option.v 14.9 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
2 3 4
(* This file is distributed under the terms of the BSD license. *)
(** This file collects general purpose definitions and theorems on the option
data type that are not in the Coq standard library. *)
5
Require Export base tactics decidable.
6

7 8 9 10
Inductive option_reflect {A} (P : A  Prop) (Q : Prop) : option A  Type :=
  | ReflectSome x : P x  option_reflect P Q (Some x)
  | ReflectNone : Q  option_reflect P Q None.

11 12
(** * General definitions and theorems *)
(** Basic properties about equality. *)
13
Lemma None_ne_Some {A} (a : A) : None  Some a.
Robbert Krebbers's avatar
Robbert Krebbers committed
14
Proof. congruence. Qed.
15
Lemma Some_ne_None {A} (a : A) : Some a  None.
Robbert Krebbers's avatar
Robbert Krebbers committed
16
Proof. congruence. Qed.
17
Lemma eq_None_ne_Some {A} (x : option A) a : x = None  x  Some a.
Robbert Krebbers's avatar
Robbert Krebbers committed
18
Proof. congruence. Qed.
19
Instance Some_inj {A} : Injective (=) (=) (@Some A).
Robbert Krebbers's avatar
Robbert Krebbers committed
20 21
Proof. congruence. Qed.

22
(** The non dependent elimination principle on the option type. *)
23 24
Definition default {A B} (b : B) (x : option A) (f : A  B)  : B :=
  match x with None => b | Some a => f a end.
Robbert Krebbers's avatar
Robbert Krebbers committed
25

Robbert Krebbers's avatar
Robbert Krebbers committed
26 27 28
(** The [from_option] function allows us to get the value out of the option
type by specifying a default value. *)
Definition from_option {A} (a : A) (x : option A) : A :=
29
  match x with None => a | Some b => b end.
30

31 32
(** An alternative, but equivalent, definition of equality on the option
data type. This theorem is useful to prove that two options are the same. *)
33 34
Lemma option_eq {A} (x y : option A) : x = y   a, x = Some a  y = Some a.
Proof. split; [by intros; by subst |]. destruct x, y; naive_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
35 36 37 38
Lemma option_eq_1 {A} (x y : option A) a : x = y  x = Some a  y = Some a.
Proof. congruence. Qed.
Lemma option_eq_1_alt {A} (x y : option A) a : x = y  y = Some a  x = Some a.
Proof. congruence. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
39

40 41 42 43 44 45 46
Definition is_Some {A} (x : option A) :=  y, x = Some y.
Lemma mk_is_Some {A} (x : option A) y : x = Some y  is_Some x.
Proof. intros; red; subst; eauto. Qed.
Hint Resolve mk_is_Some.
Lemma is_Some_None {A} : ¬is_Some (@None A).
Proof. by destruct 1. Qed.
Hint Resolve is_Some_None.
Robbert Krebbers's avatar
Robbert Krebbers committed
47

48 49
Instance is_Some_pi {A} (x : option A) : ProofIrrel (is_Some x).
Proof.
50 51 52 53 54 55 56
  set (P (y : option A) := match y with Some _ => True | _ => False end).
  set (f x := match x return P x  is_Some x with
    Some _ => λ _, ex_intro _ _ eq_refl | None => False_rect _ end).
  set (g x (H : is_Some x) :=
    match H return P x with ex_intro _ p => eq_rect _ _ I _ (eq_sym p) end).
  assert ( x H, f x (g x H) = H) as f_g by (by intros ? [??]; subst).
  intros p1 p2. rewrite <-(f_g _ p1), <-(f_g _ p2). by destruct x, p1.
57
Qed.
58
Instance is_Some_dec {A} (x : option A) : Decision (is_Some x) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
59
  match x with
60 61
  | Some x => left (ex_intro _ x eq_refl)
  | None => right is_Some_None
62
  end.
63 64 65 66

Definition is_Some_proj {A} {x : option A} : is_Some x  A :=
  match x with Some a => λ _, a | None => False_rect _  is_Some_None end.
Definition Some_dec {A} (x : option A) : { a | x = Some a } + { x = None } :=
Robbert Krebbers's avatar
Robbert Krebbers committed
67 68 69 70
  match x return { a | x = Some a } + { x = None } with
  | Some a => inleft (a  eq_refl _)
  | None => inright eq_refl
  end.
Robbert Krebbers's avatar
Robbert Krebbers committed
71

