collections.v 20.3 KB
Newer Older
1
(* Copyright (c) 2012-2013, Robbert Krebbers. *)
2
3
4
5
6
7
(* This file is distributed under the terms of the BSD license. *)
(** This file collects definitions and theorems on collections. Most
importantly, it implements some tactics to automatically solve goals involving
collections. *)
Require Export base tactics orders.

8
(** * Basic theorems *)
9
10
Section simple_collection.
  Context `{SimpleCollection A C}.
Robbert Krebbers's avatar
Robbert Krebbers committed
11

12
  Lemma elem_of_empty x : x    False.
13
  Proof. split. apply not_elem_of_empty. done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
14
15
16
17
18
  Lemma elem_of_union_l x X Y : x  X  x  X  Y.
  Proof. intros. apply elem_of_union. auto. Qed.
  Lemma elem_of_union_r x X Y : x  Y  x  X  Y.
  Proof. intros. apply elem_of_union. auto. Qed.

19
  Global Instance collection_subseteq: SubsetEq C := λ X Y,
20
     x, x  X  x  Y.
21
  Global Instance: BoundedJoinSemiLattice C.
22
  Proof. firstorder auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
23
24

  Lemma elem_of_subseteq X Y : X  Y   x, x  X  x  Y.
25
  Proof. done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
26
27
  Lemma elem_of_equiv X Y : X  Y   x, x  X  x  Y.
  Proof. firstorder. Qed.
28
29
  Lemma elem_of_equiv_alt X Y :
    X  Y  ( x, x  X  x  Y)  ( x, x  Y  x  X).
Robbert Krebbers's avatar
Robbert Krebbers committed
30
  Proof. firstorder. Qed.
31
32
33
  Lemma elem_of_equiv_empty X : X     x, x  X.
  Proof. firstorder. Qed.

34
35
36
37
38
39
  Lemma elem_of_subseteq_singleton x X : x  X  {[ x ]}  X.
  Proof.
    split.
    * intros ??. rewrite elem_of_singleton. intro. by subst.
    * intros Ex. by apply (Ex x), elem_of_singleton.
  Qed.
40
  Global Instance singleton_proper : Proper ((=) ==> ()) singleton.
41
  Proof. repeat intro. by subst. Qed.
42
  Global Instance elem_of_proper: Proper ((=) ==> () ==> iff) () | 5.
Robbert Krebbers's avatar
Robbert Krebbers committed
43
44
  Proof. intros ???. subst. firstorder. Qed.

45
  Lemma elem_of_union_list Xs x : x   Xs   X, X  Xs  x  X.
46
47
48
49
  Proof.
    split.
    * induction Xs; simpl; intros HXs.
      + by apply elem_of_empty in HXs.
50
51
52
      + setoid_rewrite elem_of_cons.
        apply elem_of_union in HXs. naive_solver.
    * intros [X []]. induction 1; simpl.
53
      + by apply elem_of_union_l.
54
      + intros. apply elem_of_union_r; auto.
55
56
57
58
59
60
61
62
63
64
  Qed.

  Lemma non_empty_singleton x : {[ x ]}  .
  Proof. intros [E _]. by apply (elem_of_empty x), E, elem_of_singleton. Qed.

  Lemma not_elem_of_singleton x y : x  {[ y ]}  x  y.
  Proof. by rewrite elem_of_singleton. Qed.
  Lemma not_elem_of_union x X Y : x  X  Y  x  X  x  Y.
  Proof. rewrite elem_of_union. tauto. Qed.

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
  Section leibniz.
    Context `{!LeibnizEquiv C}.

    Lemma elem_of_equiv_L X Y : X = Y   x, x  X  x  Y.
    Proof. unfold_leibniz. apply elem_of_equiv. Qed.
    Lemma elem_of_equiv_alt_L X Y :
      X = Y  ( x, x  X  x  Y)  ( x, x  Y  x  X).
    Proof. unfold_leibniz. apply elem_of_equiv_alt. Qed.
    Lemma elem_of_equiv_empty_L X : X =    x, x  X.
    Proof. unfold_leibniz. apply elem_of_equiv_empty. Qed.
    Lemma non_empty_singleton_L x : {[ x ]}  .
    Proof. unfold_leibniz. apply non_empty_singleton. Qed.
  End leibniz.

