robbert Krebbers's avatar
Robbert Krebbers committed
126 127 128 129 130 131 132 133 134 135
Class Equiv A := equiv: relation A.
Infix "≡" := equiv (at level 70, no associativity) : C_scope.
Notation "(≡)" := equiv (only parsing) : C_scope.
Notation "( x ≡)" := (equiv x) (only parsing) : C_scope.
Notation "(≡ x )" := (λ y, y  x) (only parsing) : C_scope.
Notation "(≢)" := (λ x y, ¬x  y) (only parsing) : C_scope.
Notation "x ≢ y":= (¬x  y) (at level 70, no associativity) : C_scope.
Notation "( x ≢)" := (λ y, x  y) (only parsing) : C_scope.
Notation "(≢ x )" := (λ y, y  x) (only parsing) : C_scope.

136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
(** The type class [LeibnizEquiv] collects setoid equalities that coincide
with Leibniz equality. We provide the tactic [fold_leibniz] to transform such
setoid equalities into Leibniz equalities, and [unfold_leibniz] for the
reverse. *)
Class LeibnizEquiv A `{Equiv A} := leibniz_equiv x y : x  y  x = y.

Ltac fold_leibniz := repeat
  match goal with
  | H : context [ @equiv ?A _ _ _ ] |- _ =>
    setoid_rewrite (leibniz_equiv (A:=A)) in H
  | |- context [ @equiv ?A _ _ _ ] =>
    setoid_rewrite (leibniz_equiv (A:=A))
  end.
Ltac unfold_leibniz := repeat
  match goal with
  | H : context [ @eq ?A _ _ ] |- _ =>
    setoid_rewrite <-(leibniz_equiv (A:=A)) in H
  | |- context [ @eq ?A _ _ ] =>
    setoid_rewrite <-(leibniz_equiv (A:=A))
  end.

157 158 159 160 161 162 163 164
(** A [Params f n] instance forces the setoid rewriting mechanism not to
rewrite in the first [n] arguments of the function [f]. We will declare such
instances for all operational type classes in this development. *)
Instance: Params (@equiv) 2.

(** The following instance forces [setoid_replace] to use setoid equality
(for types that have an [Equiv] instance) rather than the standard Leibniz
equality. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
165
Instance equiv_default_relation `{Equiv A} : DefaultRelation () | 3.
166 167
Hint Extern 0 (_  _) => reflexivity.
Hint Extern 0 (_  _) => symmetry; assumption.
Robbert Krebbers's avatar
Robbert Krebbers committed
168

169
(** ** Operations on collections *)
170
(** We define operational type classes for the traditional operations and
171
relations on collections: the empty collection [∅], the union [(∪)],
172 173
intersection [(∩)], and difference [(∖)], the singleton [{[_]}], the subset
[(⊆)] and element of [(∈)] relation, and disjointess [(⊥)]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
174 175 176 177
Class Empty A := empty: A.
Notation "∅" := empty : C_scope.

Class Union A := union: A  A  A.
178
Instance: Params (@union) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
179 180 181 182 183
Infix "∪" := union (at level 50, left associativity) : C_scope.
Notation "(∪)" := union (only parsing) : C_scope.
Notation "( x ∪)" := (union x) (only parsing) : C_scope.
Notation "(∪ x )" := (λ y, union y x) (only parsing) : C_scope.

184
Definition union_list `{Empty A} `{Union A} : list A  A := fold_right () .
185 186 187
Arguments union_list _ _ _ !_ /.
Notation "⋃ l" := (union_list l) (at level 20, format "⋃  l") : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
188
Class Intersection A := intersection: A  A  A.
189
Instance: Params (@intersection) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
190 191 192 193 194 195
Infix "∩" := intersection (at level 40) : C_scope.
Notation "(∩)" := intersection (only parsing) : C_scope.
Notation "( x ∩)" := (intersection x) (only parsing) : C_scope.
Notation "(∩ x )" := (λ y, intersection y x) (only parsing) : C_scope.

Class Difference A := difference: A  A  A.
196
Instance: Params (@difference) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
197 198 199 200 201
Infix "∖" := difference (at level 40) : C_scope.
Notation "(∖)" := difference (only parsing) : C_scope.
Notation "( x ∖)" := (difference x) (only parsing) : C_scope.
Notation "(∖ x )" := (λ y, difference y x) (only parsing) : C_scope.

