fin_maps.v 88.1 KB
Newer Older
1
(* Copyright (c) 2012-2017, Coq-std++ developers. *)
2
3
4
(* This file is distributed under the terms of the BSD license. *)
(** Finite maps associate data to keys. This file defines an interface for
finite maps and collects some theory on it. Most importantly, it proves useful
5
induction principles for finite maps and implements the tactic
6
[simplify_map_eq] to simplify goals involving finite maps. *)
7
From Coq Require Import Permutation.
8
From stdpp Require Export relations orders vector fin_collections.
9
10
(* FIXME: This file needs a 'Proof Using' hint, but the default we use
   everywhere makes for lots of extra ssumptions. *)
11

12
13
(** * Axiomatization of finite maps *)
(** We require Leibniz equality to be extensional on finite maps. This of
14
15
16
17
18
course limits the space of finite map implementations, but since we are mainly
interested in finite maps with numbers as indexes, we do not consider this to
be a serious limitation. The main application of finite maps is to implement
the memory, where extensionality of Leibniz equality is very important for a
convenient use in the assertions of our axiomatic semantics. *)
19

Robbert Krebbers's avatar
Robbert Krebbers committed
20
21
(** Finiteness is axiomatized by requiring that each map can be translated
to an association list. The translation to association lists is used to
22
prove well founded recursion on finite maps. *)
23

24
25
26
(** Finite map implementations are required to implement the [merge] function
which enables us to give a generic implementation of [union_with],
[intersection_with], and [difference_with]. *)
27

28
Class FinMapToList K A M := map_to_list: M  list (K * A).
29
30
Hint Mode FinMapToList ! - - : typeclass_instances.
Hint Mode FinMapToList - - ! : typeclass_instances.
Robbert Krebbers's avatar
Robbert Krebbers committed
31

32
33
Class FinMap K M `{FMap M,  A, Lookup K A (M A),  A, Empty (M A),  A,
    PartialAlter K A (M A), OMap M, Merge M,  A, FinMapToList K A (M A),
34
    EqDecision K} := {
35
36
  map_eq {A} (m1 m2 : M A) : ( i, m1 !! i = m2 !! i)  m1 = m2;
  lookup_empty {A} i : ( : M A) !! i = None;
37
38
39
40
  lookup_partial_alter {A} f (m : M A) i :
    partial_alter f i m !! i = f (m !! i);
  lookup_partial_alter_ne {A} f (m : M A) i j :
    i  j  partial_alter f i m !! j = m !! j;
41
  lookup_fmap {A B} (f : A  B) (m : M A) i : (f <$> m) !! i = f <$> m !! i;
42
  NoDup_map_to_list {A} (m : M A) : NoDup (map_to_list m);
43
44
  elem_of_map_to_list {A} (m : M A) i x :
    (i,x)  map_to_list m  m !! i = Some x;
45
  lookup_omap {A B} (f : A  option B) m i : omap f m !! i = m !! i = f;
46
  lookup_merge {A B C} (f: option A  option B  option C) `{!DiagNone f} m1 m2 i :
47
    merge f m1 m2 !! i = f (m1 !! i) (m2 !! i)
Robbert Krebbers's avatar
Robbert Krebbers committed
48
49
}.

50
51
52
(** * Derived operations *)
(** All of the following functions are defined in a generic way for arbitrary
finite map implementations. These generic implementations do not cause a
53
54
significant performance loss, which justifies including them in the finite map
interface as primitive operations. *)
55
56
57
58
59
60
61
62
63
64
Instance map_insert `{PartialAlter K A M} : Insert K A M :=
  λ i x, partial_alter (λ _, Some x) i.
Instance map_alter `{PartialAlter K A M} : Alter K A M :=
  λ f, partial_alter (fmap f).
Instance map_delete `{PartialAlter K A M} : Delete K M :=
  partial_alter (λ _, None).
Instance map_singleton `{PartialAlter K A M, Empty M} :
  SingletonM K A M := λ i x, <[i:=x]> .

Definition map_of_list `{Insert K A M, Empty M} : list (K * A)  M :=
65
  fold_right (λ p, <[p.1:=p.2]>) .
66

67
68
Instance map_size `{FinMapToList K A M} : Size M := λ m, length (map_to_list m).

69
70
71
72
73
74
Definition map_to_collection `{FinMapToList K A M,
    Singleton B C, Empty C, Union C} (f : K  A  B) (m : M) : C :=
  of_list (curry f <$> map_to_list m).
Definition map_of_collection `{Elements B C, Insert K A M, Empty M}
    (f : B  K * A) (X : C) : M :=
  map_of_list (f <$> elements X).
Robbert Krebbers's avatar
Robbert Krebbers committed
75

76
77
78
79
80
81
Instance map_union_with `{Merge M} {A} : UnionWith A (M A) :=
  λ f, merge (union_with f).
Instance map_intersection_with `{Merge M} {A} : IntersectionWith A (M A) :=
  λ f, merge (intersection_with f).
Instance map_difference_with `{Merge M} {A} : DifferenceWith A (M A) :=
  λ f, merge (difference_with f).
Robbert Krebbers's avatar
Robbert Krebbers committed
82

83
Instance map_equiv `{ A, Lookup K A (M A), Equiv A} : Equiv (M A) | 18 :=
84
  λ m1 m2,  i, m1 !! i  m2 !! i.
Robbert Krebbers's avatar
Robbert Krebbers committed
85