72 73
Lemma eq_None_not_Some {A} (x : option A) : x = None  ¬is_Some x.
Proof. destruct x; unfold is_Some; naive_solver. Qed.
74
Lemma not_eq_None_Some `(x : option A) : x  None  is_Some x.
Robbert Krebbers's avatar
Robbert Krebbers committed
75
Proof. rewrite eq_None_not_Some. split. apply dec_stable. tauto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
76

Robbert Krebbers's avatar
Robbert Krebbers committed
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
(** Lifting a relation point-wise to option *)
Inductive option_Forall2 {A B} (P: A  B  Prop) : option A  option B  Prop :=
  | Some_Forall2 x y : P x y  option_Forall2 P (Some x) (Some y)
  | None_Forall2 : option_Forall2 P None None.
Definition option_relation {A B} (R: A  B  Prop) (P: A  Prop) (Q: B  Prop)
    (mx : option A) (my : option B) : Prop :=
  match mx, my with
  | Some x, Some y => R x y
  | Some x, None => P x
  | None, Some y => Q y
  | None, None => True
  end.

(** Setoids *)
Section setoids.
  Context `{Equiv A}.
  Global Instance option_equiv : Equiv (option A) := option_Forall2 ().
  Global Instance option_equivalence `{!Equivalence (() : relation A)} :
    Equivalence (() : relation (option A)).
  Proof.
    split.
    * by intros []; constructor.
    * by destruct 1; constructor.
    * destruct 1; inversion 1; constructor; etransitivity; eauto.
  Qed.
  Global Instance Some_proper : Proper (() ==> ()) (@Some A).
  Proof. by constructor. Qed.
  Global Instance option_leibniz `{!LeibnizEquiv A} : LeibnizEquiv (option A).
  Proof.
    intros x y; split; [destruct 1; fold_leibniz; congruence|].
    by intros <-; destruct x; constructor; fold_leibniz.
  Qed.
End setoids.

111
(** Equality on [option] is decidable. *)
112 113 114 115
Instance option_eq_None_dec {A} (x : option A) : Decision (x = None) :=
  match x with Some _ => right (Some_ne_None _) | None => left eq_refl end.
Instance option_None_eq_dec {A} (x : option A) : Decision (None = x) :=
  match x with Some _ => right (None_ne_Some _) | None => left eq_refl end.
116
Instance option_eq_dec `{dec :  x y : A, Decision (x = y)}
117 118 119
  (x y : option A) : Decision (x = y).
Proof.
 refine
120
  match x, y with
121 122
  | Some a, Some b => cast_if (decide (a = b))
  | None, None => left _ | _, _ => right _
Robbert Krebbers's avatar
Robbert Krebbers committed
123
  end; clear dec; abstract congruence.
124
Defined.
Robbert Krebbers's avatar
Robbert Krebbers committed
125

126
(** * Monadic operations *)
127 128
Instance option_ret: MRet option := @Some.
Instance option_bind: MBind option := λ A B f x,
129
  match x with Some a => f a | None => None end.
130
Instance option_join: MJoin option := λ A x,
131
  match x with Some x => x | None => None end.
132 133
Instance option_fmap: FMap option := @option_map.
Instance option_guard: MGuard option := λ P dec A x,
134
  match dec with left H => x H | _ => None end.
Robbert Krebbers's avatar
Robbert Krebbers committed
135