202 203
Class Singleton A B := singleton: A  B.
Instance: Params (@singleton) 3.
204
Notation "{[ x ]}" := (singleton x) (at level 1) : C_scope.
205
Notation "{[ x ; y ; .. ; z ]}" :=
206 207 208 209 210 211
  (union .. (union (singleton x) (singleton y)) .. (singleton z))
  (at level 1) : C_scope.
Notation "{[ x , y ]}" := (singleton (x,y))
  (at level 1, y at next level) : C_scope.
Notation "{[ x , y , z ]}" := (singleton (x,y,z))
  (at level 1, y at next level, z at next level) : C_scope.
212

Robbert Krebbers's avatar
Robbert Krebbers committed
213
Class SubsetEq A := subseteq: A  A  Prop.
214
Instance: Params (@subseteq) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
215 216 217 218 219 220 221 222
Infix "⊆" := subseteq (at level 70) : C_scope.
Notation "(⊆)" := subseteq (only parsing) : C_scope.
Notation "( X ⊆ )" := (subseteq X) (only parsing) : C_scope.
Notation "( ⊆ X )" := (λ Y, subseteq Y X) (only parsing) : C_scope.
Notation "X ⊈ Y" := (¬X  Y) (at level 70) : C_scope.
Notation "(⊈)" := (λ X Y, X  Y) (only parsing) : C_scope.
Notation "( X ⊈ )" := (λ Y, X  Y) (only parsing) : C_scope.
Notation "( ⊈ X )" := (λ Y, Y  X) (only parsing) : C_scope.
223 224
Infix "⊆*" := (Forall2 subseteq) (at level 70) : C_scope.
Notation "(⊆*)" := (Forall2 subseteq) (only parsing) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
225

226 227 228 229 230 231 232 233 234 235 236 237
Hint Extern 0 (_  _) => reflexivity.

Class Subset A := subset: A  A  Prop.
Instance: Params (@subset) 2.
Infix "⊂" := subset (at level 70) : C_scope.
Notation "(⊂)" := subset (only parsing) : C_scope.
Notation "( X ⊂ )" := (subset X) (only parsing) : C_scope.
Notation "( ⊂ X )" := (λ Y, subset Y X) (only parsing) : C_scope.
Notation "X ⊄  Y" := (¬X  Y) (at level 70) : C_scope.
Notation "(⊄)" := (λ X Y, X  Y) (only parsing) : C_scope.
Notation "( X ⊄ )" := (λ Y, X  Y) (only parsing) : C_scope.
Notation "( ⊄ X )" := (λ Y, Y  X) (only parsing) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
238 239

Class ElemOf A B := elem_of: A  B  Prop.
240
Instance: Params (@elem_of) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
241 242 243 244 245 246 247 248 249
Infix "∈" := elem_of (at level 70) : C_scope.
Notation "(∈)" := elem_of (only parsing) : C_scope.
Notation "( x ∈)" := (elem_of x) (only parsing) : C_scope.
Notation "(∈ X )" := (λ x, elem_of x X) (only parsing) : C_scope.
Notation "x ∉ X" := (¬x  X) (at level 80) : C_scope.
Notation "(∉)" := (λ x X, x  X) (only parsing) : C_scope.
Notation "( x ∉)" := (λ X, x  X) (only parsing) : C_scope.
Notation "(∉ X )" := (λ x, x  X) (only parsing) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
250 251 252 253
Class Disjoint A := disjoint : A  A  Prop.
Instance: Params (@disjoint) 2.
Infix "⊥" := disjoint (at level 70) : C_scope.
Notation "(⊥)" := disjoint (only parsing) : C_scope.
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
Notation "( X ⊥.)" := (disjoint X) (only parsing) : C_scope.
Notation "(.⊥ X )" := (λ Y, disjoint Y X) (only parsing) : C_scope.

Class DisjointList A := disjoint_list : list A  Prop.
Instance: Params (@disjoint_list) 2.
Notation "⊥ l" := (disjoint_list l) (at level 20, format "⊥  l") : C_scope.

Section default_disjoint_list.
  Context `{Empty A} `{Union A} `{Disjoint A}.
  Inductive default_disjoint_list : DisjointList A :=
    | disjoint_nil_2 :  []
    | disjoint_cons_2 X Xs : X   Xs   Xs   (X :: Xs).
  Global Existing Instance default_disjoint_list.

  Lemma disjoint_list_nil :  @nil A  True.
  Proof. split; constructor. Qed.
  Lemma disjoint_list_cons X Xs :  (X :: Xs)  X   Xs   Xs.
  Proof. split. inversion_clear 1; auto. intros [??]. constructor; auto. Qed.
End default_disjoint_list.

Class Filter A B := filter:  (P : A  Prop) `{ x, Decision (P x)}, B  B.
275

276 277 278 279 280
(** We define variants of the relations [(≡)] and [(⊆)] that are indexed by
an environment. *)
Class EquivEnv A B := equiv_env : A  relation B.
Notation "X ≡@{ E } Y" := (equiv_env E X Y)
  (at level 70, format "X  ≡@{ E }  Y") : C_scope.
281
Notation "(≡@{ E } )" := (equiv_env E) (E at level 1, only parsing) : C_scope.
282 283 284
Instance: Params (@equiv_env) 4.