86
87
(** The relation [intersection_forall R] on finite maps describes that the
relation [R] holds for each pair in the intersection. *)
88
Definition map_Forall `{Lookup K A M} (P : K  A  Prop) : M  Prop :=
Robbert Krebbers's avatar
Robbert Krebbers committed
89
  λ m,  i x, m !! i = Some x  P i x.
90
Definition map_relation `{ A, Lookup K A (M A)} {A B} (R : A  B  Prop)
Robbert Krebbers's avatar
Robbert Krebbers committed
91
92
    (P : A  Prop) (Q : B  Prop) (m1 : M A) (m2 : M B) : Prop :=  i,
  option_relation R P Q (m1 !! i) (m2 !! i).
93
Definition map_included `{ A, Lookup K A (M A)} {A}
Robbert Krebbers's avatar
Robbert Krebbers committed
94
  (R : relation A) : relation (M A) := map_relation R (λ _, False) (λ _, True).
95
Definition map_disjoint `{ A, Lookup K A (M A)} {A} : relation (M A) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
96
  map_relation (λ _ _, False) (λ _, True) (λ _, True).
97
Infix "##ₘ" := map_disjoint (at level 70) : stdpp_scope.
98
Hint Extern 0 (_ ## _) => symmetry; eassumption.
99
100
Notation "( m ##ₘ.)" := (map_disjoint m) (only parsing) : stdpp_scope.
Notation "(.##ₘ m )" := (λ m2, m2 ## m) (only parsing) : stdpp_scope.
101
Instance map_subseteq `{ A, Lookup K A (M A)} {A} : SubsetEq (M A) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
102
  map_included (=).
Robbert Krebbers's avatar
Robbert Krebbers committed
103
104
105
106
107

(** The union of two finite maps only has a meaningful definition for maps
that are disjoint. However, as working with partial functions is inconvenient
in Coq, we define the union as a total function. In case both finite maps
have a value at the same index, we take the value of the first map. *)
108
Instance map_union `{Merge M} {A} : Union (M A) := union_with (λ x _, Some x).
109
110
111
Instance map_intersection `{Merge M} {A} : Intersection (M A) :=
  intersection_with (λ x _, Some x).

112
113
(** The difference operation removes all values from the first map whose
index contains a value in the second map as well. *)
114
Instance map_difference `{Merge M} {A} : Difference (M A) :=
115
  difference_with (λ _ _, None).
Robbert Krebbers's avatar
Robbert Krebbers committed
116

117
118
(** A stronger variant of map that allows the mapped function to use the index
of the elements. Implemented by conversion to lists, so not very efficient. *)
119
120
Definition map_imap `{ A, Insert K A (M A),  A, Empty (M A),
     A, FinMapToList K A (M A)} {A B} (f : K  A  option B) (m : M A) : M B :=
121
122
  map_of_list (omap (λ ix, (fst ix,) <$> curry f ix) (map_to_list m)).

123
124
125
126
127
128
129
(* The zip operation on maps combines two maps key-wise. The keys of resulting
map correspond to the keys that are in both maps. *)
Definition map_zip_with `{Merge M} {A B C} (f : A  B  C) : M A  M B  M C :=
  merge (λ mx my,
    match mx, my with Some x, Some y => Some (f x y) | _, _ => None end).
Notation map_zip := (map_zip_with pair).

130
131
132
133
134
(* Folds a function [f] over a map. The order in which the function is called
is unspecified. *)
Definition map_fold `{FinMapToList K A M} {B}
  (f : K  A  B  B) (b : B) : M  B := foldr (curry f) b  map_to_list.

135
Instance map_filter `{FinMapToList K A M, Insert K A M, Empty M} : Filter (K * A) M :=
136
137
  λ P _, map_fold (λ k v m, if decide (P (k,v)) then <[k := v]>m else m) .

138
139
140
141
(** * Theorems *)
Section theorems.
Context `{FinMap K M}.

Robbert Krebbers's avatar
Robbert Krebbers committed
142
143
(** ** Setoids *)
Section setoid.
144
  Context `{Equiv A}.
145

146
147
148
149
  Lemma map_equiv_lookup_l (m1 m2 : M A) i x :
    m1  m2  m1 !! i = Some x   y, m2 !! i = Some y  x  y.
  Proof. generalize (equiv_Some_inv_l (m1 !! i) (m2 !! i) x); naive_solver. Qed.

