option.v 12 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2014, Robbert Krebbers. *)
2
3
4
(* This file is distributed under the terms of the BSD license. *)
(** This file collects general purpose definitions and theorems on the option
data type that are not in the Coq standard library. *)
5
Require Export base tactics decidable.
6

7
8
9
10
Inductive option_reflect {A} (P : A  Prop) (Q : Prop) : option A  Type :=
  | ReflectSome x : P x  option_reflect P Q (Some x)
  | ReflectNone : Q  option_reflect P Q None.

11
12
(** * General definitions and theorems *)
(** Basic properties about equality. *)
13
Lemma None_ne_Some {A} (a : A) : None  Some a.
Robbert Krebbers's avatar
Robbert Krebbers committed
14
Proof. congruence. Qed.
15
Lemma Some_ne_None {A} (a : A) : Some a  None.
Robbert Krebbers's avatar
Robbert Krebbers committed
16
Proof. congruence. Qed.
17
Lemma eq_None_ne_Some {A} (x : option A) a : x = None  x  Some a.
Robbert Krebbers's avatar
Robbert Krebbers committed
18
Proof. congruence. Qed.
19
Instance Some_inj {A} : Injective (=) (=) (@Some A).
Robbert Krebbers's avatar
Robbert Krebbers committed
20
21
Proof. congruence. Qed.

22
(** The non dependent elimination principle on the option type. *)
23
24
Definition default {A B} (b : B) (x : option A) (f : A  B)  : B :=
  match x with None => b | Some a => f a end.
Robbert Krebbers's avatar
Robbert Krebbers committed
25

Robbert Krebbers's avatar
Robbert Krebbers committed
26
27
28
(** The [from_option] function allows us to get the value out of the option
type by specifying a default value. *)
Definition from_option {A} (a : A) (x : option A) : A :=
29
  match x with None => a | Some b => b end.
30

31
32
(** An alternative, but equivalent, definition of equality on the option
data type. This theorem is useful to prove that two options are the same. *)
33
34
Lemma option_eq {A} (x y : option A) : x = y   a, x = Some a  y = Some a.
Proof. split; [by intros; by subst |]. destruct x, y; naive_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
35
36
37
38
Lemma option_eq_1 {A} (x y : option A) a : x = y  x = Some a  y = Some a.
Proof. congruence. Qed.
Lemma option_eq_1_alt {A} (x y : option A) a : x = y  y = Some a  x = Some a.
Proof. congruence. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
39

40
41
42
43
44
45
46
Definition is_Some {A} (x : option A) :=  y, x = Some y.
Lemma mk_is_Some {A} (x : option A) y : x = Some y  is_Some x.
Proof. intros; red; subst; eauto. Qed.
Hint Resolve mk_is_Some.
Lemma is_Some_None {A} : ¬is_Some (@None A).
Proof. by destruct 1. Qed.
Hint Resolve is_Some_None.
Robbert Krebbers's avatar
Robbert Krebbers committed
47

48
49
Instance is_Some_pi {A} (x : option A) : ProofIrrel (is_Some x).
Proof.
50
51
52
53
54
55
56
  set (P (y : option A) := match y with Some _ => True | _ => False end).
  set (f x := match x return P x  is_Some x with
    Some _ => λ _, ex_intro _ _ eq_refl | None => False_rect _ end).
  set (g x (H : is_Some x) :=
    match H return P x with ex_intro _ p => eq_rect _ _ I _ (eq_sym p) end).
  assert ( x H, f x (g x H) = H) as f_g by (by intros ? [??]; subst).
  intros p1 p2. rewrite <-(f_g _ p1), <-(f_g _ p2). by destruct x, p1.
57
Qed.
58
Instance is_Some_dec {A} (x : option A) : Decision (is_Some x) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
59
  match x with
60
61
  | Some x => left (ex_intro _ x eq_refl)
  | None => right is_Some_None
62
  end.
63
64
65
66

Definition is_Some_proj {A} {x : option A} : is_Some x  A :=
  match x with Some a => λ _, a | None => False_rect _  is_Some_None end.
Definition Some_dec {A} (x : option A) : { a | x = Some a } + { x = None } :=
Robbert Krebbers's avatar
Robbert Krebbers committed
67
68
69
70
  match x return { a | x = Some a } + { x = None } with
  | Some a => inleft (a  eq_refl _)
  | None => inright eq_refl
  end.
71
72
Instance None_dec {A} (x : option A) : Decision (x = None) :=
  match x with Some x => right (Some_ne_None x) | None => left eq_refl end.
Robbert Krebbers's avatar
Robbert Krebbers committed
73