Class SubsetEqEnv A B := subseteq_env : A  relation B.
285 286 287 288 289 290 291 292
Instance: Params (@subseteq_env) 4.
Notation "X ⊑@{ E } Y" := (subseteq_env E X Y)
  (at level 70, format "X  ⊑@{ E }  Y") : C_scope.
Notation "(⊑@{ E } )" := (subseteq_env E)
  (E at level 1, only parsing) : C_scope.
Notation "X ⊑@{ E }* Y" := (Forall2 (subseteq_env E) X Y)
  (at level 70, format "X  ⊑@{ E }*  Y") : C_scope.
Notation "(⊑@{ E }*)" := (Forall2 (subseteq_env E))
293 294 295
  (E at level 1, only parsing) : C_scope.
Instance: Params (@subseteq_env) 4.

296 297 298
Hint Extern 0 (_ @{_} _) => reflexivity.
Hint Extern 0 (_ @{_} _) => reflexivity.

299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
(** ** Monadic operations *)
(** We define operational type classes for the monadic operations bind, join 
and fmap. These type classes are defined in a non-standard way by taking the
function as a parameter of the class. For example, we define
<<
  Class FMapD := fmap: ∀ {A B}, (A → B) → M A → M B.
>>
instead of
<<
  Class FMap {A B} (f : A → B) := fmap: M A → M B.
>>
This approach allows us to define [fmap] on lists such that [simpl] unfolds it
in the appropriate way, and so that it can be used for mutual recursion
(the mapped function [f] is not part of the fixpoint) as well. This is a hack,
and should be replaced by something more appropriate in future versions. *)

315
(** We use these type classes merely for convenient overloading of notations and
316 317 318 319 320 321 322 323 324
do not formalize any theory on monads (we do not even define a class with the
monad laws). *)
Class MRet (M : Type  Type) := mret:  {A}, A  M A.
Instance: Params (@mret) 3.
Arguments mret {_ _ _} _.

Class MBindD (M : Type  Type) {A B} (f : A  M B) := mbind: M A  M B.
Notation MBind M := ( {A B} (f : A  M B), MBindD M f)%type.
Instance: Params (@mbind) 5.
325
Arguments mbind {_ _ _} _ {_} !_ /.
326 327 328

Class MJoin (M : Type  Type) := mjoin:  {A}, M (M A)  M A.
Instance: Params (@mjoin) 3.
329
Arguments mjoin {_ _ _} !_ /.
330 331 332 333

Class FMapD (M : Type  Type) {A B} (f : A  B) := fmap: M A  M B.
Notation FMap M := ( {A B} (f : A  B), FMapD M f)%type.
Instance: Params (@fmap) 6.
334
Arguments fmap {_ _ _} _ {_} !_ /.
335 336 337 338 339 340 341

Notation "m ≫= f" := (mbind f m) (at level 60, right associativity) : C_scope.
Notation "( m ≫=)" := (λ f, mbind f m) (only parsing) : C_scope.
Notation "(≫= f )" := (mbind f) (only parsing) : C_scope.
Notation "(≫=)" := (λ m f, mbind f m) (only parsing) : C_scope.

Notation "x ← y ; z" := (y = (λ x : _, z))
342
  (at level 65, next at level 35, only parsing, right associativity) : C_scope.
343
Infix "<$>" := fmap (at level 60, right associativity) : C_scope.
344 345

Class MGuard (M : Type  Type) :=
346 347 348 349 350 351
  mguard:  P {dec : Decision P} {A}, (P  M A)  M A.
Arguments mguard _ _ _ !_ _ _ /.
Notation "'guard' P ; o" := (mguard P (λ _, o))
  (at level 65, next at level 35, only parsing, right associativity) : C_scope.
Notation "'guard' P 'as' H ; o" := (mguard P (λ H, o))
  (at level 65, next at level 35, only parsing, right associativity) : C_scope.
352

353
(** ** Operations on maps *)
354 355
(** In this section we define operational type classes for the operations
on maps. In the file [fin_maps] we will axiomatize finite maps.
356
The function look up [m !! k] should yield the element at key [k] in [m]. *)
357
Class Lookup (K A M : Type) := lookup: K  M  option A.
358 359 360 361 362 363
Instance: Params (@lookup) 4.

