base.v 15.1 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
2
3
4
Global Generalizable All Variables.
Global Set Automatic Coercions Import.
Require Export Morphisms RelationClasses List Bool Utf8 Program Setoid NArith.

5
6
7
8
9
10
Arguments id _ _/.
Arguments compose _ _ _ _ _ _ /.

(* Change True and False into notations so we can overload them *)
Notation "'True'" := True : type_scope.
Notation "'False'" := False : type_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
11

12
Arguments existT {_ _} _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

(*  Common notations *)
Delimit Scope C_scope with C.
Global Open Scope C_scope.

Notation "(=)" := eq (only parsing) : C_scope.
Notation "( x =)" := (eq x) (only parsing) : C_scope.
Notation "(= x )" := (λ y, eq y x) (only parsing) : C_scope.
Notation "(≠)" := (λ x y, x  y) (only parsing) : C_scope.
Notation "( x ≠)" := (λ y, x  y) (only parsing) : C_scope.
Notation "(≠ x )" := (λ y, y  x) (only parsing) : C_scope.

Hint Extern 0 (?x = ?x) => reflexivity.

Notation "(→)" := (λ x y, x  y) : C_scope.
Notation "( T →)" := (λ y, T  y) : C_scope.
Notation "(→ T )" := (λ y, y  T) : C_scope.
30
31
Notation "t $ r" := (t r)
  (at level 65, right associativity,only parsing) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
Infix "∘" := compose : C_scope.
Notation "(∘)" := compose (only parsing) : C_scope.
Notation "( f ∘)" := (compose f) (only parsing) : C_scope.
Notation "(∘ f )" := (λ g, compose g f) (only parsing) : C_scope.
Notation "x ↾ p" := (exist _ x p) (at level 20) : C_scope.
Notation "` x" := (proj1_sig x) : C_scope.

(* Provable propositions *)
Class PropHolds (P : Prop) := prop_holds: P.

(* Decidable propositions *)
Class Decision (P : Prop) := decide : {P} + {¬P}.
Arguments decide _ {_}.

(* Common relations & operations *)
Class Equiv A := equiv: relation A.
Infix "≡" := equiv (at level 70, no associativity) : C_scope.
Notation "(≡)" := equiv (only parsing) : C_scope.
Notation "( x ≡)" := (equiv x) (only parsing) : C_scope.
Notation "(≡ x )" := (λ y, y  x) (only parsing) : C_scope.
Notation "(≢)" := (λ x y, ¬x  y) (only parsing) : C_scope.
Notation "x ≢ y":= (¬x  y) (at level 70, no associativity) : C_scope.
Notation "( x ≢)" := (λ y, x  y) (only parsing) : C_scope.
Notation "(≢ x )" := (λ y, y  x) (only parsing) : C_scope.

Instance equiv_default_relation `{Equiv A} : DefaultRelation () | 3.
Hint Extern 0 (?x  ?x) => reflexivity.

Class Empty A := empty: A.
Notation "∅" := empty : C_scope.

Class Union A := union: A  A  A.
Infix "∪" := union (at level 50, left associativity) : C_scope.
Notation "(∪)" := union (only parsing) : C_scope.
Notation "( x ∪)" := (union x) (only parsing) : C_scope.
Notation "(∪ x )" := (λ y, union y x) (only parsing) : C_scope.

Class Intersection A := intersection: A  A  A.
Infix "∩" := intersection (at level 40) : C_scope.
Notation "(∩)" := intersection (only parsing) : C_scope.
Notation "( x ∩)" := (intersection x) (only parsing) : C_scope.
Notation "(∩ x )" := (λ y, intersection y x) (only parsing) : C_scope.

Class Difference A := difference: A  A  A.
Infix "∖" := difference (at level 40) : C_scope.
Notation "(∖)" := difference (only parsing) : C_scope.
Notation "( x ∖)" := (difference x) (only parsing) : C_scope.
Notation "(∖ x )" := (λ y, difference y x) (only parsing) : C_scope.