74
75
Lemma eq_None_not_Some {A} (x : option A) : x = None  ¬is_Some x.
Proof. destruct x; unfold is_Some; naive_solver. Qed.
76
Lemma not_eq_None_Some `(x : option A) : x  None  is_Some x.
Robbert Krebbers's avatar
Robbert Krebbers committed
77
Proof. rewrite eq_None_not_Some. split. apply dec_stable. tauto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
78

79
(** Equality on [option] is decidable. *)
80
81
82
83
Instance option_eq_None_dec {A} (x : option A) : Decision (x = None) :=
  match x with Some _ => right (Some_ne_None _) | None => left eq_refl end.
Instance option_None_eq_dec {A} (x : option A) : Decision (None = x) :=
  match x with Some _ => right (None_ne_Some _) | None => left eq_refl end.
84
Instance option_eq_dec `{dec :  x y : A, Decision (x = y)}
85
86
87
  (x y : option A) : Decision (x = y).
Proof.
 refine
88
  match x, y with
89
90
91
92
  | Some a, Some b => cast_if (decide (a = b))
  | None, None => left _ | _, _ => right _
  end; abstract congruence.
Defined.
Robbert Krebbers's avatar
Robbert Krebbers committed
93

94
(** * Monadic operations *)
95
96
Instance option_ret: MRet option := @Some.
Instance option_bind: MBind option := λ A B f x,
97
  match x with Some a => f a | None => None end.
98
Instance option_join: MJoin option := λ A x,
99
  match x with Some x => x | None => None end.
100
101
Instance option_fmap: FMap option := @option_map.
Instance option_guard: MGuard option := λ P dec A x,
102
  match dec with left H => x H | _ => None end.
103
104
105
106
Definition maybe_inl {A B} (xy : A + B) : option A :=
  match xy with inl x => Some x | _ => None end.
Definition maybe_inr {A B} (xy : A + B) : option B :=
  match xy with inr y => Some y | _ => None end.
Robbert Krebbers's avatar
Robbert Krebbers committed
107

108
109
110
Lemma fmap_is_Some {A B} (f : A  B) x : is_Some (f <$> x)  is_Some x.
Proof. unfold is_Some; destruct x; naive_solver. Qed.
Lemma fmap_Some {A B} (f : A  B) x y :
111
  f <$> x = Some y   x', x = Some x'  y = f x'.
112
113
114
Proof. destruct x; naive_solver. Qed.
Lemma fmap_None {A B} (f : A  B) x : f <$> x = None  x = None.
Proof. by destruct x. Qed.
115
Lemma option_fmap_id {A} (x : option A) : id <$> x = x.
116
Proof. by destruct x. Qed.
117
118
119
Lemma option_fmap_compose {A B} (f : A  B) {C} (g : B  C) x :
  g  f <$> x = g <$> f <$> x.
Proof. by destruct x. Qed.
120
121
122
Lemma option_fmap_bind {A B C} (f : A  B) (g : B  option C) x :
  (f <$> x) = g = x = g  f.
Proof. by destruct x. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
123
Lemma option_bind_assoc {A B C} (f : A  option B)
124
  (g : B  option C) (x : option A) : (x = f) = g = x = (mbind g  f).
Robbert Krebbers's avatar
Robbert Krebbers committed
125
Proof. by destruct x; simpl. Qed.
126
Lemma option_bind_ext {A B} (f g : A  option B) x y :
127
  ( a, f a = g a)  x = y  x = f = y = g.
128
Proof. intros. destruct x, y; simplify_equality; csimpl; auto. Qed.
129
Lemma option_bind_ext_fun {A B} (f g : A  option B) x :
130
  ( a, f a = g a)  x = f = x = g.
131
Proof. intros. by apply option_bind_ext. Qed.
132
133
134
135
136
137
Lemma bind_Some {A B} (f : A  option B) (x : option A) b :
  x = f = Some b   a, x = Some a  f a = Some b.
Proof. split. by destruct x as [a|]; [exists a|]. by intros (?&->&?). Qed.
Lemma bind_None {A B} (f : A  option B) (x : option A) :
  x = f = None  x = None   a, x = Some a  f a = None.
Proof.
138
139
  split; [|by intros [->|(?&->&?)]].
  destruct x; intros; simplify_equality'; eauto.
140
Qed.
141
142
Lemma bind_with_Some {A} (x : option A) : x = Some = x.
Proof. by destruct x. Qed.
143