Notation "m !! i" := (lookup i m) (at level 20) : C_scope.
Notation "(!!)" := lookup (only parsing) : C_scope.
Notation "( m !!)" := (λ i, lookup i m) (only parsing) : C_scope.
Notation "(!! i )" := (lookup i) (only parsing) : C_scope.
364
Arguments lookup _ _ _ _ !_ !_ / : simpl nomatch.
365 366 367

(** The function insert [<[k:=a]>m] should update the element at key [k] with
value [a] in [m]. *)
368
Class Insert (K A M : Type) := insert: K  A  M  M.
369 370 371
Instance: Params (@insert) 4.
Notation "<[ k := a ]>" := (insert k a)
  (at level 5, right associativity, format "<[ k := a ]>") : C_scope.
372
Arguments insert _ _ _ _ !_ _ !_ / : simpl nomatch.
373

374 375 376
(** The function delete [delete k m] should delete the value at key [k] in
[m]. If the key [k] is not a member of [m], the original map should be
returned. *)
377
Class Delete (K M : Type) := delete: K  M  M.
378 379
Instance: Params (@delete) 3.
Arguments delete _ _ _ !_ !_ / : simpl nomatch.
380 381

(** The function [alter f k m] should update the value at key [k] using the
382
function [f], which is called with the original value. *)
383
Class AlterD (K A M : Type) (f : A  A) := alter: K  M  M.
384 385 386
Notation Alter K A M := ( (f : A  A), AlterD K A M f)%type.
Instance: Params (@alter) 5.
Arguments alter {_ _ _} _ {_} !_ !_ / : simpl nomatch.
387 388

(** The function [alter f k m] should update the value at key [k] using the
389 390 391
function [f], which is called with the original value at key [k] or [None]
if [k] is not a member of [m]. The value at [k] should be deleted if [f] 
yields [None]. *)
392 393
Class PartialAlter (K A M : Type) :=
  partial_alter: (option A  option A)  K  M  M.
394
Instance: Params (@partial_alter) 4.
395
Arguments partial_alter _ _ _ _ _ !_ !_ / : simpl nomatch.
396 397 398

(** The function [dom C m] should yield the domain of [m]. That is a finite
collection of type [C] that contains the keys that are a member of [m]. *)
399 400 401
Class Dom (M C : Type) := dom: M  C.
Instance: Params (@dom) 3.
Arguments dom {_} _ {_} !_ / : simpl nomatch, clear implicits.
402 403

(** The function [merge f m1 m2] should merge the maps [m1] and [m2] by
404 405 406 407 408
constructing a new map whose value at key [k] is [f (m1 !! k) (m2 !! k)].*)
Class Merge (M : Type  Type) :=
  merge:  {A B C}, (option A  option B  option C)  M A  M B  M C.
Instance: Params (@merge) 4.
Arguments merge _ _ _ _ _ _ !_ !_ / : simpl nomatch.
409 410

(** We lift the insert and delete operation to lists of elements. *)
411
Definition insert_list `{Insert K A M} (l : list (K * A)) (m : M) : M :=
412 413
  fold_right (λ p, <[ fst p := snd p ]>) m l.
Instance: Params (@insert_list) 4.
414
Definition delete_list `{Delete K M} (l : list K) (m : M) : M :=
415
  fold_right delete m l.
416 417
Instance: Params (@delete_list) 3.

418 419
Definition insert_consecutive `{Insert nat A M} (i : nat) (l : list A)
  (m : M) : M := fold_right (λ x f i, <[i:=x]>(f (S i))) (λ _, m) l i.
420 421 422 423 424 425 426
Instance: Params (@insert_consecutive) 3.

(** The function [union_with f m1 m2] is supposed to yield the union of [m1]
and [m2] using the function [f] to combine values of members that are in
both [m1] and [m2]. *)
Class UnionWith (A M : Type) :=
  union_with: (A  A  option A)  M  M  M.
427
Instance: Params (@union_with) 3.
428
Arguments union_with {_ _ _} _ !_ !_ / : simpl nomatch.
429

430 431 432
(** Similarly for intersection and difference. *)
Class IntersectionWith (A M : Type) :=
  intersection_with: (A  A  option A)  M  M  M.
433
Instance: Params (@intersection_with) 3.
434 435
Arguments intersection_with {_ _ _} _ !_ !_ / : simpl nomatch.

436 437
Class DifferenceWith (A M : Type) :=
  difference_with: (A  A  option A)  M  M  M.
438
Instance: Params (@difference_with) 3.
439
Arguments difference_with {_ _ _} _ !_ !_ / : simpl nomatch.
Robbert Krebbers's avatar
Robbert Krebbers committed
440

441 442 443 444
Definition intersection_with_list `{IntersectionWith A M}
  (f : A  A  option A) : M  list M  M := fold_right (intersection_with f).
Arguments intersection_with_list _ _ _ _ _ !_ /.