150
  Global Instance map_equivalence : Equivalence (@{A})  Equivalence (@{M A}).
Robbert Krebbers's avatar
Robbert Krebbers committed
151
152
  Proof.
    split.
153
154
    - by intros m i.
    - by intros m1 m2 ? i.
155
    - by intros m1 m2 m3 ?? i; trans (m2 !! i).
Robbert Krebbers's avatar
Robbert Krebbers committed
156
  Qed.
157
  Global Instance lookup_proper (i : K) : Proper ((@{M A}) ==> ()) (lookup i).
Robbert Krebbers's avatar
Robbert Krebbers committed
158
159
  Proof. by intros m1 m2 Hm. Qed.
  Global Instance partial_alter_proper :
160
    Proper ((() ==> ()) ==> (=) ==> () ==> (@{M A})) partial_alter.
Robbert Krebbers's avatar
Robbert Krebbers committed
161
162
163
164
165
166
  Proof.
    by intros f1 f2 Hf i ? <- m1 m2 Hm j; destruct (decide (i = j)) as [->|];
      rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne by done;
      try apply Hf; apply lookup_proper.
  Qed.
  Global Instance insert_proper (i : K) :
167
    Proper (() ==> () ==> (@{M A})) (insert i).
Robbert Krebbers's avatar
Robbert Krebbers committed
168
  Proof. by intros ???; apply partial_alter_proper; [constructor|]. Qed.
169
  Global Instance singleton_proper k : Proper (() ==> (@{M A})) (singletonM k).
170
171
172
173
  Proof.
    intros ???; apply insert_proper; [done|].
    intros ?. rewrite lookup_empty; constructor.
  Qed.
174
  Global Instance delete_proper (i : K) : Proper (() ==> (@{M A})) (delete i).
Robbert Krebbers's avatar
Robbert Krebbers committed
175
176
  Proof. by apply partial_alter_proper; [constructor|]. Qed.
  Global Instance alter_proper :
177
    Proper ((() ==> ()) ==> (=) ==> () ==> (@{M A})) alter.
Robbert Krebbers's avatar
Robbert Krebbers committed
178
179
180
181
  Proof.
    intros ?? Hf; apply partial_alter_proper.
    by destruct 1; constructor; apply Hf.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
182
183
  Lemma merge_ext `{Equiv B, Equiv C} (f g : option A  option B  option C)
      `{!DiagNone f, !DiagNone g} :
Robbert Krebbers's avatar
Robbert Krebbers committed
184
    (() ==> () ==> ())%signature f g 
185
    (() ==> () ==> (@{M _}))%signature (merge f) (merge g).
Robbert Krebbers's avatar
Robbert Krebbers committed
186
187
188
189
  Proof.
    by intros Hf ?? Hm1 ?? Hm2 i; rewrite !lookup_merge by done; apply Hf.
  Qed.
  Global Instance union_with_proper :
190
    Proper ((() ==> () ==> ()) ==> () ==> () ==>(@{M A})) union_with.
Robbert Krebbers's avatar
Robbert Krebbers committed
191
192
193
  Proof.
    intros ?? Hf ?? Hm1 ?? Hm2 i; apply (merge_ext _ _); auto.
    by do 2 destruct 1; first [apply Hf | constructor].
194
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
195
  Global Instance map_leibniz `{!LeibnizEquiv A} : LeibnizEquiv (M A).
196
  Proof. intros m1 m2 Hm; apply map_eq; intros i. apply leibniz_equiv, Hm. Qed.
197
198
  Lemma map_equiv_empty (m : M A) : m    m = .
  Proof.
199
200
201
    split; [intros Hm; apply map_eq; intros i|intros ->].
    - generalize (Hm i). by rewrite lookup_empty, equiv_None.
    - intros ?. rewrite lookup_empty; constructor.
202
  Qed.
203
  Global Instance map_fmap_proper `{Equiv B} (f : A  B) :
204
    Proper (() ==> ()) f  Proper (() ==> (@{M _})) (fmap f).
205
206
207
  Proof.
    intros ? m m' ? k; rewrite !lookup_fmap. by apply option_fmap_proper.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
208
209
210
End setoid.

(** ** General properties *)
211
212
213
214
215
Lemma map_eq_iff {A} (m1 m2 : M A) : m1 = m2   i, m1 !! i = m2 !! i.
Proof. split. by intros ->. apply map_eq. Qed.
Lemma map_subseteq_spec {A} (m1 m2 : M A) :
  m1  m2   i x, m1 !! i = Some x  m2 !! i = Some x.
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
216
  unfold subseteq, map_subseteq, map_relation. split; intros Hm i;
217
218
    specialize (Hm i); destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
219
Global Instance map_included_preorder {A} (R : relation A) :
220
  PreOrder R  PreOrder (map_included R : relation (M A)).
221
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
222
  split; [intros m i; by destruct (m !! i); simpl|].
223
  intros m1 m2 m3 Hm12 Hm23 i; specialize (Hm12 i); specialize (Hm23 i).
224
  destruct (m1 !! i), (m2 !! i), (m3 !! i); simplify_eq/=;
225
    done || etrans; eauto.
226
Qed.
227
Global Instance map_subseteq_po : PartialOrder (() : relation (M A)).
228
Proof.
229
230
231
  split; [apply _|].
  intros m1 m2; rewrite !map_subseteq_spec.
  intros; apply map_eq; intros i; apply option_eq; naive_solver.
232
233
234
Qed.
Lemma lookup_weaken {A} (m1 m2 : M A) i x :
  m1 !! i = Some x  m1  m2  m2 !! i = Some x.
235
Proof. rewrite !map_subseteq_spec. auto. Qed.
236
237
238
239
240
241
Lemma lookup_weaken_is_Some {A} (m1 m2 : M A) i :
  is_Some (m1 !! i)  m1  m2  is_Some (m2 !! i).
Proof. inversion 1. eauto using lookup_weaken. Qed.
Lemma lookup_weaken_None {A} (m1 m2 : M A) i :
  m2 !! i = None  m1  m2  m1 !! i = None.
Proof.
242
243
  rewrite map_subseteq_spec, !eq_None_not_Some.
  intros Hm2 Hm [??]; destruct Hm2; eauto.
244
245
Qed.
Lemma lookup_weaken_inv {A} (m1 m2 : M A) i x y :
246
247
  m1 !! i = Some x  m1  m2  m2 !! i = Some y  x = y.
Proof. intros Hm1 ? Hm2. eapply lookup_weaken in Hm1; eauto. congruence. Qed.
248
249
250
251
252
253
Lemma lookup_ne {A} (m : M A) i j : m !! i  m !! j  i  j.
Proof. congruence. Qed.
Lemma map_empty {A} (m : M A) : ( i, m !! i = None)  m = .
Proof. intros Hm. apply map_eq. intros. by rewrite Hm, lookup_empty. Qed.
Lemma lookup_empty_is_Some {A} i : ¬is_Some (( : M A) !! i).
Proof. rewrite lookup_empty. by inversion 1. Qed.
254
Lemma lookup_empty_Some {A} i (x : A) : ¬( : M A) !! i = Some x.
255
256
Proof. by rewrite lookup_empty. Qed.
Lemma map_subset_empty {A} (m : M A) : m  .
257
258
259
Proof.
  intros [_ []]. rewrite map_subseteq_spec. intros ??. by rewrite lookup_empty.
Qed.
260
261
Lemma map_fmap_empty {A B} (f : A  B) : f <$> ( : M A) = .
Proof. by apply map_eq; intros i; rewrite lookup_fmap, !lookup_empty. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
262
263
264
265
266
Lemma map_fmap_empty_inv {A B} (f : A  B) m : f <$> m =   m = .
Proof.
  intros Hm. apply map_eq; intros i. generalize (f_equal (lookup i) Hm).
  by rewrite lookup_fmap, !lookup_empty, fmap_None.
Qed.
267