144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
(** * Union, intersection and difference *)
Instance option_union_with {A} : UnionWith A (option A) := λ f x y,
  match x, y with
  | Some a, Some b => f a b
  | Some a, None => Some a
  | None, Some b => Some b
  | None, None => None
  end.
Instance option_intersection_with {A} : IntersectionWith A (option A) :=
  λ f x y, match x, y with Some a, Some b => f a b | _, _ => None end.
Instance option_difference_with {A} : DifferenceWith A (option A) := λ f x y,
  match x, y with
  | Some a, Some b => f a b
  | Some a, None => Some a
  | None, _ => None
  end.
Instance option_union {A} : Union (option A) := union_with (λ x _, Some x).
Lemma option_union_Some {A} (x y : option A) z :
  x  y = Some z  x = Some z  y = Some z.
Proof. destruct x, y; intros; simplify_equality; auto. Qed.

Section option_union_intersection_difference.
  Context {A} (f : A  A  option A).
  Global Instance: LeftId (=) None (union_with f).
  Proof. by intros [?|]. Qed.
  Global Instance: RightId (=) None (union_with f).
  Proof. by intros [?|]. Qed.
  Global Instance: Commutative (=) f  Commutative (=) (union_with f).
  Proof. by intros ? [?|] [?|]; compute; rewrite 1?(commutative f). Qed.
  Global Instance: LeftAbsorb (=) None (intersection_with f).
  Proof. by intros [?|]. Qed.
  Global Instance: RightAbsorb (=) None (intersection_with f).
  Proof. by intros [?|]. Qed.
  Global Instance: Commutative (=) f  Commutative (=) (intersection_with f).
  Proof. by intros ? [?|] [?|]; compute; rewrite 1?(commutative f). Qed.
  Global Instance: RightId (=) None (difference_with f).
  Proof. by intros [?|]. Qed.
End option_union_intersection_difference.

(** * Tactics *)
184
185
186
187
188
189
190
191
192
193
194
Tactic Notation "case_option_guard" "as" ident(Hx) :=
  match goal with
  | H : context C [@mguard option _ ?P ?dec _ ?x] |- _ =>
    let X := context C [ match dec with left H => x H | _ => None end ] in
    change X in H; destruct_decide dec as Hx
  | |- context C [@mguard option _ ?P ?dec _ ?x] =>
    let X := context C [ match dec with left H => x H | _ => None end ] in
    change X; destruct_decide dec as Hx
  end.
Tactic Notation "case_option_guard" :=
  let H := fresh in case_option_guard as H.
Robbert Krebbers's avatar
Robbert Krebbers committed
195

Robbert Krebbers's avatar
Robbert Krebbers committed
196
Lemma option_guard_True {A} P `{Decision P} (x : option A) :
Robbert Krebbers's avatar
Robbert Krebbers committed
197
198
  P  guard P; x = x.
Proof. intros. by case_option_guard. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
199
Lemma option_guard_False {A} P `{Decision P} (x : option A) :
Robbert Krebbers's avatar
Robbert Krebbers committed
200
201
  ¬P  guard P; x = None.
Proof. intros. by case_option_guard. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
202
203
204
Lemma option_guard_iff {A} P Q `{Decision P, Decision Q} (x : option A) :
  (P  Q)  guard P; x = guard Q; x.
Proof. intros [??]. repeat case_option_guard; intuition. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
205

