natmap.v 15.3 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
2
(* This file is distributed under the terms of the BSD license. *)
3 4 5
(** This files implements a type [natmap A] of finite maps whose keys range
over Coq's data type of unary natural numbers [nat]. The implementation equips
a list with a proof of canonicity. *)
6
From stdpp Require Import fin_maps mapset.
7
Set Default Proof Using "Type*".
8 9 10

Notation natmap_raw A := (list (option A)).
Definition natmap_wf {A} (l : natmap_raw A) :=
11
  match last l with None => True | Some x => is_Some x end.
12 13 14
Instance natmap_wf_pi {A} (l : natmap_raw A) : ProofIrrel (natmap_wf l).
Proof. unfold natmap_wf. case_match; apply _. Qed.

15
Lemma natmap_wf_inv {A} (o : option A) (l : natmap_raw A) :
16 17 18 19 20
  natmap_wf (o :: l)  natmap_wf l.
Proof. by destruct l. Qed.
Lemma natmap_wf_lookup {A} (l : natmap_raw A) :
  natmap_wf l  l  []   i x, mjoin (l !! i) = Some x.
Proof.
21
  intros Hwf Hl. induction l as [|[x|] l IH]; simpl; [done| |].
22
  { exists 0. simpl. eauto. }
23
  destruct IH as (i&x&?); eauto using natmap_wf_inv; [|by exists (S i), x].
24
  intros ->. by destruct Hwf.
25 26
Qed.

27 28 29 30 31 32 33 34 35 36 37
Record natmap (A : Type) : Type := NatMap {
  natmap_car : natmap_raw A;
  natmap_prf : natmap_wf natmap_car
}.
Arguments NatMap {_} _ _.
Arguments natmap_car {_} _.
Arguments natmap_prf {_} _.
Lemma natmap_eq {A} (m1 m2 : natmap A) :
  m1 = m2  natmap_car m1 = natmap_car m2.
Proof.
  split; [by intros ->|intros]; destruct m1 as [t1 ?], m2 as [t2 ?].
38
  simplify_eq/=; f_equal; apply proof_irrel.
39
Qed.
40
Global Instance natmap_eq_dec `{EqDecision A} : EqDecision (natmap A) := λ m1 m2,
41 42 43 44
  match decide (natmap_car m1 = natmap_car m2) with
  | left H => left (proj2 (natmap_eq m1 m2) H)
  | right H => right (H  proj1 (natmap_eq m1 m2))
  end.
45

46
Instance natmap_empty {A} : Empty (natmap A) := NatMap [] I.
47
Instance natmap_lookup {A} : Lookup nat A (natmap A) := λ i m,
48
  let (l,_) := m in mjoin (l !! i).
49 50

Fixpoint natmap_singleton_raw {A} (i : nat) (x : A) : natmap_raw A :=
51
  match i with 0 => [Some x]| S i => None :: natmap_singleton_raw i x end.
52 53
Lemma natmap_singleton_wf {A} (i : nat) (x : A) :
  natmap_wf (natmap_singleton_raw i x).
54
Proof. unfold natmap_wf. induction i as [|[]]; simplify_eq/=; eauto. Qed.
55 56 57 58 59 60 61 62 63
Lemma natmap_lookup_singleton_raw {A} (i : nat) (x : A) :
  mjoin (natmap_singleton_raw i x !! i) = Some x.
Proof. induction i; simpl; auto. Qed.
Lemma natmap_lookup_singleton_raw_ne {A} (i j : nat) (x : A) :
  i  j  mjoin (natmap_singleton_raw i x !! j) = None.
Proof. revert j; induction i; intros [|?]; simpl; auto with congruence. Qed.
Hint Rewrite @natmap_lookup_singleton_raw : natmap.

Definition natmap_cons_canon {A} (o : option A) (l : natmap_raw A) :=
64
  match o, l with None, [] => [] | _, _ => o :: l end.
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
Lemma natmap_cons_canon_wf {A} (o : option A) (l : natmap_raw A) :
  natmap_wf l  natmap_wf (natmap_cons_canon o l).
Proof. unfold natmap_wf, last. destruct o, l; simpl; eauto. Qed.
Lemma natmap_cons_canon_O {A} (o : option A) (l : natmap_raw A) :
  mjoin (natmap_cons_canon o l !! 0) = o.
Proof. by destruct o, l. Qed.
Lemma natmap_cons_canon_S {A} (o : option A) (l : natmap_raw A) i :
  natmap_cons_canon o l !! S i = l !! i.
Proof. by destruct o, l. Qed.
Hint Rewrite @natmap_cons_canon_O @natmap_cons_canon_S : natmap.

Definition natmap_alter_raw {A} (f : option A  option A) :
    nat  natmap_raw A  natmap_raw A :=
  fix go i l {struct l} :=
  match l with
  | [] =>
     match f None with
82
     | Some x => natmap_singleton_raw i x | None => []
83 84 85
     end
  | o :: l =>
     match i with
86
     | 0 => natmap_cons_canon (f o) l | S i => natmap_cons_canon o (go i l)
87 88 89 90 91 92 93 94
     end
  end.
Lemma natmap_alter_wf {A} (f : option A  option A) i l :
  natmap_wf l  natmap_wf (natmap_alter_raw f i l).
Proof.
  revert i. induction l; [intro | intros [|?]]; simpl; repeat case_match;
    eauto using natmap_singleton_wf, natmap_cons_canon_wf, natmap_wf_inv.
Qed.
95
Instance natmap_alter {A} : PartialAlter nat A (natmap A) := λ f i m,
96
  let (l,Hl) := m in NatMap _ (natmap_alter_wf f i l Hl).
97 98 99 100 101 102 103 104 105 106 107 108 109 110
Lemma natmap_lookup_alter_raw {A} (f : option A  option A) i l :
  mjoin (natmap_alter_raw f i l !! i) = f (mjoin (l !! i)).
Proof.
  revert i. induction l; intros [|?]; simpl; repeat case_match; simpl;
    autorewrite with natmap; auto.
Qed.
Lemma natmap_lookup_alter_raw_ne {A} (f : option A  option A) i j l :
  i  j  mjoin (natmap_alter_raw f i l !! j) = mjoin (l !! j).
Proof.
  revert i j. induction l; intros [|?] [|?] ?; simpl;
    repeat case_match; simpl; autorewrite with natmap; auto with congruence.
  rewrite natmap_lookup_singleton_raw_ne; congruence.
Qed.