445 446 447 448
(** ** Common properties *)
(** These operational type classes allow us to refer to common mathematical
properties in a generic way. For example, for injectivity of [(k ++)] it
allows us to write [injective (k ++)] instead of [app_inv_head k]. *)
449 450 451 452 453
Class Injective {A B} (R : relation A) (S : relation B) (f : A  B) : Prop :=
  injective:  x y, S (f x) (f y)  R x y.
Class Injective2 {A B C} (R1 : relation A) (R2 : relation B)
    (S : relation C) (f : A  B  C) : Prop :=
  injective2:  x1 x2  y1 y2, S (f x1 x2) (f y1 y2)  R1 x1 y1  R2 x2 y2.
454
Class Idempotent {A} (R : relation A) (f : A  A  A) : Prop :=
455
  idempotent:  x, R (f x x) x.
456
Class Commutative {A B} (R : relation A) (f : B  B  A) : Prop :=
457
  commutative:  x y, R (f x y) (f y x).
458
Class LeftId {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
459
  left_id:  x, R (f i x) x.
460
Class RightId {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
461
  right_id:  x, R (f x i) x.
462
Class Associative {A} (R : relation A) (f : A  A  A) : Prop :=
463
  associative:  x y z, R (f x (f y z)) (f (f x y) z).
464
Class LeftAbsorb {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
465
  left_absorb:  x, R (f i x) i.
466
Class RightAbsorb {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
467
  right_absorb:  x, R (f x i) i.
468 469 470 471
Class LeftDistr {A} (R : relation A) (f g : A  A  A) : Prop :=
  left_distr:  x y z, R (f x (g y z)) (g (f x y) (f x z)).
Class RightDistr {A} (R : relation A) (f g : A  A  A) : Prop :=
  right_distr:  y z x, R (f (g y z) x) (g (f y x) (f z x)).
472 473
Class AntiSymmetric {A} (R S : relation A) : Prop :=
  anti_symmetric:  x y, S x y  S y x  R x y.
Robbert Krebbers's avatar
Robbert Krebbers committed
474

475
Arguments irreflexivity {_} _ {_} _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
476
Arguments injective {_ _ _ _} _ {_} _ _ _.
477
Arguments injective2 {_ _ _ _ _ _} _ {_} _ _ _ _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
478 479 480 481 482
Arguments idempotent {_ _} _ {_} _.
Arguments commutative {_ _ _} _ {_} _ _.
Arguments left_id {_ _} _ _ {_} _.
Arguments right_id {_ _} _ _ {_} _.
Arguments associative {_ _} _ {_} _ _ _.
483 484
Arguments left_absorb {_ _} _ _ {_} _.
Arguments right_absorb {_ _} _ _ {_} _.
485 486
Arguments left_distr {_ _} _ _ {_} _ _ _.
Arguments right_distr {_ _} _ _ {_} _ _ _.
487
Arguments anti_symmetric {_ _} _ {_} _ _ _ _.
488

489 490
Lemma impl_transitive (P Q R : Prop) : (P  Q)  (Q  R)  (P  R).
Proof. tauto. Qed.
491 492 493 494
Instance: Commutative () (@eq A).
Proof. red. intuition. Qed.
Instance: Commutative () (λ x y, @eq A y x).
Proof. red. intuition. Qed.
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
Instance: Commutative () ().
Proof. red. intuition. Qed.
Instance: Commutative () ().
Proof. red. intuition. Qed.
Instance: Associative () ().
Proof. red. intuition. Qed.
Instance: Idempotent () ().
Proof. red. intuition. Qed.
Instance: Commutative () ().
Proof. red. intuition. Qed.
Instance: Associative () ().
Proof. red. intuition. Qed.
Instance: Idempotent () ().
Proof. red. intuition. Qed.
Instance: LeftId () True ().
Proof. red. intuition. Qed.
Instance: RightId () True ().
Proof. red. intuition. Qed.
Instance: LeftAbsorb () False ().
Proof. red. intuition. Qed.
Instance: RightAbsorb () False ().
Proof. red. intuition. Qed.
Instance: LeftId () False ().
Proof. red. intuition. Qed.
Instance: RightId () False ().
Proof. red. intuition. Qed.
Instance: LeftAbsorb () True ().
Proof. red. intuition. Qed.
Instance: RightAbsorb () True ().
Proof. red. intuition. Qed.
Instance: LeftId () True impl.
Proof. unfold impl. red. intuition. Qed.
Instance: RightAbsorb () True impl.
Proof. unfold impl. red. intuition. Qed.
529 530 531 532 533 534 535 536
Instance: LeftDistr () () ().
Proof. red. intuition. Qed.
Instance: RightDistr () () ().
Proof. red. intuition. Qed.
Instance: LeftDistr () () ().
Proof. red. intuition. Qed.
Instance: RightDistr () () ().
Proof. red. intuition. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
537