136 137 138
Lemma fmap_is_Some {A B} (f : A  B) x : is_Some (f <$> x)  is_Some x.
Proof. unfold is_Some; destruct x; naive_solver. Qed.
Lemma fmap_Some {A B} (f : A  B) x y :
139
  f <$> x = Some y   x', x = Some x'  y = f x'.
140 141 142
Proof. destruct x; naive_solver. Qed.
Lemma fmap_None {A B} (f : A  B) x : f <$> x = None  x = None.
Proof. by destruct x. Qed.
143
Lemma option_fmap_id {A} (x : option A) : id <$> x = x.
144
Proof. by destruct x. Qed.
145 146 147
Lemma option_fmap_compose {A B} (f : A  B) {C} (g : B  C) x :
  g  f <$> x = g <$> f <$> x.
Proof. by destruct x. Qed.
148 149 150
Lemma option_fmap_bind {A B C} (f : A  B) (g : B  option C) x :
  (f <$> x) = g = x = g  f.
Proof. by destruct x. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
151
Lemma option_bind_assoc {A B C} (f : A  option B)
152
  (g : B  option C) (x : option A) : (x = f) = g = x = (mbind g  f).
Robbert Krebbers's avatar
Robbert Krebbers committed
153
Proof. by destruct x; simpl. Qed.
154
Lemma option_bind_ext {A B} (f g : A  option B) x y :
155
  ( a, f a = g a)  x = y  x = f = y = g.
156
Proof. intros. destruct x, y; simplify_equality; csimpl; auto. Qed.
157
Lemma option_bind_ext_fun {A B} (f g : A  option B) x :
158
  ( a, f a = g a)  x = f = x = g.
159
Proof. intros. by apply option_bind_ext. Qed.
160 161 162 163 164 165
Lemma bind_Some {A B} (f : A  option B) (x : option A) b :
  x = f = Some b   a, x = Some a  f a = Some b.
Proof. split. by destruct x as [a|]; [exists a|]. by intros (?&->&?). Qed.
Lemma bind_None {A B} (f : A  option B) (x : option A) :
  x = f = None  x = None   a, x = Some a  f a = None.
Proof.
166 167
  split; [|by intros [->|(?&->&?)]].
  destruct x; intros; simplify_equality'; eauto.
168
Qed.
169 170
Lemma bind_with_Some {A} (x : option A) : x = Some = x.
Proof. by destruct x. Qed.
171

172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
(** ** Inverses of constructors *)
(** We can do this in a fancy way using dependent types, but rewrite does
not particularly like type level reductions. *)
Class Maybe {A B : Type} (c : A  B) :=
  maybe : B  option A.
Arguments maybe {_ _} _ {_} !_ /.
Class Maybe2 {A1 A2 B : Type} (c : A1  A2  B) :=
  maybe2 : B  option (A1 * A2).
Arguments maybe2 {_ _ _} _ {_} !_ /.
Class Maybe3 {A1 A2 A3 B : Type} (c : A1  A2  A3  B) :=
  maybe3 : B  option (A1 * A2 * A3).
Arguments maybe3 {_ _ _ _} _ {_} !_ /.
Class Maybe4 {A1 A2 A3 A4 B : Type} (c : A1  A2  A3  A4  B) :=
  maybe4 : B  option (A1 * A2 * A3 * A4).
Arguments maybe4 {_ _ _ _ _} _ {_} !_ /.

Instance maybe_comp `{Maybe B C c1, Maybe A B c2} : Maybe (c1  c2) := λ x,
  maybe c1 x = maybe c2.
Arguments maybe_comp _ _ _ _ _ _ _ !_ /.

Instance maybe_inl {A B} : Maybe (@inl A B) := λ xy,
  match xy with inl x => Some x | _ => None end.
Instance maybe_inr {A B} : Maybe (@inr A B) := λ xy,
  match xy with inr y => Some y | _ => None end.
Robbert Krebbers's avatar
Robbert Krebbers committed
196 197
Instance maybe_Some {A} : Maybe (@Some A) := id.
Arguments maybe_Some _ !_ /.
198

199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
(** * Union, intersection and difference *)
Instance option_union_with {A} : UnionWith A (option A) := λ f x y,
  match x, y with
  | Some a, Some b => f a b
  | Some a, None => Some a
  | None, Some b => Some b
  | None, None => None
  end.
Instance option_intersection_with {A} : IntersectionWith A (option A) :=
  λ f x y, match x, y with Some a, Some b => f a b | _, _ => None end.
Instance option_difference_with {A} : DifferenceWith A (option A) := λ f x y,
  match x, y with
  | Some a, Some b => f a b
  | Some a, None => Some a
  | None, _ => None
  end.
Instance option_union {A} : Union (option A) := union_with (λ x _, Some x).
Lemma option_union_Some {A} (x y : option A) z :
  x  y = Some z  x = Some z  y = Some z.
Proof. destruct x, y; intros; simplify_equality; auto. Qed.