268
269
270
271
272
Lemma map_subset_alt {A} (m1 m2 : M A) :
  m1  m2  m1  m2   i, m1 !! i = None  is_Some (m2 !! i).
Proof.
  rewrite strict_spec_alt. split.
  - intros [? Heq]; split; [done|].
Robbert Krebbers's avatar
Robbert Krebbers committed
273
    destruct (decide (Exists (λ ix, m1 !! ix.1 = None) (map_to_list m2)))
274
275
276
277
278
279
280
281
282
283
      as [[[i x] [?%elem_of_map_to_list ?]]%Exists_exists
         |Hm%(not_Exists_Forall _)]; [eauto|].
    destruct Heq; apply (anti_symm _), map_subseteq_spec; [done|intros i x Hi].
    assert (is_Some (m1 !! i)) as [x' ?].
    { by apply not_eq_None_Some,
        (proj1 (Forall_forall _ _) Hm (i,x)), elem_of_map_to_list. }
    by rewrite <-(lookup_weaken_inv m1 m2 i x' x).
  - intros [? (i&?&x&?)]; split; [done|]. congruence.
Qed.

284
(** ** Properties of the [partial_alter] operation *)
285
286
287
Lemma partial_alter_ext {A} (f g : option A  option A) (m : M A) i :
  ( x, m !! i = x  f x = g x)  partial_alter f i m = partial_alter g i m.
Proof.
288
289
  intros. apply map_eq; intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne; auto.
290
291
Qed.
Lemma partial_alter_compose {A} f g (m : M A) i:
292
293
  partial_alter (f  g) i m = partial_alter f i (partial_alter g i m).
Proof.
294
295
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
296
Qed.
297
Lemma partial_alter_commute {A} f g (m : M A) i j :
298
  i  j  partial_alter f i (partial_alter g j m) =
299
300
    partial_alter g j (partial_alter f i m).
Proof.
301
302
303
304
  intros. apply map_eq; intros jj. destruct (decide (jj = j)) as [->|?].
  { by rewrite lookup_partial_alter_ne,
      !lookup_partial_alter, lookup_partial_alter_ne. }
  destruct (decide (jj = i)) as [->|?].
305
  - by rewrite lookup_partial_alter,
306
     !lookup_partial_alter_ne, lookup_partial_alter by congruence.
307
  - by rewrite !lookup_partial_alter_ne by congruence.
308
309
310
311
Qed.
Lemma partial_alter_self_alt {A} (m : M A) i x :
  x = m !! i  partial_alter (λ _, x) i m = m.
Proof.
312
313
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
314
Qed.
315
Lemma partial_alter_self {A} (m : M A) i : partial_alter (λ _, m !! i) i m = m.
316
Proof. by apply partial_alter_self_alt. Qed.
317
Lemma partial_alter_subseteq {A} f (m : M A) i :
318
  m !! i = None  m  partial_alter f i m.
319
320
321
322
Proof.
  rewrite map_subseteq_spec. intros Hi j x Hj.
  rewrite lookup_partial_alter_ne; congruence.
Qed.
323
Lemma partial_alter_subset {A} f (m : M A) i :
324
  m !! i = None  is_Some (f (m !! i))  m  partial_alter f i m.
325
Proof.
326
327
  intros Hi Hfi. apply map_subset_alt; split; [by apply partial_alter_subseteq|].
  exists i. by rewrite lookup_partial_alter.
328
329
330
Qed.