538 539 540 541
(** The following lemmas are specific versions of the projections of the above
type classes for Leibniz equality. These lemmas allow us to enforce Coq not to
use the setoid rewriting mechanism. *)
Lemma idempotent_L {A} (f : A  A  A) `{!Idempotent (=) f} x : f x x = x.
542
Proof. auto. Qed.
543
Lemma commutative_L {A B} (f : B  B  A) `{!Commutative (=) f} x y :
544
  f x y = f y x.
545
Proof. auto. Qed.
546
Lemma left_id_L {A} (i : A) (f : A  A  A) `{!LeftId (=) i f} x : f i x = x.
547
Proof. auto. Qed.
548
Lemma right_id_L {A} (i : A) (f : A  A  A) `{!RightId (=) i f} x : f x i = x.
549
Proof. auto. Qed.
550
Lemma associative_L {A} (f : A  A  A) `{!Associative (=) f} x y z :
551
  f x (f y z) = f (f x y) z.
552
Proof. auto. Qed.
553
Lemma left_absorb_L {A} (i : A) (f : A  A  A) `{!LeftAbsorb (=) i f} x :
554 555
  f i x = i.
Proof. auto. Qed.
556
Lemma right_absorb_L {A} (i : A) (f : A  A  A) `{!RightAbsorb (=) i f} x :
557 558
  f x i = i.
Proof. auto. Qed.
559
Lemma left_distr_L {A} (f g : A  A  A) `{!LeftDistr (=) f g} x y z :
560 561
  f x (g y z) = g (f x y) (f x z).
Proof. auto. Qed.
562
Lemma right_distr_L {A} (f g : A  A  A) `{!RightDistr (=) f g} y z x :
563 564
  f (g y z) x = g (f y x) (f z x).
Proof. auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
565

566
(** ** Axiomatization of ordered structures *)
567 568
(** A pre-order equipped with a smallest element. *)
Class BoundedPreOrder A `{Empty A} `{SubsetEq A} : Prop := {
Robbert Krebbers's avatar
Robbert Krebbers committed
569 570 571
  bounded_preorder :>> PreOrder ();
  subseteq_empty x :   x
}.
572 573 574
Class PartialOrder {A} (R : relation A) : Prop := {
  po_preorder :> PreOrder R;
  po_antisym :> AntiSymmetric (=) R
575
}.
Robbert Krebbers's avatar
Robbert Krebbers committed
576

577
(** We do not include equality in the following interfaces so as to avoid the
578
need for proofs that the relations and operations respect setoid equality.
579 580
Instead, we will define setoid equality in a generic way as
[λ X Y, X ⊆ Y ∧ Y ⊆ X]. *)
581
Class BoundedJoinSemiLattice A `{Empty A} `{SubsetEq A} `{Union A} : Prop := {
582
  bjsl_preorder :>> BoundedPreOrder A;
583 584
  union_subseteq_l x y : x  x  y;
  union_subseteq_r x y : y  x  y;
Robbert Krebbers's avatar
Robbert Krebbers committed
585 586
  union_least x y z : x  z  y  z  x  y  z
}.
587
Class MeetSemiLattice A `{Empty A} `{SubsetEq A} `{Intersection A} : Prop := {
Robbert Krebbers's avatar
Robbert Krebbers committed
588
  msl_preorder :>> BoundedPreOrder A;
589 590
  intersection_subseteq_l x y : x  y  x;
  intersection_subseteq_r x y : x  y  y;
Robbert Krebbers's avatar
Robbert Krebbers committed
591 592
  intersection_greatest x y z : z  x  z  y  z  x  y
}.
593 594 595 596

(** A join distributive lattice with distributivity stated in the order
theoretic way. We will prove that distributivity of join, and distributivity
as an equality can be derived. *)
597
Class LowerBoundedLattice A `{Empty A} `{SubsetEq A}
598
    `{Union A} `{Intersection A} : Prop := {
599
  lbl_bjsl :>> BoundedJoinSemiLattice A;
600 601
  lbl_msl :>> MeetSemiLattice A;
  lbl_distr x y z : (x  y)  (x  z)  x  (y  z)
602
}.
603

604
(** ** Axiomatization of collections *)
605 606
(** The class [SimpleCollection A C] axiomatizes a collection of type [C] with
elements of type [A]. *)
607
Instance: Params (@map) 3.
608
Class SimpleCollection A C `{ElemOf A C}
609
    `{Empty C} `{Singleton A C} `{Union C} : Prop := {
610
  not_elem_of_empty (x : A) : x  ;
611
  elem_of_singleton (x y : A) : x  {[ y ]}  x = y;
612 613 614
  elem_of_union X Y (x : A) : x  X  Y  x  X  x  Y
}.
Class Collection A C `{ElemOf A C} `{Empty C} `{Singleton A C}
615
    `{Union C} `{Intersection C} `{Difference C} : Prop := {
616
  collection_simple :>> SimpleCollection A C;
Robbert Krebbers's avatar
Robbert Krebbers committed
617
  elem_of_intersection X Y (x : A) : x  X  Y  x  X  x  Y;
618 619 620 621 622 623 624
  elem_of_difference X Y (x : A) : x  X  Y  x  X  x  Y
}.
Class CollectionOps A C
    `{ElemOf A C} `{Empty C} `{Singleton A C}
    `{Union C} `{Intersection C} `{Difference C}
    `{IntersectionWith A C} `{Filter A C} : Prop := {
  collection_ops :>> Collection A C;
625
  elem_of_intersection_with (f : A  A  option A) X Y (x : A) :
626 627 628
    x  intersection_with f X Y   x1 x2, x1  X  x2  Y  f x1 x2 = Some x;
  elem_of_filter X P `{ x, Decision (P x)} x :
    x  filter P X  P x  x  X
Robbert Krebbers's avatar
Robbert Krebbers committed
629 630
}.