  Section dec.
    Context `{ X Y : C, Decision (X  Y)}.

    Global Instance elem_of_dec_slow (x : A) (X : C) : Decision (x  X) | 100.
    Proof.
      refine (cast_if (decide_rel () {[ x ]} X));
        by rewrite elem_of_subseteq_singleton.
    Defined.
  End dec.
88
89
End simple_collection.

90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
(** * Tactics *)
(** Given a hypothesis [H : _ ∈ _], the tactic [destruct_elem_of H] will
recursively split [H] for [(∪)], [(∩)], [(∖)], [map], [∅], [{[_]}]. *)
Tactic Notation "decompose_elem_of" hyp(H) :=
  let rec go H :=
  lazymatch type of H with
  | _   => apply elem_of_empty in H; destruct H
  | ?x  {[ ?y ]} =>
    apply elem_of_singleton in H; try first [subst y | subst x]
  | _  _  _ =>
    let H1 := fresh in let H2 := fresh in apply elem_of_union in H;
    destruct H as [H1|H2]; [go H1 | go H2]
  | _  _  _ =>
    let H1 := fresh in let H2 := fresh in apply elem_of_intersection in H;
    destruct H as [H1 H2]; go H1; go H2
  | _  _  _ =>
    let H1 := fresh in let H2 := fresh in apply elem_of_difference in H;
    destruct H as [H1 H2]; go H1; go H2
  | ?x  _ <$> _ =>
    let H1 := fresh in apply elem_of_fmap in H;
    destruct H as [? [? H1]]; try (subst x); go H1
  | _  _ = _ =>
    let H1 := fresh in let H2 := fresh in apply elem_of_bind in H;
    destruct H as [? [H1 H2]]; go H1; go H2
  | ?x  mret ?y =>
    apply elem_of_ret in H; try first [subst y | subst x]
  | _  mjoin _ = _ =>
    let H1 := fresh in let H2 := fresh in apply elem_of_join in H;
    destruct H as [? [H1 H2]]; go H1; go H2
  | _ => idtac
  end in go H.
Tactic Notation "decompose_elem_of" :=
  repeat_on_hyps (fun H => decompose_elem_of H).

124
125
Ltac decompose_empty := repeat
  match goal with
126
127
128
129
  | H :    |- _ => clear H
  | H :  =  |- _ => clear H
  | H :   _ |- _ => symmetry in H
  | H :  = _ |- _ => symmetry in H
130
131
132
  | H : _  _   |- _ => apply empty_union in H; destruct H
  | H : _  _   |- _ => apply non_empty_union in H; destruct H
  | H : {[ _ ]}   |- _ => destruct (non_empty_singleton _ H)
133
134
135
  | H : _  _ =  |- _ => apply empty_union_L in H; destruct H
  | H : _  _   |- _ => apply non_empty_union_L in H; destruct H
  | H : {[ _ ]} =  |- _ => destruct (non_empty_singleton_L _ H)
136
137
  end.