(** ** Properties of the [alter] operation *)
331
Lemma lookup_alter {A} (f : A  A) (m : M A) i : alter f i m !! i = f <$> m !! i.
332
Proof. unfold alter. apply lookup_partial_alter. Qed.
333
334
Lemma lookup_alter_ne {A} (f : A  A) (m : M A) i j :
  i  j  alter f i m !! j = m !! j.
335
Proof. unfold alter. apply lookup_partial_alter_ne. Qed.
336
337
338
Lemma alter_ext {A} (f g : A  A) (m : M A) i :
  ( x, m !! i = Some x  f x = g x)  alter f i m = alter g i m.
Proof. intro. apply partial_alter_ext. intros [x|] ?; f_equal/=; auto. Qed.
339
340
341
342
343
344
345
346
347
Lemma alter_compose {A} (f g : A  A) (m : M A) i:
  alter (f  g) i m = alter f i (alter g i m).
Proof.
  unfold alter, map_alter. rewrite <-partial_alter_compose.
  apply partial_alter_ext. by intros [?|].
Qed.
Lemma alter_commute {A} (f g : A  A) (m : M A) i j :
  i  j  alter f i (alter g j m) = alter g j (alter f i m).
Proof. apply partial_alter_commute. Qed.
348
Lemma lookup_alter_Some {A} (f : A  A) (m : M A) i j y :
349
350
351
  alter f i m !! j = Some y 
    (i = j   x, m !! j = Some x  y = f x)  (i  j  m !! j = Some y).
Proof.
352
  destruct (decide (i = j)) as [->|?].
353
  - rewrite lookup_alter. naive_solver (simplify_option_eq; eauto).
354
  - rewrite lookup_alter_ne by done. naive_solver.
355
Qed.
356
Lemma lookup_alter_None {A} (f : A  A) (m : M A) i j :
357
358
  alter f i m !! j = None  m !! j = None.
Proof.
359
360
  by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_alter, ?fmap_None, ?lookup_alter_ne.
361
Qed.
362
Lemma lookup_alter_is_Some {A} (f : A  A) (m : M A) i j :
363
364
  is_Some (alter f i m !! j)  is_Some (m !! j).
Proof. by rewrite <-!not_eq_None_Some, lookup_alter_None. Qed.
365
Lemma alter_id {A} (f : A  A) (m : M A) i :
Robbert Krebbers's avatar
Robbert Krebbers committed
366
  ( x, m !! i = Some x  f x = x)  alter f i m = m.
367
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
368
  intros Hi; apply map_eq; intros j; destruct (decide (i = j)) as [->|?].
369
  { rewrite lookup_alter; destruct (m !! j); f_equal/=; auto. }
Robbert Krebbers's avatar
Robbert Krebbers committed
370
  by rewrite lookup_alter_ne by done.
371
Qed.
372
373
374
375
376
377
378
379
380
381
382
383
Lemma alter_mono {A} f (m1 m2 : M A) i : m1  m2  alter f i m1  alter f i m2.
Proof.
  rewrite !map_subseteq_spec. intros ? j x.
  rewrite !lookup_alter_Some. naive_solver.
Qed.
Lemma alter_strict_mono {A} f (m1 m2 : M A) i :
  m1  m2  alter f i m1  alter f i m2.
Proof.
  rewrite !map_subset_alt.
  intros [? (j&?&?)]; split; auto using alter_mono.
  exists j. by rewrite lookup_alter_None, lookup_alter_is_Some.
Qed.
384
385
386
387
388
389
390
391
392
393

(** ** Properties of the [delete] operation *)
Lemma lookup_delete {A} (m : M A) i : delete i m !! i = None.
Proof. apply lookup_partial_alter. Qed.
Lemma lookup_delete_ne {A} (m : M A) i j : i  j  delete i m !! j = m !! j.
Proof. apply lookup_partial_alter_ne. Qed.
Lemma lookup_delete_Some {A} (m : M A) i j y :
  delete i m !! j = Some y  i  j  m !! j = Some y.
Proof.
  split.
394
  - destruct (decide (i = j)) as [->|?];
395
      rewrite ?lookup_delete, ?lookup_delete_ne; intuition congruence.
396
  - intros [??]. by rewrite lookup_delete_ne.
397
Qed.
398
399
400
Lemma lookup_delete_is_Some {A} (m : M A) i j :
  is_Some (delete i m !! j)  i  j  is_Some (m !! j).
Proof. unfold is_Some; setoid_rewrite lookup_delete_Some; naive_solver. Qed.
401
402
403
Lemma lookup_delete_None {A} (m : M A) i j :
  delete i m !! j = None  i = j  m !! j = None.
Proof.
404
405
  destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne; tauto.
406
407
408
409
410
411
412
413
414
Qed.
Lemma delete_empty {A} i : delete i ( : M A) = .
Proof. rewrite <-(partial_alter_self ) at 2. by rewrite lookup_empty. Qed.
Lemma delete_commute {A} (m : M A) i j :
  delete i (delete j m) = delete j (delete i m).
Proof. destruct (decide (i = j)). by subst. by apply partial_alter_commute. Qed.
Lemma delete_insert_ne {A} (m : M A) i j x :
  i  j  delete i (<[j:=x]>m) = <[j:=x]>(delete i m).
Proof. intro. by apply partial_alter_commute. Qed.
415
Lemma delete_notin {A} (m : M A) i : m !! i = None  delete i m = m.
416
Proof.
417
418
  intros. apply map_eq. intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne.
419
Qed.
420
421
422
Lemma delete_idemp {A} (m : M A) i :
  delete i (delete i m) = delete i m.
Proof. by setoid_rewrite <-partial_alter_compose. Qed.
423
424
425
426
427
428
429
430
431
Lemma delete_partial_alter {A} (m : M A) i f :
  m !! i = None  delete i (partial_alter f i m) = m.
Proof.
  intros. unfold delete, map_delete. rewrite <-partial_alter_compose.
  unfold compose. by apply partial_alter_self_alt.
Qed.
Lemma delete_insert {A} (m : M A) i x :
  m !! i = None  delete i (<[i:=x]>m) = m.
Proof. apply delete_partial_alter. Qed.
432
433
434
Lemma delete_insert_delete {A} (m : M A) i x :
  delete i (<[i:=x]>m) = delete i m.
Proof. by setoid_rewrite <-partial_alter_compose. Qed.
435
436
Lemma insert_delete {A} (m : M A) i x : <[i:=x]>(delete i m) = <[i:=x]> m.
Proof. symmetry; apply (partial_alter_compose (λ _, Some x)). Qed.
437
Lemma delete_subseteq {A} (m : M A) i : delete i m  m.
438
439
440
Proof.
  rewrite !map_subseteq_spec. intros j x. rewrite lookup_delete_Some. tauto.
Qed.
441
Lemma delete_subset {A} (m : M A) i : is_Some (m !! i)  delete i m  m.
442
Proof.
443
444
  intros [x ?]; apply map_subset_alt; split; [apply delete_subseteq|].
  exists i. rewrite lookup_delete; eauto.
445
Qed.
446
Lemma delete_mono {A} (m1 m2 : M A) i : m1  m2  delete i m1  delete i m2.
447
Proof.
448
449
  rewrite !map_subseteq_spec. intros ? j x.
  rewrite !lookup_delete_Some. intuition eauto.
450
451
452
453
454
Qed.