Class SubsetEq A := subseteq: A  A  Prop.
Infix "⊆" := subseteq (at level 70) : C_scope.
Notation "(⊆)" := subseteq (only parsing) : C_scope.
Notation "( X ⊆ )" := (subseteq X) (only parsing) : C_scope.
Notation "( ⊆ X )" := (λ Y, subseteq Y X) (only parsing) : C_scope.
Notation "X ⊈ Y" := (¬X  Y) (at level 70) : C_scope.
Notation "(⊈)" := (λ X Y, X  Y) (only parsing) : C_scope.
Notation "( X ⊈ )" := (λ Y, X  Y) (only parsing) : C_scope.
Notation "( ⊈ X )" := (λ Y, Y  X) (only parsing) : C_scope.

Hint Extern 0 (?x  ?x) => reflexivity.

Class Singleton A B := singleton: A  B.
94
95
96
Notation "{[ x ]}" := (singleton x) : C_scope.
Notation "{[ x ; y ; .. ; z ]}" :=
  (union .. (union (singleton x) (singleton y)) .. (singleton z)) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
97
98
99
100
101
102
103
104
105
106
107

Class ElemOf A B := elem_of: A  B  Prop.
Infix "∈" := elem_of (at level 70) : C_scope.
Notation "(∈)" := elem_of (only parsing) : C_scope.
Notation "( x ∈)" := (elem_of x) (only parsing) : C_scope.
Notation "(∈ X )" := (λ x, elem_of x X) (only parsing) : C_scope.
Notation "x ∉ X" := (¬x  X) (at level 80) : C_scope.
Notation "(∉)" := (λ x X, x  X) (only parsing) : C_scope.
Notation "( x ∉)" := (λ X, x  X) (only parsing) : C_scope.
Notation "(∉ X )" := (λ x, x  X) (only parsing) : C_scope.

108
109
110
111
112
113
Class UnionWith M :=
  union_with:  {A}, (A  A  A)  M A  M A  M A.
Class IntersectionWith M :=
  intersection_with:  {A}, (A  A  A)  M A  M A  M A.
Class DifferenceWith M :=
  difference_with:  {A}, (A  A  option A)  M A  M A  M A.
Robbert Krebbers's avatar
Robbert Krebbers committed
114
115

(* Common properties *)
116
117
118
119
120
121
122
123
124
125
126
127
Class Injective {A B} R S (f : A  B) :=
  injective:  x y : A, S (f x) (f y)  R x y.
Class Idempotent {A} R (f : A  A  A) :=
  idempotent:  x, R (f x x) x.
Class Commutative {A B} R (f : B  B  A) :=
  commutative:  x y, R (f x y) (f y x).
Class LeftId {A} R (i : A) (f : A  A  A) :=
  left_id:  x, R (f i x) x.
Class RightId {A} R (i : A) (f : A  A  A) :=
  right_id:  x, R (f x i) x.
Class Associative {A} R (f : A  A  A) :=
  associative:  x y z, R (f x (f y z)) (f (f x y) z).
Robbert Krebbers's avatar
Robbert Krebbers committed
128
129
130
131
132
133
134
135

Arguments injective {_ _ _ _} _ {_} _ _ _.
Arguments idempotent {_ _} _ {_} _.
Arguments commutative {_ _ _} _ {_} _ _.
Arguments left_id {_ _} _ _ {_} _.
Arguments right_id {_ _} _ _ {_} _.
Arguments associative {_ _} _ {_} _ _ _.

136
(* Using idempotent_eq we can force Coq to not use the setoid mechanism *)
137
138
Lemma idempotent_eq {A} (f : A  A  A) `{!Idempotent (=) f} x :
  f x x = x.
139
Proof. auto. Qed.
140
141
Lemma commutative_eq {A B} (f : B  B  A) `{!Commutative (=) f} x y :
  f x y = f y x.
142
Proof. auto. Qed.
143
144
Lemma left_id_eq {A} (i : A) (f : A  A  A) `{!LeftId (=) i f} x :
  f i x = x.
145
Proof. auto. Qed.
146
147
Lemma right_id_eq {A} (i : A) (f : A  A  A) `{!RightId (=) i f} x :
  f x i = x.
148
Proof. auto. Qed.
149
150
Lemma associative_eq {A} (f : A  A  A) `{!Associative (=) f} x y z :
  f x (f y z) = f (f x y) z.
151
152
Proof. auto. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
(* Monadic operations *)
Section monad_ops.
  Context (M : Type  Type).