138
139
140
141
(** The first pass of our collection tactic consists of eliminating all
occurrences of [(∪)], [(∩)], [(∖)], [(<$>)], [∅], [{[_]}], [(≡)], and [(⊆)],
by rewriting these into logically equivalent propositions. For example we
rewrite [A → x ∈ X ∪ ∅] into [A → x ∈ X ∨ False]. *)
142
143
144
145
Ltac unfold_elem_of :=
  repeat_on_hyps (fun H =>
    repeat match type of H with
    | context [ _  _ ] => setoid_rewrite elem_of_subseteq in H
Robbert Krebbers's avatar
Robbert Krebbers committed
146
    | context [ _  _ ] => setoid_rewrite subset_spec in H
147
    | context [ _   ] => setoid_rewrite elem_of_equiv_empty in H
148
    | context [ _  _ ] => setoid_rewrite elem_of_equiv_alt in H
149
150
    | context [ _ =  ] => setoid_rewrite elem_of_equiv_empty_L in H
    | context [ _ = _ ] => setoid_rewrite elem_of_equiv_alt_L in H
151
152
153
154
155
    | context [ _   ] => setoid_rewrite elem_of_empty in H
    | context [ _  {[ _ ]} ] => setoid_rewrite elem_of_singleton in H
    | context [ _  _  _ ] => setoid_rewrite elem_of_union in H
    | context [ _  _  _ ] => setoid_rewrite elem_of_intersection in H
    | context [ _  _  _ ] => setoid_rewrite elem_of_difference in H
156
157
158
159
    | context [ _  _ <$> _ ] => setoid_rewrite elem_of_fmap in H
    | context [ _  mret _ ] => setoid_rewrite elem_of_ret in H
    | context [ _  _ = _ ] => setoid_rewrite elem_of_bind in H
    | context [ _  mjoin _ ] => setoid_rewrite elem_of_join in H
160
161
    end);
  repeat match goal with
Robbert Krebbers's avatar
Robbert Krebbers committed
162
  | |- context [ _  _ ] => setoid_rewrite elem_of_subseteq
Robbert Krebbers's avatar
Robbert Krebbers committed
163
  | |- context [ _  _ ] => setoid_rewrite subset_spec
164
  | |- context [ _   ] => setoid_rewrite elem_of_equiv_empty
Robbert Krebbers's avatar
Robbert Krebbers committed
165
  | |- context [ _  _ ] => setoid_rewrite elem_of_equiv_alt
166
167
  | |- context [ _ =  ] => setoid_rewrite elem_of_equiv_empty_L
  | |- context [ _ = _ ] => setoid_rewrite elem_of_equiv_alt_L
168
  | |- context [ _   ] => setoid_rewrite elem_of_empty
169
  | |- context [ _  {[ _ ]} ] => setoid_rewrite elem_of_singleton
Robbert Krebbers's avatar
Robbert Krebbers committed
170
171
172
  | |- context [ _  _  _ ] => setoid_rewrite elem_of_union
  | |- context [ _  _  _ ] => setoid_rewrite elem_of_intersection
  | |- context [ _  _  _ ] => setoid_rewrite elem_of_difference
173
174
175
176
  | |- context [ _  _ <$> _ ] => setoid_rewrite elem_of_fmap
  | |- context [ _  mret _ ] => setoid_rewrite elem_of_ret
  | |- context [ _  _ = _ ] => setoid_rewrite elem_of_bind
  | |- context [ _  mjoin _ ] => setoid_rewrite elem_of_join
Robbert Krebbers's avatar
Robbert Krebbers committed
177
178
  end.

179
180
181
(** The tactic [solve_elem_of tac] composes the above tactic with [intuition].
For goals that do not involve [≡], [⊆], [map], or quantifiers this tactic is
generally powerful enough. This tactic either fails or proves the goal. *)
182
Tactic Notation "solve_elem_of" tactic3(tac) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
183
  simpl in *;
184
  decompose_empty;
185
186
187
188
189
190
191
192
193
  unfold_elem_of;
  solve [intuition (simplify_equality; tac)].
Tactic Notation "solve_elem_of" := solve_elem_of auto.

(** For goals with quantifiers we could use the above tactic but with
[firstorder] instead of [intuition] as finishing tactic. However, [firstorder]
fails or loops on very small goals generated by [solve_elem_of] already. We
use the [naive_solver] tactic as a substitute. This tactic either fails or
proves the goal. *)
194
Tactic Notation "esolve_elem_of" tactic3(tac) :=
195
  simpl in *;
196
  decompose_empty;
197
198
199
  unfold_elem_of;
  naive_solver tac.
Tactic Notation "esolve_elem_of" := esolve_elem_of eauto.
200
201
 
(** * More theorems *)
Robbert Krebbers's avatar
Robbert Krebbers committed
202
203
204
205
Section collection.
  Context `{Collection A C}.

  Global Instance: LowerBoundedLattice C.
206
207
208
209
210
211
  Proof.
    split.
    * apply _.
    * firstorder auto.
    * solve_elem_of.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226

  Lemma intersection_singletons x : {[x]}  {[x]}  {[x]}.
  Proof. esolve_elem_of. Qed.
  Lemma difference_twice X Y : (X  Y)  Y  X  Y.
  Proof. esolve_elem_of. Qed.