(** ** Properties of the [insert] operation *)
Lemma lookup_insert {A} (m : M A) i x : <[i:=x]>m !! i = Some x.
Proof. unfold insert. apply lookup_partial_alter. Qed.
455
Lemma lookup_insert_rev {A}  (m : M A) i x y : <[i:=x]>m !! i = Some y  x = y.
456
Proof. rewrite lookup_insert. congruence. Qed.
457
Lemma lookup_insert_ne {A} (m : M A) i j x : i  j  <[i:=x]>m !! j = m !! j.
458
Proof. unfold insert. apply lookup_partial_alter_ne. Qed.
459
460
Lemma insert_insert {A} (m : M A) i x y : <[i:=x]>(<[i:=y]>m) = <[i:=x]>m.
Proof. unfold insert, map_insert. by rewrite <-partial_alter_compose. Qed.
461
462
463
464
465
466
467
Lemma insert_commute {A} (m : M A) i j x y :
  i  j  <[i:=x]>(<[j:=y]>m) = <[j:=y]>(<[i:=x]>m).
Proof. apply partial_alter_commute. Qed.
Lemma lookup_insert_Some {A} (m : M A) i j x y :
  <[i:=x]>m !! j = Some y  (i = j  x = y)  (i  j  m !! j = Some y).
Proof.
  split.
468
  - destruct (decide (i = j)) as [->|?];
469
      rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
470
  - intros [[-> ->]|[??]]; [apply lookup_insert|]. by rewrite lookup_insert_ne.
471
Qed.
472
473
474
Lemma lookup_insert_is_Some {A} (m : M A) i j x :
  is_Some (<[i:=x]>m !! j)  i = j  i  j  is_Some (m !! j).
Proof. unfold is_Some; setoid_rewrite lookup_insert_Some; naive_solver. Qed.
475
476
477
Lemma lookup_insert_is_Some' {A} (m : M A) i j x :
  is_Some (<[i:=x]>m !! j)  i = j  is_Some (m !! j).
Proof. rewrite lookup_insert_is_Some. destruct (decide (i=j)); naive_solver. Qed.
478
479
480
Lemma lookup_insert_None {A} (m : M A) i j x :
  <[i:=x]>m !! j = None  m !! j = None  i  j.
Proof.
481
482
483
  split; [|by intros [??]; rewrite lookup_insert_ne].
  destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
484
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
485
Lemma insert_id {A} (m : M A) i x : m !! i = Some x  <[i:=x]>m = m.
486
487
488
489
490
491
492
493
Proof.
  intros; apply map_eq; intros j; destruct (decide (i = j)) as [->|];
    by rewrite ?lookup_insert, ?lookup_insert_ne by done.
Qed.
Lemma insert_included {A} R `{!Reflexive R} (m : M A) i x :
  ( y, m !! i = Some y  R y x)  map_included R m (<[i:=x]>m).
Proof.
  intros ? j; destruct (decide (i = j)) as [->|].
494
495
  - rewrite lookup_insert. destruct (m !! j); simpl; eauto.
  - rewrite lookup_insert_ne by done. by destruct (m !! j); simpl.
496
Qed.
497
Lemma insert_empty {A} i (x : A) : <[i:=x]>( : M A) = {[i := x]}.
498
499
500
501
502
503
Proof. done. Qed.
Lemma insert_non_empty {A} (m : M A) i x : <[i:=x]>m  .
Proof.
  intros Hi%(f_equal (!! i)). by rewrite lookup_insert, lookup_empty in Hi.
Qed.