  Class MRet := mret:  {A}, A  M A.
  Class MBind := mbind:  {A B}, (A  M B)  M A  M B.
  Class MJoin := mjoin:  {A}, M (M A)  M A.
  Class FMap := fmap:  {A B}, (A  B)  M A  M B.
End monad_ops.

Arguments mret {M MRet A} _.
Arguments mbind {M MBind A B} _ _.
Arguments mjoin {M MJoin A} _.
Arguments fmap {M FMap A B} _ _.

Notation "m ≫= f" := (mbind f m) (at level 60, right associativity) : C_scope.
169
170
Notation "x ← y ; z" := (y = (λ x : _, z))
  (at level 65, next at level 35, right associativity) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
171
172
173
174
175
176
177
178
Infix "<$>" := fmap (at level 65, right associativity, only parsing) : C_scope.

(* Ordered structures *)
Class BoundedPreOrder A `{Empty A} `{SubsetEq A} := {
  bounded_preorder :>> PreOrder ();
  subseteq_empty x :   x
}.

179
180
(* Note: no equality to avoid the need for setoids. We define setoid 
equality in a generic way. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
Class BoundedJoinSemiLattice A `{Empty A} `{SubsetEq A} `{Union A} := {
  jsl_preorder :>> BoundedPreOrder A;
  subseteq_union_l x y : x  x  y;
  subseteq_union_r x y : y  x  y;
  union_least x y z : x  z  y  z  x  y  z
}.
Class MeetSemiLattice A `{Empty A} `{SubsetEq A} `{Intersection A} := {
  msl_preorder :>> BoundedPreOrder A;
  subseteq_intersection_l x y : x  y  x;
  subseteq_intersection_r x y : x  y  y;
  intersection_greatest x y z : z  x  z  y  z  x  y
}.

(* Containers *)
Class Size C := size: C  nat.
Class Map A C := map: (A  A)  (C  C).

Class Collection A C `{ElemOf A C} `{Empty C} `{Union C} 
    `{Intersection C} `{Difference C} `{Singleton A C} `{Map A C} := {
  elem_of_empty (x : A) : x  ;
201
  elem_of_singleton (x y : A) : x  {[ y ]}  x = y;
Robbert Krebbers's avatar
Robbert Krebbers committed
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
  elem_of_union X Y (x : A) : x  X  Y  x  X  x  Y;
  elem_of_intersection X Y (x : A) : x  X  Y  x  X  x  Y;
  elem_of_difference X Y (x : A) : x  X  Y  x  X  x  Y;
  elem_of_map f X (x : A) : x  map f X   y, x = f y  y  X
}.

Class Elements A C := elements: C  list A.
Class FinCollection A C `{Empty C} `{Union C} `{Intersection C} `{Difference C} 
    `{Singleton A C} `{ElemOf A C} `{Map A C} `{Elements A C} := {
  fin_collection :>> Collection A C;
  elements_spec X x : x  X  In x (elements X);
  elements_nodup X : NoDup (elements X)
}. 

Class Fresh A C := fresh: C  A.
Class FreshSpec A C `{!Fresh A C} `{!ElemOf A C} := {
  fresh_proper X Y : ( x, x  X  x  Y)  fresh X = fresh Y;
  is_fresh (X : C) : fresh X  X
}.

(* Maps *)
Class Lookup K M := lookup:  {A}, K  M A  option A.
Notation "m !! i" := (lookup i m) (at level 20) : C_scope.
Notation "(!!)" := lookup (only parsing) : C_scope.
Notation "( m !!)" := (λ i, lookup i m) (only parsing) : C_scope.
Notation "(!! i )" := (lookup i) (only parsing) : C_scope.

229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
Class PartialAlter K M :=
  partial_alter:  {A}, (option A  option A)  K  M A  M A.
Class Alter K M :=
  alter:  {A}, (A  A)  K  M A  M A.
Class Dom K M :=
  dom:  C `{Empty C} `{Union C} `{Singleton K C}, M  C.
Class Merge M :=
  merge:  {A}, (option A  option A  option A)  M A  M A  M A.
Class Insert K M :=
  insert:  {A}, K  A  M A  M A.
Notation "<[ k := a ]>" := (insert k a) 
  (at level 5, right associativity, format "<[ k := a ]>") : C_scope.
Class Delete K M :=
  delete: K  M  M.