  Lemma empty_difference X Y : X  Y  X  Y  .
  Proof. esolve_elem_of. Qed.
  Lemma difference_diag X : X  X  .
  Proof. esolve_elem_of. Qed.
  Lemma difference_union_distr_l X Y Z : (X  Y)  Z  X  Z  Y  Z.
  Proof. esolve_elem_of. Qed.
  Lemma difference_intersection_distr_l X Y Z : (X  Y)  Z  X  Z  Y  Z.
  Proof. esolve_elem_of. Qed.

227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
  Section leibniz.
    Context `{!LeibnizEquiv C}.

    Lemma intersection_singletons_L x : {[x]}  {[x]} = {[x]}.
    Proof. unfold_leibniz. apply intersection_singletons. Qed.
    Lemma difference_twice_L X Y : (X  Y)  Y = X  Y.
    Proof. unfold_leibniz. apply difference_twice. Qed.

    Lemma empty_difference_L X Y : X  Y  X  Y = .
    Proof. unfold_leibniz. apply empty_difference. Qed.
    Lemma difference_diag_L X : X  X = .
    Proof. unfold_leibniz. apply difference_diag. Qed.
    Lemma difference_union_distr_l_L X Y Z : (X  Y)  Z = X  Z  Y  Z.
    Proof. unfold_leibniz. apply difference_union_distr_l. Qed.
    Lemma difference_intersection_distr_l_L X Y Z :
      (X  Y)  Z = X  Z  Y  Z.
    Proof. unfold_leibniz. apply difference_intersection_distr_l. Qed.
  End leibniz.

  Section dec.
    Context `{ X Y : C, Decision (X  Y)}.

    Lemma not_elem_of_intersection x X Y : x  X  Y  x  X  x  Y.
    Proof.
251
      rewrite elem_of_intersection. destruct (decide (x  X)); tauto.
252
253
254
    Qed.
    Lemma not_elem_of_difference x X Y : x  X  Y  x  X  x  Y.
    Proof.
255
      rewrite elem_of_difference. destruct (decide (x  Y)); tauto.
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
    Qed.
    Lemma union_difference X Y : X  Y  Y  X  Y  X.
    Proof.
      split; intros x; rewrite !elem_of_union, elem_of_difference.
      * destruct (decide (x  X)); intuition.
      * intuition.
    Qed.
    Lemma non_empty_difference X Y : X  Y  Y  X  .
    Proof.
      intros [HXY1 HXY2] Hdiff. destruct HXY2. intros x.
      destruct (decide (x  X)); esolve_elem_of.
    Qed.

    Context `{!LeibnizEquiv C}.

    Lemma union_difference_L X Y : X  Y  Y = X  Y  X.
    Proof. unfold_leibniz. apply union_difference. Qed.
    Lemma non_empty_difference_L X Y : X  Y  Y  X  .
    Proof. unfold_leibniz. apply non_empty_difference. Qed.
  End dec.
End collection.

Section collection_ops.
  Context `{CollectionOps A C}.

Robbert Krebbers's avatar
Robbert Krebbers committed
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
  Lemma elem_of_intersection_with_list (f : A  A  option A) Xs Y x :
    x  intersection_with_list f Y Xs   xs y,
      Forall2 () xs Xs  y  Y  foldr (λ x, (= f x)) (Some y) xs = Some x.
  Proof.
    split.
    * revert x. induction Xs; simpl; intros x HXs.
      + eexists [], x. intuition.
      + rewrite elem_of_intersection_with in HXs.
        destruct HXs as (x1 & x2 & Hx1 & Hx2 & ?).
        destruct (IHXs x2) as (xs & y & hy & ? & ?); trivial.
        eexists (x1 :: xs), y. intuition (simplify_option_equality; auto).
    * intros (xs & y & Hxs & ? & Hx). revert x Hx.
      induction Hxs; intros; simplify_option_equality; [done |].
      rewrite elem_of_intersection_with. naive_solver.
  Qed.