Robbert Krebbers's avatar
Robbert Krebbers committed
206
Tactic Notation "simpl_option_monad" "by" tactic3(tac) :=
207
208
209
210
211
  let assert_Some_None A o H := first
    [ let x := fresh in evar (x:A); let x' := eval unfold x in x in clear x;
      assert (o = Some x') as H by tac
    | assert (o = None) as H by tac ]
  in repeat match goal with
Robbert Krebbers's avatar
Robbert Krebbers committed
212
  | H : context [mbind (M:=option) (A:=?A) ?f ?o] |- _ =>
213
    let Hx := fresh in assert_Some_None A o Hx; rewrite Hx in H; clear Hx
Robbert Krebbers's avatar
Robbert Krebbers committed
214
  | H : context [fmap (M:=option) (A:=?A) ?f ?o] |- _ =>
215
216
217
    let Hx := fresh in assert_Some_None A o Hx; rewrite Hx in H; clear Hx
  | H : context [default (A:=?A) _ ?o _] |- _ =>
    let Hx := fresh in assert_Some_None A o Hx; rewrite Hx in H; clear Hx
Robbert Krebbers's avatar
Robbert Krebbers committed
218
219
220
  | H : context [ match ?o with _ => _ end ] |- _ =>
    match type of o with
    | option ?A =>
221
      let Hx := fresh in assert_Some_None A o Hx; rewrite Hx in H; clear Hx
Robbert Krebbers's avatar
Robbert Krebbers committed
222
223
    end
  | |- context [mbind (M:=option) (A:=?A) ?f ?o] =>
224
    let Hx := fresh in assert_Some_None A o Hx; rewrite Hx; clear Hx
Robbert Krebbers's avatar
Robbert Krebbers committed
225
  | |- context [fmap (M:=option) (A:=?A) ?f ?o] =>
226
227
228
229
230
    let Hx := fresh in assert_Some_None A o Hx; rewrite Hx; clear Hx
  | |- context [default (A:=?A) _ ?o _] =>
    let Hx := fresh in assert_Some_None A o Hx; rewrite Hx; clear Hx
  | |- context [from_option (A:=?A) _ ?o] =>
    let Hx := fresh in assert_Some_None A o Hx; rewrite Hx; clear Hx
Robbert Krebbers's avatar
Robbert Krebbers committed
231
232
233
  | |- context [ match ?o with _ => _ end ] =>
    match type of o with
    | option ?A =>
234
      let Hx := fresh in assert_Some_None A o Hx; rewrite Hx; clear Hx
Robbert Krebbers's avatar
Robbert Krebbers committed
235
    end
236
237
238
239
  | _ => rewrite decide_True by tac
  | _ => rewrite decide_False by tac
  | _ => rewrite option_guard_True by tac
  | _ => rewrite option_guard_False by tac
Robbert Krebbers's avatar
Robbert Krebbers committed
240
241
  end.
Tactic Notation "simplify_option_equality" "by" tactic3(tac) :=
242
  repeat match goal with
Robbert Krebbers's avatar
Robbert Krebbers committed
243
244
  | _ => progress simplify_equality'
  | _ => progress simpl_option_monad by tac
245
  | H : _  _ = Some _ |- _ => apply option_union_Some in H; destruct H
246
  | H : mbind (M:=option) ?f ?o = ?x |- _ =>
Robbert Krebbers's avatar
Robbert Krebbers committed
247
248
    match o with Some _ => fail 1 | None => fail 1 | _ => idtac end;
    match x with Some _ => idtac | None => idtac | _ => fail 1 end;
249
250
251
    let y := fresh in destruct o as [y|] eqn:?;
      [change (f y = x) in H|change (None = x) in H]
  | H : ?x = mbind (M:=option) ?f ?o |- _ =>
Robbert Krebbers's avatar
Robbert Krebbers committed
252
253
    match o with Some _ => fail 1 | None => fail 1 | _ => idtac end;
    match x with Some _ => idtac | None => idtac | _ => fail 1 end;
254
255
    let y := fresh in destruct o as [y|] eqn:?;
      [change (x = f y) in H|change (x = None) in H]
256
  | H : fmap (M:=option) ?f ?o = ?x |- _ =>
Robbert Krebbers's avatar
Robbert Krebbers committed
257
258
    match o with Some _ => fail 1 | None => fail 1 | _ => idtac end;
    match x with Some _ => idtac | None => idtac | _ => fail 1 end;
259
260
261
    let y := fresh in destruct o as [y|] eqn:?;
      [change (Some (f y) = x) in H|change (None = x) in H]
  | H : ?x = fmap (M:=option) ?f ?o |- _ =>
Robbert Krebbers's avatar
Robbert Krebbers committed
262
263
    match o with Some _ => fail 1 | None => fail 1 | _ => idtac end;
    match x with Some _ => idtac | None => idtac | _ => fail 1 end;
264
265
    let y := fresh in destruct o as [y|] eqn:?;
      [change (x = Some (f y)) in H|change (x = None) in H]
266
  | _ => progress case_decide
267
  | _ => progress case_option_guard
268
  end.
269
Tactic Notation "simplify_option_equality" := simplify_option_equality by eauto.