Definition insert_list `{Insert K M} {A} (l : list (K * A)) (m : M A) : M A :=
  fold_right (λ p, <[ fst p := snd p ]>) m l.
Definition delete_list `{Delete K M} (l : list K) (m : M) : M := 
  fold_right delete m l.
Robbert Krebbers's avatar
Robbert Krebbers committed
248
249

(* Misc *)
250
251
252
253
Lemma symmetry_iff `(R : relation A) `{!Symmetric R} (x y : A) :
  R x y  R y x.
Proof. intuition. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
254
255
256
257
258
259
260
261
262
263
Instance pointwise_reflexive {A} `{R : relation B} :
  Reflexive R  Reflexive (pointwise_relation A R) | 9.
Proof. firstorder. Qed.
Instance pointwise_symmetric {A} `{R : relation B} :
  Symmetric R  Symmetric (pointwise_relation A R) | 9.
Proof. firstorder. Qed.
Instance pointwise_transitive {A} `{R : relation B} :
  Transitive R  Transitive (pointwise_relation A R) | 9.
Proof. firstorder. Qed.

264
265
266
267
268
269
Definition fst_map {A A' B} (f : A  A') (p : A * B) : A' * B :=
  (f (fst p), snd p).
Definition snd_map {A B B'} (f : B  B') (p : A * B) : A * B' :=
  (fst p, f (snd p)).
Definition prod_relation {A B} (R1 : relation A) (R2 : relation B) :
  relation (A * B) := λ x y, R1 (fst x) (fst y)  R2 (snd x) (snd y).
Robbert Krebbers's avatar
Robbert Krebbers committed
270
271
272

Section prod_relation.
  Context `{R1 : relation A} `{R2 : relation B}.
273
274
  Global Instance:
    Reflexive R1  Reflexive R2  Reflexive (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
275
  Proof. firstorder eauto. Qed.
276
277
  Global Instance:
    Symmetric R1  Symmetric R2  Symmetric (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
278
  Proof. firstorder eauto. Qed.
279
280
  Global Instance:
    Transitive R1  Transitive R2  Transitive (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
281
  Proof. firstorder eauto. Qed.
282
283
  Global Instance:
    Equivalence R1  Equivalence R2  Equivalence (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
284
285
286
287
288
289
290
291
292
  Proof. split; apply _. Qed.
  Global Instance: Proper (R1 ==> R2 ==> prod_relation R1 R2) pair.
  Proof. firstorder eauto. Qed.
  Global Instance: Proper (prod_relation R1 R2 ==> R1) fst.
  Proof. firstorder eauto. Qed.
  Global Instance: Proper (prod_relation R1 R2 ==> R2) snd.
  Proof. firstorder eauto. Qed.
End prod_relation.

293
294
Definition lift_relation {A B} (R : relation A)
  (f : B  A) : relation B := λ x y, R (f x) (f y).
Robbert Krebbers's avatar
Robbert Krebbers committed
295
296
297
Definition lift_relation_equivalence {A B} (R : relation A) (f : B  A) :
  Equivalence R  Equivalence (lift_relation R f).
Proof. unfold lift_relation. firstorder. Qed.
298
299
Hint Extern 0 (Equivalence (lift_relation _ _)) =>
  eapply @lift_relation_equivalence : typeclass_instances.
Robbert Krebbers's avatar
Robbert Krebbers committed
300
301
302
303
304
305
306
307
308
309
310
311
312
313

Instance:  A B (x : B), Commutative (=) (λ _ _ : A, x).
Proof. easy. Qed.
Instance:  A (x : A), Associative (=) (λ _ _ : A, x).
Proof. easy. Qed.
Instance:  A, Associative (=) (λ x _ : A, x).
Proof. easy. Qed.
Instance:  A, Associative (=) (λ _ x : A, x).
Proof. easy. Qed.
Instance:  A, Idempotent (=) (λ x _ : A, x).
Proof. easy. Qed.
Instance:  A, Idempotent (=) (λ _ x : A, x).
Proof. easy. Qed.