631 632 633
(** We axiomative a finite collection as a collection whose elements can be
enumerated as a list. These elements, given by the [elements] function, may be
in any order and should not contain duplicates. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
634
Class Elements A C := elements: C  list A.
635
Instance: Params (@elements) 3.
636 637 638 639 640 641 642 643 644 645 646 647 648 649

(** We redefine the standard library's [In] and [NoDup] using type classes. *)
Inductive elem_of_list {A} : ElemOf A (list A) :=
  | elem_of_list_here (x : A) l : x  x :: l
  | elem_of_list_further (x y : A) l : x  l  x  y :: l.
Existing Instance elem_of_list.

Inductive NoDup {A} : list A  Prop :=
  | NoDup_nil_2 : NoDup []
  | NoDup_cons_2 x l : x  l  NoDup l  NoDup (x :: l).

(** Decidability of equality of the carrier set is admissible, but we add it
anyway so as to avoid cycles in type class search. *)
Class FinCollection A C `{ElemOf A C} `{Empty C} `{Singleton A C}
650 651
    `{Union C} `{Intersection C} `{Difference C}
    `{Elements A C} `{ x y : A, Decision (x = y)} : Prop := {
Robbert Krebbers's avatar
Robbert Krebbers committed
652
  fin_collection :>> Collection A C;
653
  elements_spec X x : x  X  x  elements X;
Robbert Krebbers's avatar
Robbert Krebbers committed
654
  elements_nodup X : NoDup (elements X)
655 656
}.
Class Size C := size: C  nat.
657
Arguments size {_ _} !_ / : simpl nomatch.
658
Instance: Params (@size) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
659

660 661 662 663 664 665 666 667 668 669
(** The class [Collection M] axiomatizes a type constructor [M] that can be
used to construct a collection [M A] with elements of type [A]. The advantage
of this class, compared to [Collection], is that it also axiomatizes the
the monadic operations. The disadvantage, is that not many inhabits are
possible (we will only provide an inhabitant using unordered lists without
duplicates removed). More interesting implementations typically need
decidability of equality, or a total order on the elements, which do not fit
in a type constructor of type [Type → Type]. *)
Class CollectionMonad M `{ A, ElemOf A (M A)}
    `{ A, Empty (M A)} `{ A, Singleton A (M A)} `{ A, Union (M A)}
670
    `{!MBind M} `{!MRet M} `{!FMap M} `{!MJoin M} : Prop := {
671 672 673
  collection_monad_simple A :> SimpleCollection A (M A);
  elem_of_bind {A B} (f : A  M B) (X : M A) (x : B) :
    x  X = f   y, x  f y  y  X;
674
  elem_of_ret {A} (x y : A) : x  mret y  x = y;
675 676
  elem_of_fmap {A B} (f : A  B) (X : M A) (x : B) :
    x  f <$> X   y, x = f y  y  X;
677
  elem_of_join {A} (X : M (M A)) (x : A) : x  mjoin X   Y, x  Y  Y  X
678 679
}.

680 681 682
(** The function [fresh X] yields an element that is not contained in [X]. We
will later prove that [fresh] is [Proper] with respect to the induced setoid
equality on collections. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
683
Class Fresh A C := fresh: C  A.
684
Instance: Params (@fresh) 3.
685
Class FreshSpec A C `{ElemOf A C}
686
    `{Empty C} `{Singleton A C} `{Union C} `{Fresh A C} : Prop := {
687
  fresh_collection_simple :>> SimpleCollection A C;
688
  fresh_proper_alt X Y : ( x, x  X  x  Y)  fresh X = fresh Y;
Robbert Krebbers's avatar
Robbert Krebbers committed
689 690 691
  is_fresh (X : C) : fresh X  X
}.

692
(** * Miscellaneous *)
693 694 695
Class Half A := half: A  A.
Notation "x .½" := (half x) (at level 20, format "x .½") : C_scope.

696 697
Lemma proj1_sig_inj {A} (P : A  Prop) x (Px : P x) y (Py : P y) :
  xPx = yPy  x = y.
698
Proof. injection 1; trivial. Qed.
699 700 701
Lemma not_symmetry `{R : relation A} `{!Symmetric R} (x y : A) :
  ¬R x y  ¬R y x.
Proof. intuition. Qed.
702 703 704 705
Lemma symmetry_iff `(R : relation A) `{!Symmetric R} (x y : A) :
  R x y  R y x.
Proof. intuition. Qed.