  Lemma intersection_with_list_ind (P Q : A  Prop) f Xs Y :
    ( y, y  Y  P y) 
    Forall (λ X,  x, x  X  Q x) Xs 
    ( x y z, Q x  P y  f x y = Some z  P z) 
     x, x  intersection_with_list f Y Xs  P x.
  Proof.
303
    intros HY HXs Hf. induction Xs; simplify_option_equality; [done |].
Robbert Krebbers's avatar
Robbert Krebbers committed
304
305
306
    intros x Hx. rewrite elem_of_intersection_with in Hx.
    decompose_Forall. destruct Hx as (? & ? & ? & ? & ?). eauto.
  Qed.
307
End collection_ops.
Robbert Krebbers's avatar
Robbert Krebbers committed
308

309
(** * Sets without duplicates up to an equivalence *)
310
Section NoDup.
311
  Context `{SimpleCollection A B} (R : relation A) `{!Equivalence R}.
Robbert Krebbers's avatar
Robbert Krebbers committed
312
313

  Definition elem_of_upto (x : A) (X : B) :=  y, y  X  R x y.
314
  Definition set_NoDup (X : B) :=  x y, x  X  y  X  R x y  x = y.
Robbert Krebbers's avatar
Robbert Krebbers committed
315
316

  Global Instance: Proper (() ==> iff) (elem_of_upto x).
Robbert Krebbers's avatar
Robbert Krebbers committed
317
  Proof. intros ??? E. unfold elem_of_upto. by setoid_rewrite E. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
318
319
320
  Global Instance: Proper (R ==> () ==> iff) elem_of_upto.
  Proof.
    intros ?? E1 ?? E2. split; intros [z [??]]; exists z.
321
322
    * rewrite <-E1, <-E2; intuition.
    * rewrite E1, E2; intuition.
Robbert Krebbers's avatar
Robbert Krebbers committed
323
  Qed.
324
  Global Instance: Proper (() ==> iff) set_NoDup.
Robbert Krebbers's avatar
Robbert Krebbers committed
325
326
327
  Proof. firstorder. Qed.

  Lemma elem_of_upto_elem_of x X : x  X  elem_of_upto x X.
328
  Proof. unfold elem_of_upto. esolve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
329
  Lemma elem_of_upto_empty x : ¬elem_of_upto x .
330
  Proof. unfold elem_of_upto. esolve_elem_of. Qed.
331
  Lemma elem_of_upto_singleton x y : elem_of_upto x {[ y ]}  R x y.
332
  Proof. unfold elem_of_upto. esolve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
333

334
335
  Lemma elem_of_upto_union X Y x :
    elem_of_upto x (X  Y)  elem_of_upto x X  elem_of_upto x Y.
336
  Proof. unfold elem_of_upto. esolve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
337
  Lemma not_elem_of_upto x X : ¬elem_of_upto x X   y, y  X  ¬R x y.
338
  Proof. unfold elem_of_upto. esolve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
339

340
341
342
343
344
345
346
  Lemma set_NoDup_empty: set_NoDup .
  Proof. unfold set_NoDup. solve_elem_of. Qed.
  Lemma set_NoDup_add x X :
    ¬elem_of_upto x X  set_NoDup X  set_NoDup ({[ x ]}  X).
  Proof. unfold set_NoDup, elem_of_upto. esolve_elem_of. Qed.
  Lemma set_NoDup_inv_add x X :
    x  X  set_NoDup ({[ x ]}  X)  ¬elem_of_upto x X.
347
348
  Proof.
    intros Hin Hnodup [y [??]].
349
    rewrite (Hnodup x y) in Hin; solve_elem_of.
350
  Qed.
351
352
353
354
355
  Lemma set_NoDup_inv_union_l X Y : set_NoDup (X  Y)  set_NoDup X.
  Proof. unfold set_NoDup. solve_elem_of. Qed.
  Lemma set_NoDup_inv_union_r X Y : set_NoDup (X  Y)  set_NoDup Y.
  Proof. unfold set_NoDup. solve_elem_of. Qed.
End NoDup.
Robbert Krebbers's avatar
Robbert Krebbers committed
356

357
(** * Quantifiers *)
Robbert Krebbers's avatar
Robbert Krebbers committed
358
Section quantifiers.
359
  Context `{SimpleCollection A B} (P : A  Prop).
Robbert Krebbers's avatar
Robbert Krebbers committed
360

361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
  Definition set_Forall X :=  x, x  X  P x.
  Definition set_Exists X :=  x, x  X  P x.