314
315
Instance left_id_propholds {A} (R : relation A) i f :
  LeftId R i f   x, PropHolds (R (f i x) x).
Robbert Krebbers's avatar
Robbert Krebbers committed
316
Proof. easy. Qed.
317
318
Instance right_id_propholds {A} (R : relation A) i f :
  RightId R i f   x, PropHolds (R (f x i) x).
Robbert Krebbers's avatar
Robbert Krebbers committed
319
Proof. easy. Qed.
320
321
Instance idem_propholds {A} (R : relation A) f :
  Idempotent R f   x, PropHolds (R (f x x) x).
Robbert Krebbers's avatar
Robbert Krebbers committed
322
323
324
325
326
327
328
329
330
Proof. easy. Qed.

Ltac simplify_eqs := repeat
  match goal with
  | |- _ => progress subst
  | |- _ = _ => reflexivity
  | H : _  _ |- _ => now destruct H
  | H : _ = _  False |- _ => now destruct H
  | H : _ = _ |- _ => discriminate H
331
332
  | H : _ = _ |-  ?G =>
    change (id G); injection H; clear H; intros; unfold id at 1
Robbert Krebbers's avatar
Robbert Krebbers committed
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
  | H : ?f _ = ?f _ |- _ => apply (injective f) in H
  | H : ?f _ ?x = ?f _ ?x |- _ => apply (injective (λ y, f y x)) in H
  end.

Hint Extern 0 (PropHolds _) => assumption : typeclass_instances.
Instance: Proper (iff ==> iff) PropHolds.
Proof. now repeat intro. Qed.

Ltac solve_propholds :=
  match goal with
  | [ |- PropHolds (?P) ] => apply _
  | [ |- ?P ] => change (PropHolds P); apply _
  end.

Tactic Notation "remember" constr(t) "as" "(" ident(x) "," ident(E) ")" :=
  remember t as x;
  match goal with
  | E' : x = _ |- _ => rename E' into E
  end.
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399

Ltac feed tac H :=
  let H' := type of H in
  match eval hnf in H' with
  | ?T1  ?T2 =>
    let HT1 := fresh in assert T1 as HT1;
    [| feed tac (H HT1); clear HT1 ]
  | _ => tac H
  end.
Tactic Notation "feed" tactic(tac) constr(H) := feed tac H.

Ltac efeed tac H :=
  let H' := type of H in
  match eval hnf in H' with
  | ?T1  ?T2 =>
    let HT1 := fresh in assert T1 as HT1; [| efeed tac (H HT1); clear HT1 ]
  | ?T1  _ =>
    let e := fresh in evar (e:T1);
    let e' := eval unfold e in e in
    clear e; efeed tac (H e')
  | _ => tac H
  end.
Tactic Notation "efeed" tactic(tac) constr(H) := efeed tac H.

Tactic Notation "feed" "pose" "proof" constr(H) "as" ident(H') :=
  feed (fun H => pose proof H as H') H.
Tactic Notation "feed" "pose" "proof" constr(H) :=
  feed (fun H => pose proof H) H.

Tactic Notation "efeed" "pose" "proof" constr(H) "as" ident(H') :=
  efeed (fun H => pose proof H as H') H.
Tactic Notation "efeed" "pose" "proof" constr(H) :=
  efeed (fun H => pose proof H) H.

Tactic Notation "feed" "specialize" ident(H) :=
  feed (fun H => specialize H) H.
Tactic Notation "efeed" "specialize" ident(H) :=
  efeed (fun H => specialize H) H.

Tactic Notation "feed" "inversion" constr(H) :=
  feed (fun H => let H':=fresh in pose proof H as H'; inversion H') H.
Tactic Notation "feed" "inversion" constr(H) "as" simple_intropattern(IP) :=
  feed (fun H => let H':=fresh in pose proof H as H'; inversion H' as IP) H.

Tactic Notation "feed" "destruct" constr(H) :=
  feed (fun H => let H':=fresh in pose proof H as H'; destruct H') H.
Tactic Notation "feed" "destruct" constr(H) "as" simple_intropattern(IP) :=
  feed (fun H => let H':=fresh in pose proof H as H'; destruct H' as IP) H.