504
Lemma insert_subseteq {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
505
Proof. apply partial_alter_subseteq. Qed.
506
Lemma insert_subset {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
507
Proof. intro. apply partial_alter_subset; eauto. Qed.
508
509
510
511
512
Lemma insert_mono {A} (m1 m2 : M A) i x : m1  m2  <[i:=x]> m1  <[i:=x]>m2.
Proof.
  rewrite !map_subseteq_spec.
  intros Hm j y. rewrite !lookup_insert_Some. naive_solver.
Qed.
513
Lemma insert_subseteq_r {A} (m1 m2 : M A) i x :
514
  m1 !! i = None  m1  m2  m1  <[i:=x]>m2.
515
Proof.
516
  intros. trans (<[i:=x]> m1); eauto using insert_subseteq, insert_mono.
517
Qed.
518

519
Lemma insert_delete_subseteq {A} (m1 m2 : M A) i x :
520
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
521
Proof.
522
523
524
525
  rewrite !map_subseteq_spec. intros Hi Hix j y Hj.
  destruct (decide (i = j)) as [->|]; [congruence|].
  rewrite lookup_delete_ne by done.
  apply Hix; by rewrite lookup_insert_ne by done.
526
527
Qed.
Lemma delete_insert_subseteq {A} (m1 m2 : M A) i x :
528
  m1 !! i = Some x  delete i m1  m2  m1  <[i:=x]> m2.
529
Proof.
530
531
  rewrite !map_subseteq_spec.
  intros Hix Hi j y Hj. destruct (decide (i = j)) as [->|?].
532
533
  - rewrite lookup_insert. congruence.
  - rewrite lookup_insert_ne by done. apply Hi. by rewrite lookup_delete_ne.
534
535
Qed.
Lemma insert_delete_subset {A} (m1 m2 : M A) i x :
536
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
537
Proof.
538
539
540
  intros ? [Hm12 Hm21]; split; [eauto using insert_delete_subseteq|].
  contradict Hm21. apply delete_insert_subseteq; auto.
  eapply lookup_weaken, Hm12. by rewrite lookup_insert.
541
542
Qed.
Lemma insert_subset_inv {A} (m1 m2 : M A) i x :
543
  m1 !! i = None  <[i:=x]> m1  m2 
544
545
   m2', m2 = <[i:=x]>m2'  m1  m2'  m2' !! i = None.
Proof.
546
  intros Hi Hm1m2. exists (delete i m2). split_and?.
547
548
  - rewrite insert_delete, insert_id. done.
    eapply lookup_weaken, strict_include; eauto. by rewrite lookup_insert.
549
550
  - eauto using insert_delete_subset.
  - by rewrite lookup_delete.
551
552
553
554
Qed.

(** ** Properties of the singleton maps *)
Lemma lookup_singleton_Some {A} i j (x y : A) :
555
  ({[i := x]} : M A) !! j = Some y  i = j  x = y.
556
Proof.
557
  rewrite <-insert_empty,lookup_insert_Some, lookup_empty; intuition congruence.
558
Qed.
559
560
Lemma lookup_singleton_None {A} i j (x : A) :
  ({[i := x]} : M A) !! j = None  i  j.
561
Proof. rewrite <-insert_empty,lookup_insert_None, lookup_empty; tauto. Qed.
562
Lemma lookup_singleton {A} i (x : A) : ({[i := x]} : M A) !! i = Some x.
563
Proof. by rewrite lookup_singleton_Some. Qed.
564
565
Lemma lookup_singleton_ne {A} i j (x : A) :
  i  j  ({[i := x]} : M A) !! j = None.
566
Proof. by rewrite lookup_singleton_None. Qed.
567
Lemma map_non_empty_singleton {A} i (x : A) : {[i := x]}  ( : M A).
568
569
570
571
Proof.
  intros Hix. apply (f_equal (!! i)) in Hix.
  by rewrite lookup_empty, lookup_singleton in Hix.
Qed.
572
Lemma insert_singleton {A} i (x y : A) : <[i:=y]>({[i := x]} : M A) = {[i := y]}.
573
Proof.
574
  unfold singletonM, map_singleton, insert, map_insert.
575
576
  by rewrite <-partial_alter_compose.
Qed.
577
578
Lemma alter_singleton {A} (f : A  A) i x :
  alter f i ({[i := x]} : M A) = {[i := f x]}.
579
Proof.
580
  intros. apply map_eq. intros i'. destruct (decide (i = i')) as [->|?].
581
582
  - by rewrite lookup_alter, !lookup_singleton.
  - by rewrite lookup_alter_ne, !lookup_singleton_ne.
583
584
Qed.
Lemma alter_singleton_ne {A} (f : A  A) i j x :
585
  i  j  alter f i ({[j := x]} : M A) = {[j := x]}.
586
Proof.
587
588
  intros. apply map_eq; intros i'. by destruct (decide (i = i')) as [->|?];
    rewrite ?lookup_alter, ?lookup_singleton_ne, ?lookup_alter_ne by done.
589
Qed.
590
Lemma singleton_non_empty {A} i (x : A) : {[i:=x]}  ( : M A).
591
Proof. apply insert_non_empty. Qed.
592
Lemma delete_singleton {A} i (x : A) : delete i {[i := x]} = ( : M A).
593
Proof. setoid_rewrite <-partial_alter_compose. apply delete_empty. Qed.
594
Lemma delete_singleton_ne {A} i j (x : A) :
595
  i  j  delete i ({[j := x]} : M A) = {[j := x]}.
596
Proof. intro. apply delete_notin. by apply lookup_singleton_ne. Qed.
597