  Lemma set_Forall_empty : set_Forall .
  Proof. unfold set_Forall. solve_elem_of. Qed.
  Lemma set_Forall_singleton x : set_Forall {[ x ]}  P x.
  Proof. unfold set_Forall. solve_elem_of. Qed.
  Lemma set_Forall_union X Y : set_Forall X  set_Forall Y  set_Forall (X  Y).
  Proof. unfold set_Forall. solve_elem_of. Qed.
  Lemma set_Forall_union_inv_1 X Y : set_Forall (X  Y)  set_Forall X.
  Proof. unfold set_Forall. solve_elem_of. Qed.
  Lemma set_Forall_union_inv_2 X Y : set_Forall (X  Y)  set_Forall Y.
  Proof. unfold set_Forall. solve_elem_of. Qed.

  Lemma set_Exists_empty : ¬set_Exists .
  Proof. unfold set_Exists. esolve_elem_of. Qed.
  Lemma set_Exists_singleton x : set_Exists {[ x ]}  P x.
  Proof. unfold set_Exists. esolve_elem_of. Qed.
  Lemma set_Exists_union_1 X Y : set_Exists X  set_Exists (X  Y).
  Proof. unfold set_Exists. esolve_elem_of. Qed.
  Lemma set_Exists_union_2 X Y : set_Exists Y  set_Exists (X  Y).
  Proof. unfold set_Exists. esolve_elem_of. Qed.
  Lemma set_Exists_union_inv X Y :
    set_Exists (X  Y)  set_Exists X  set_Exists Y.
  Proof. unfold set_Exists. esolve_elem_of. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
386
387
End quantifiers.

388
389
Section more_quantifiers.
  Context `{Collection A B}.
390

391
392
393
394
395
396
  Lemma set_Forall_weaken (P Q : A  Prop) (Hweaken :  x, P x  Q x) X :
    set_Forall P X  set_Forall Q X.
  Proof. unfold set_Forall. naive_solver. Qed.
  Lemma set_Exists_weaken (P Q : A  Prop) (Hweaken :  x, P x  Q x) X :
    set_Exists P X  set_Exists Q X.
  Proof. unfold set_Exists. naive_solver. Qed.
397
398
End more_quantifiers.

399
400
401
(** * Fresh elements *)
(** We collect some properties on the [fresh] operation. In particular we
generalize [fresh] to generate lists of fresh elements. *)
402
Section fresh.
403
  Context `{FreshSpec A C} .
404

405
406
407
408
  Definition fresh_sig (X : C) : { x : A | x  X } :=
    exist ( X) (fresh X) (is_fresh X).

  Global Instance fresh_proper: Proper (() ==> (=)) fresh.
409
  Proof. intros ???. by apply fresh_proper_alt, elem_of_equiv. Qed.
410

411
412
413
414
415
416
  Fixpoint fresh_list (n : nat) (X : C) : list A :=
    match n with
    | 0 => []
    | S n => let x := fresh X in x :: fresh_list n ({[ x ]}  X)
    end.

417
418
  Global Instance fresh_list_proper: Proper ((=) ==> () ==> (=)) fresh_list.
  Proof.
419
    intros ? n ?. subst. induction n; simpl; intros ?? E; f_equal.
420
421
    * by rewrite E.
    * apply IHn. by rewrite E.
422
423
  Qed.

424
425
426
  Lemma fresh_list_length n X : length (fresh_list n X) = n.
  Proof. revert X. induction n; simpl; auto. Qed.

427
  Lemma fresh_list_is_fresh n X x : x  fresh_list n X  x  X.
428
  Proof.
429
430
431
    revert X. induction n; intros X; simpl.
    * by rewrite elem_of_nil.
    * rewrite elem_of_cons. intros [?| Hin]; subst.
432
      + apply is_fresh.
433
      + apply IHn in Hin. solve_elem_of.
434
435
436
437
  Qed.