Section option_union_intersection_difference.
  Context {A} (f : A  A  option A).
  Global Instance: LeftId (=) None (union_with f).
  Proof. by intros [?|]. Qed.
  Global Instance: RightId (=) None (union_with f).
  Proof. by intros [?|]. Qed.
  Global Instance: Commutative (=) f  Commutative (=) (union_with f).
  Proof. by intros ? [?|] [?|]; compute; rewrite 1?(commutative f). Qed.
  Global Instance: LeftAbsorb (=) None (intersection_with f).
  Proof. by intros [?|]. Qed.
  Global Instance: RightAbsorb (=) None (intersection_with f).
  Proof. by intros [?|]. Qed.
  Global Instance: Commutative (=) f  Commutative (=) (intersection_with f).
  Proof. by intros ? [?|] [?|]; compute; rewrite 1?(commutative f). Qed.
  Global Instance: RightId (=) None (difference_with f).
  Proof. by intros [?|]. Qed.
End option_union_intersection_difference.

(** * Tactics *)
239 240
Tactic Notation "case_option_guard" "as" ident(Hx) :=
  match goal with
241 242 243 244 245 246 247 248
  | H : appcontext C [@mguard option _ ?P ?dec] |- _ =>
    change (@mguard option _ P dec) with (λ A (x : P  option A),
      match @decide P dec with left H' => x H' | _ => None end) in *;
    destruct_decide (@decide P dec) as Hx
  | |- appcontext C [@mguard option _ ?P ?dec] =>
    change (@mguard option _ P dec) with (λ A (x : P  option A),
      match @decide P dec with left H' => x H' | _ => None end) in *;
    destruct_decide (@decide P dec) as Hx
249 250 251
  end.
Tactic Notation "case_option_guard" :=
  let H := fresh in case_option_guard as H.
Robbert Krebbers's avatar
Robbert Krebbers committed
252

Robbert Krebbers's avatar
Robbert Krebbers committed
253
Lemma option_guard_True {A} P `{Decision P} (x : option A) :
Robbert Krebbers's avatar
Robbert Krebbers committed
254 255
  P  guard P; x = x.
Proof. intros. by case_option_guard. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
256
Lemma option_guard_False {A} P `{Decision P} (x : option A) :
Robbert Krebbers's avatar
Robbert Krebbers committed
257 258
  ¬P  guard P; x = None.
Proof. intros. by case_option_guard. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
259 260 261
Lemma option_guard_iff {A} P Q `{Decision P, Decision Q} (x : option A) :
  (P  Q)  guard P; x = guard Q; x.
Proof. intros [??]. repeat case_option_guard; intuition. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
262