598
599
600
601
602
(** ** Properties of the map operations *)
Lemma fmap_empty {A B} (f : A  B) : f <$>  = .
Proof. apply map_empty; intros i. by rewrite lookup_fmap, lookup_empty. Qed.
Lemma omap_empty {A B} (f : A  option B) : omap f  = .
Proof. apply map_empty; intros i. by rewrite lookup_omap, lookup_empty. Qed.
603
604
605
Lemma fmap_insert {A B} (f: A  B) m i x: f <$> <[i:=x]>m = <[i:=f x]>(f <$> m).
Proof.
  apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
606
607
  - by rewrite lookup_fmap, !lookup_insert.
  - by rewrite lookup_fmap, !lookup_insert_ne, lookup_fmap by done.
608
Qed.
609
610
611
612
613
614
Lemma fmap_delete {A B} (f: A  B) m i: f <$> delete i m = delete i (f <$> m).
Proof.
  apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
  - by rewrite lookup_fmap, !lookup_delete.
  - by rewrite lookup_fmap, !lookup_delete_ne, lookup_fmap by done.
Qed.
615
616
617
618
Lemma omap_insert {A B} (f : A  option B) m i x y :
  f x = Some y  omap f (<[i:=x]>m) = <[i:=y]>(omap f m).
Proof.
  intros; apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
619
620
  - by rewrite lookup_omap, !lookup_insert.
  - by rewrite lookup_omap, !lookup_insert_ne, lookup_omap by done.
621
Qed.
622
Lemma map_fmap_singleton {A B} (f : A  B) i x : f <$> {[i := x]} = {[i := f x]}.
623
624
625
Proof.
  by unfold singletonM, map_singleton; rewrite fmap_insert, map_fmap_empty.
Qed.
626
Lemma omap_singleton {A B} (f : A  option B) i x y :
627
  f x = Some y  omap f {[ i := x ]} = {[ i := y ]}.
628
Proof.
629
630
  intros. unfold singletonM, map_singleton.
  by erewrite omap_insert, omap_empty by eauto.
631
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
632
633
634
Lemma map_fmap_id {A} (m : M A) : id <$> m = m.
Proof. apply map_eq; intros i; by rewrite lookup_fmap, option_fmap_id. Qed.
Lemma map_fmap_compose {A B C} (f : A  B) (g : B  C) (m : M A) :
635
  g  f <$> m = g <$> (f <$> m).
Robbert Krebbers's avatar
Robbert Krebbers committed
636
Proof. apply map_eq; intros i; by rewrite !lookup_fmap,option_fmap_compose. Qed.
637
Lemma map_fmap_equiv_ext `{Equiv A, Equiv B} (f1 f2 : A  B) (m : M A) :
638
639
640
641
642
  ( i x, m !! i = Some x  f1 x  f2 x)  f1 <$> m  f2 <$> m.
Proof.
  intros Hi i; rewrite !lookup_fmap.
  destruct (m !! i) eqn:?; constructor; eauto.
Qed.
643
Lemma map_fmap_ext {A B} (f1 f2 : A  B) (m : M A) :
Robbert Krebbers's avatar
Robbert Krebbers committed
644
645
646
647
648
  ( i x, m !! i = Some x  f1 x = f2 x)  f1 <$> m = f2 <$> m.
Proof.
  intros Hi; apply map_eq; intros i; rewrite !lookup_fmap.
  by destruct (m !! i) eqn:?; simpl; erewrite ?Hi by eauto.
Qed.
649
Lemma omap_ext {A B} (f1 f2 : A  option B) (m : M A) :
Robbert Krebbers's avatar
Robbert Krebbers committed
650
651
652
653
654
  ( i x, m !! i = Some x  f1 x = f2 x)  omap f1 m = omap f2 m.
Proof.
  intros Hi; apply map_eq; intros i; rewrite !lookup_omap.
  by destruct (m !! i) eqn:?; simpl; erewrite ?Hi by eauto.
Qed.
655

656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
Lemma map_fmap_mono {A B} (f : A  B) (m1 m2 : M A) :
  m1  m2  f <$> m1  f <$> m2.
Proof.
  rewrite !map_subseteq_spec; intros Hm i x.
  rewrite !lookup_fmap, !fmap_Some. naive_solver.
Qed.
Lemma map_fmap_strict_mono {A B} (f : A  B) (m1 m2 : M A) :
  m1  m2  f <$> m1  f <$> m2.
Proof.
  rewrite !map_subset_alt.
  intros [? (j&?&?)]; split; auto using map_fmap_mono.
  exists j. by rewrite !lookup_fmap, fmap_None, fmap_is_Some.
Qed.
Lemma map_omap_mono {A B} (f : A  option B) (m1 m2 : M A) :
  m1  m2  omap f m1  omap f m2.
Proof.
  rewrite !map_subseteq_spec; intros Hm i x.
  rewrite !lookup_omap, !bind_Some. naive_solver.
Qed.

676
(** ** Properties of conversion to lists *)
677
678
679
Lemma elem_of_map_to_list' {A} (m : M A) ix :
  ix  map_to_list m  m !! ix.1 = Some (ix.2).
Proof. destruct ix as [i x]. apply elem_of_map_to_list. Qed.
680
Lemma map_to_list_unique {A} (m : M A) i x y :
681
  (i,x)  map_to_list m  (i,y)  map_to_list m  x = y.
682
Proof. rewrite !elem_of_map_to_list. congruence. Qed.
683
Lemma NoDup_fst_map_to_list {A} (m : M A) : NoDup ((map_to_list m).*1).
684
Proof. eauto using NoDup_fmap_fst, map_to_list_unique, NoDup_map_to_list. Qed.
685
Lemma elem_of_map_of_list_1' {A} <