  Lemma fresh_list_nodup n X : NoDup (fresh_list n X).
  Proof.
438
439
    revert X. induction n; simpl; constructor; auto.
    intros Hin. apply fresh_list_is_fresh in Hin. solve_elem_of.
440
441
  Qed.
End fresh.
442
443
444
445
446
447
448

Definition option_collection `{Singleton A C} `{Empty C} (x : option A) : C :=
  match x with
  | None => 
  | Some a => {[ a ]}
  end.

449
(** * Properties of implementations of collections that form a monad *)
450
451
452
453
Section collection_monad.
  Context `{CollectionMonad M}.

  Global Instance collection_guard: MGuard M := λ P dec A x,
454
455
456
457
    match dec with
    | left H => x H
    | _ => 
    end.
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491

  Global Instance collection_fmap_proper {A B} (f : A  B) :
    Proper (() ==> ()) (fmap f).
  Proof. intros X Y E. esolve_elem_of. Qed.
  Global Instance collection_ret_proper {A} :
    Proper ((=) ==> ()) (@mret M _ A).
  Proof. intros X Y E. esolve_elem_of. Qed.
  Global Instance collection_bind_proper {A B} (f : A  M B) :
    Proper (() ==> ()) (mbind f).
  Proof. intros X Y E. esolve_elem_of. Qed.
  Global Instance collection_join_proper {A} :
    Proper (() ==> ()) (@mjoin M _ A).
  Proof. intros X Y E. esolve_elem_of. Qed.

  Lemma collection_fmap_compose {A B C} (f : A  B) (g : B  C) X :
    g  f <$> X  g <$> (f <$> X).
  Proof. esolve_elem_of. Qed.
  Lemma elem_of_fmap_1 {A B} (f : A  B) (X : M A) (y : B) :
    y  f <$> X   x, y = f x  x  X.
  Proof. esolve_elem_of. Qed.
  Lemma elem_of_fmap_2 {A B} (f : A  B) (X : M A) (x : A) :
    x  X  f x  f <$> X.
  Proof. esolve_elem_of. Qed.
  Lemma elem_of_fmap_2_alt {A B} (f : A  B) (X : M A) (x : A) (y : B) :
    x  X  y = f x  y  f <$> X.
  Proof. esolve_elem_of. Qed.

  Lemma elem_of_mapM {A B} (f : A  M B) l k :
    l  mapM f k  Forall2 (λ x y, x  f y) l k.
  Proof.
    split.
    * revert l. induction k; esolve_elem_of.
    * induction 1; esolve_elem_of.
  Qed.
492
  Lemma collection_mapM_length {A B} (f : A  M B) l k :
493
494
495
496
    l  mapM f k  length l = length k.
  Proof. revert l; induction k; esolve_elem_of. Qed.

  Lemma elem_of_mapM_fmap {A B} (f : A  B) (g : B  M A) l k :
497
    Forall (λ x,  y, y  g x  f y = x) l  k  mapM g l  fmap f k = l.
498
499
500
501
502
503
504
  Proof.
    intros Hl. revert k.
    induction Hl; simpl; intros;
      decompose_elem_of; simpl; f_equal; auto.
  Qed.

  Lemma elem_of_mapM_Forall {A B} (f : A  M B) (P : B  Prop) l k :
505
    l  mapM f k  Forall (λ x,  y, y  f x  P y) k  Forall P l.
Robbert Krebbers's avatar
Robbert Krebbers committed
506
  Proof. rewrite elem_of_mapM. apply Forall2_Forall_l. Qed.
507
508
  Lemma elem_of_mapM_Forall2_l {A B C} (f : A  M B) (P: B  C  Prop) l1 l2 k :
    l1  mapM f k  Forall2 (λ x y,  z, z  f x  P z y) k l2 
Robbert Krebbers's avatar
Robbert Krebbers committed
509
510
511
512
513
    Forall2 P l1 l2.
  Proof.
    rewrite elem_of_mapM. intros Hl1. revert l2.
    induction Hl1; inversion_clear 1; constructor; auto.
  Qed.
514
End collection_monad.