Robbert Krebbers's avatar
Robbert Krebbers committed
263
Tactic Notation "simpl_option_monad" "by" tactic3(tac) :=
264 265 266 267 268
  let assert_Some_None A o H := first
    [ let x := fresh in evar (x:A); let x' := eval unfold x in x in clear x;
      assert (o = Some x') as H by tac
    | assert (o = None) as H by tac ]
  in repeat match goal with
269 270 271
  | H : appcontext [@mret _ _ ?A] |- _ =>
     change (@mret _ _ A) with (@Some A) in H
  | |- appcontext [@mret _ _ ?A] => change (@mret _ _ A) with (@Some A)
Robbert Krebbers's avatar
Robbert Krebbers committed
272
  | H : context [mbind (M:=option) (A:=?A) ?f ?o] |- _ =>
273
    let Hx := fresh in assert_Some_None A o Hx; rewrite Hx in H; clear Hx
Robbert Krebbers's avatar
Robbert Krebbers committed
274
  | H : context [fmap (M:=option) (A:=?A) ?f ?o] |- _ =>
275 276 277
    let Hx := fresh in assert_Some_None A o Hx; rewrite Hx in H; clear Hx
  | H : context [default (A:=?A) _ ?o _] |- _ =>
    let Hx := fresh in assert_Some_None A o Hx; rewrite Hx in H; clear Hx
278 279
  | H : context [from_option (A:=?A) _ ?o] |- _ =>
    let Hx := fresh in assert_Some_None A o Hx; rewrite Hx in H; clear Hx
Robbert Krebbers's avatar
Robbert Krebbers committed
280 281 282
  | H : context [ match ?o with _ => _ end ] |- _ =>
    match type of o with
    | option ?A =>
283
      let Hx := fresh in assert_Some_None A o Hx; rewrite Hx in H; clear Hx
Robbert Krebbers's avatar
Robbert Krebbers committed
284 285
    end
  | |- context [mbind (M:=option) (A:=?A) ?f ?o] =>
286
    let Hx := fresh in assert_Some_None A o Hx; rewrite Hx; clear Hx
Robbert Krebbers's avatar
Robbert Krebbers committed
287
  | |- context [fmap (M:=option) (A:=?A) ?f ?o] =>
288 289 290 291 292
    let Hx := fresh in assert_Some_None A o Hx; rewrite Hx; clear Hx
  | |- context [default (A:=?A) _ ?o _] =>
    let Hx := fresh in assert_Some_None A o Hx; rewrite Hx; clear Hx
  | |- context [from_option (A:=?A) _ ?o] =>
    let Hx := fresh in assert_Some_None A o Hx; rewrite Hx; clear Hx
Robbert Krebbers's avatar
Robbert Krebbers committed
293 294 295
  | |- context [ match ?o with _ => _ end ] =>
    match type of o with
    | option ?A =>
296
      let Hx := fresh in assert_Some_None A o Hx; rewrite Hx; clear Hx
Robbert Krebbers's avatar
Robbert Krebbers committed
297
    end
298 299 300 301
  | H : context [decide _] |- _ => rewrite decide_True in H by tac
  | H : context [decide _] |- _ => rewrite decide_False in H by tac
  | H : context [mguard _ _] |- _ => rewrite option_guard_False in H by tac
  | H : context [mguard _ _] |- _ => rewrite option_guard_True in H by tac
302 303 304 305
  | _ => rewrite decide_True by tac
  | _ => rewrite decide_False by tac
  | _ => rewrite option_guard_True by tac
  | _ => rewrite option_guard_False by tac
Robbert Krebbers's avatar
Robbert Krebbers committed
306 307
  end.
Tactic Notation "simplify_option_equality" "by" tactic3(tac) :=
308
  repeat match goal with
Robbert Krebbers's avatar
Robbert Krebbers committed
309 310
  | _ => progress simplify_equality'
  | _ => progress simpl_option_monad by tac
311 312 313 314
  | _ : maybe _ ?x = Some _ |- _ => is_var x; destruct x
  | _ : maybe2 _ ?x = Some _ |- _ => is_var x; destruct x
  | _ : maybe3 _ ?x = Some _ |- _ => is_var x; destruct x
  | _ : maybe4 _ ?x = Some _ |- _ => is_var x; destruct x
315
  | H : _  _ = Some _ |- _ => apply option_union_Some in H; destruct H
316
  | H : mbind (M:=option) ?f ?o = ?x |- _ =>
Robbert Krebbers's avatar
Robbert Krebbers committed
317 318
    match o with Some _ => fail 1 | None => fail 1 | _ => idtac end;
    match x with Some _ => idtac | None => idtac | _ => fail 1 end;
319 320 321
    let y := fresh in destruct o as [y|] eqn:?;
      [change (f y = x) in H|change (None = x) in H]
  | H : ?x = mbind (M:=option) ?f ?o |- _ =>
Robbert Krebbers's avatar
Robbert Krebbers committed
322 323
    match o with Some _ => fail 1 | None => fail 1 | _ => idtac end;
    match x with Some _ => idtac | None => idtac | _ => fail 1 end;
324 325
    let y := fresh in destruct o as [y|] eqn:?;
      [change (x = f y) in H|change (x = None) in H]
326
  | H : fmap (M:=option) ?f ?o = ?x |- _ =>
Robbert Krebbers's avatar
Robbert Krebbers committed
327 328
    match o with Some _ => fail 1 | None => fail 1 | _ => idtac end;
    match x with Some _ => idtac | None => idtac | _ => fail 1 end;
329 330 331
    let y := fresh in destruct o as [y|] eqn:?;
      [change (Some (f y) = x) in H|change (None = x) in H]
  | H : ?x = fmap (M:=option) ?f ?o |- _ =>
Robbert Krebbers's avatar
Robbert Krebbers committed
332 333
    match o with Some _ => fail 1 | None => fail 1 | _ => idtac end;
    match x with Some _ => idtac | None => idtac | _ => fail 1 end;
334 335
    let y := fresh in destruct o as [y|] eqn:?;
      [change (x = Some (f y)) in H|change (x = None) in H]
336
  | _ => progress case_decide
337
  | _ => progress case_option_guard
338
  end.
339
Tactic Notation "simplify_option_equality" := simplify_option_equality by eauto.