706 707 708
(** ** Pointwise relations *)
(** These instances are in Coq trunk since revision 15455, but are not in Coq
8.4 yet. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
709 710 711 712 713 714 715 716 717 718
Instance pointwise_reflexive {A} `{R : relation B} :
  Reflexive R  Reflexive (pointwise_relation A R) | 9.
Proof. firstorder. Qed.
Instance pointwise_symmetric {A} `{R : relation B} :
  Symmetric R  Symmetric (pointwise_relation A R) | 9.
Proof. firstorder. Qed.
Instance pointwise_transitive {A} `{R : relation B} :
  Transitive R  Transitive (pointwise_relation A R) | 9.
Proof. firstorder. Qed.

719
(** ** Products *)
720 721 722 723
Definition fst_map {A A' B} (f : A  A') (p : A * B) : A' * B :=
  (f (fst p), snd p).
Definition snd_map {A B B'} (f : B  B') (p : A * B) : A * B' :=
  (fst p, f (snd p)).
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
Arguments fst_map {_ _ _} _ !_ /.
Arguments snd_map {_ _ _} _ !_ /.

Instance:  {A A' B} (f : A  A'),
  Injective (=) (=) f  Injective (=) (=) (@fst_map A A' B f).
Proof.
  intros ????? [??] [??]; simpl; intro; f_equal.
  * apply (injective f). congruence.
  * congruence.
Qed.
Instance:  {A B B'} (f : B  B'),
  Injective (=) (=) f  Injective (=) (=) (@snd_map A B B' f).
Proof.
  intros ????? [??] [??]; simpl; intro; f_equal.
  * congruence.
  * apply (injective f). congruence.
Qed.

742 743
Definition prod_relation {A B} (R1 : relation A) (R2 : relation B) :
  relation (A * B) := λ x y, R1 (fst x) (fst y)  R2 (snd x) (snd y).
Robbert Krebbers's avatar
Robbert Krebbers committed
744 745 746

Section prod_relation.
  Context `{R1 : relation A} `{R2 : relation B}.
747 748
  Global Instance:
    Reflexive R1  Reflexive R2  Reflexive (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
749
  Proof. firstorder eauto. Qed.
750 751
  Global Instance:
    Symmetric R1  Symmetric R2  Symmetric (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
752
  Proof. firstorder eauto. Qed.
753 754
  Global Instance:
    Transitive R1  Transitive R2  Transitive (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
755
  Proof. firstorder eauto. Qed.
756 757
  Global Instance:
    Equivalence R1  Equivalence R2  Equivalence (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
758 759 760 761 762 763 764 765 766
  Proof. split; apply _. Qed.
  Global Instance: Proper (R1 ==> R2 ==> prod_relation R1 R2) pair.
  Proof. firstorder eauto. Qed.
  Global Instance: Proper (prod_relation R1 R2 ==> R1) fst.
  Proof. firstorder eauto. Qed.
  Global Instance: Proper (prod_relation R1 R2 ==> R2) snd.
  Proof. firstorder eauto. Qed.
End prod_relation.

767
(** ** Other *)
768
Definition proj_relation {A B} (R : relation A)
769
  (f : B  A) : relation B := λ x y, R (f x) (f y).
770 771 772
Definition proj_relation_equivalence {A B} (R : relation A) (f : B  A) :
  Equivalence R  Equivalence (proj_relation R f).
Proof. unfold proj_relation. firstorder auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
773 774

Instance:  A B (x : B), Commutative (=) (λ _ _ : A, x).
775
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
776
Instance:  A (x : A), Associative (=) (λ _ _ : A, x).
777
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
778
Instance:  A, Associative (=) (λ x _ : A, x).
779
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
780
Instance:  A, Associative (=) (λ _ x : A, x).
781
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
782
Instance:  A, Idempotent (=) (λ x _ : A, x).
783
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
784
Instance:  A, Idempotent (=) (λ _ x : A, x).
785
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
786

787 788
Instance left_id_propholds {A} (R : relation A) i f :
  LeftId R i f   x, PropHolds (R (f i x) x).
789
Proof. red. trivial. Qed.
790 791
Instance right_id_propholds {A} (R : relation A) i f :
  RightId R i f   x, PropHolds (R (f x i) x).
792
Proof. red. trivial. Qed.
793 794 795 796 797 798
Instance left_absorb_propholds {A} (R : relation A) i f :
  LeftAbsorb R i f   x, PropHolds (R (f i x) i).
Proof. red. trivial. Qed.
Instance right_absorb_propholds {A} (R : relation A) i f :
  RightAbsorb R i f   x, PropHolds (R (f x i) i).
Proof. red. trivial. Qed.
799 800
Instance idem_propholds {A} (R : relation A) f :
  Idempotent R f   x, PropHolds (R (f x x) x).
801
Proof. red. trivial. Qed.