111
Definition natmap_omap_raw {A B} (f : A  option B) :
112 113
    natmap_raw A  natmap_raw B :=
  fix go l :=
114 115 116
  match l with [] => [] | o :: l => natmap_cons_canon (o = f) (go l) end.
Lemma natmap_omap_raw_wf {A B} (f : A  option B) l :
  natmap_wf l  natmap_wf (natmap_omap_raw f l).
117
Proof. induction l; simpl; eauto using natmap_cons_canon_wf, natmap_wf_inv. Qed.
118 119
Lemma natmap_lookup_omap_raw {A B} (f : A  option B) l i :
  mjoin (natmap_omap_raw f l !! i) = mjoin (l !! i) = f.
120 121 122
Proof.
  revert i. induction l; intros [|?]; simpl; autorewrite with natmap; auto.
Qed.
123
Hint Rewrite @natmap_lookup_omap_raw : natmap.
124 125
Global Instance natmap_omap: OMap natmap := λ A B f m,
  let (l,Hl) := m in NatMap _ (natmap_omap_raw_wf f _ Hl).
126 127 128 129 130

Definition natmap_merge_raw {A B C} (f : option A  option B  option C) :
    natmap_raw A  natmap_raw B  natmap_raw C :=
  fix go l1 l2 :=
  match l1, l2 with
131 132
  | [], l2 => natmap_omap_raw (f None  Some) l2
  | l1, [] => natmap_omap_raw (flip f None  Some) l1
133 134 135 136 137 138
  | o1 :: l1, o2 :: l2 => natmap_cons_canon (f o1 o2) (go l1 l2)
  end.
Lemma natmap_merge_wf {A B C} (f : option A  option B  option C) l1 l2 :
  natmap_wf l1  natmap_wf l2  natmap_wf (natmap_merge_raw f l1 l2).
Proof.
  revert l2. induction l1; intros [|??]; simpl;
139
    eauto using natmap_omap_raw_wf, natmap_cons_canon_wf, natmap_wf_inv.
140
Qed.
141 142
Lemma natmap_lookup_merge_raw {A B C} (f : option A  option B  option C)
    l1 l2 i : f None None = None 
143 144 145
  mjoin (natmap_merge_raw f l1 l2 !! i) = f (mjoin (l1 !! i)) (mjoin (l2 !! i)).
Proof.
  intros. revert i l2. induction l1; intros [|?] [|??]; simpl;
146 147
    autorewrite with natmap; auto;
    match goal with |- context [?o = _] => by destruct o end.
148 149
Qed.
Instance natmap_merge: Merge natmap := λ A B C f m1 m2,
150
  let (l1, Hl1) := m1 in let (l2, Hl2) := m2 in
151
  NatMap (natmap_merge_raw f l1 l2) (natmap_merge_wf _ _ _ Hl1 Hl2).
152 153 154 155 156 157 158 159 160 161 162

Fixpoint natmap_to_list_raw {A} (i : nat) (l : natmap_raw A) : list (nat * A) :=
  match l with
  | [] => []
  | None :: l => natmap_to_list_raw (S i) l
  | Some x :: l => (i,x) :: natmap_to_list_raw (S i) l
  end.
Lemma natmap_elem_of_to_list_raw_aux {A} j (l : natmap_raw A) i x :
  (i,x)  natmap_to_list_raw j l   i', i = i' + j  mjoin (l !! i') = Some x.
Proof.
  split.
163
  - revert j. induction l as [|[y|] l IH]; intros j; simpl.
164
    + by rewrite elem_of_nil.
165
    + rewrite elem_of_cons. intros [?|?]; simplify_eq.
166 167
      * by exists 0.
      * destruct (IH (S j)) as (i'&?&?); auto.
168 169 170
        exists (S i'); simpl; auto with lia.
    + intros. destruct (IH (S j)) as (i'&?&?); auto.
      exists (S i'); simpl; auto with lia.
171
  - intros (i'&?&Hi'). subst. revert i' j Hi'.
172 173
    induction l as [|[y|] l IH]; intros i j ?; simpl.
    + done.
174
    + destruct i as [|i]; simplify_eq/=; [left|].
175
      right. rewrite <-Nat.add_succ_r. by apply (IH i (S j)).
176
    + destruct i as [|i]; simplify_eq/=.
177
      rewrite <-Nat.add_succ_r. by apply (IH i (S j)).
178 179 180 181
Qed.
Lemma natmap_elem_of_to_list_raw {A} (l : natmap_raw A) i x :
  (i,x)  natmap_to_list_raw 0 l  mjoin (l !! i) = Some x.
Proof.
182 183
  rewrite natmap_elem_of_to_list_raw_aux. setoid_rewrite Nat.add_0_r.
  naive_solver.
184 185 186 187 188 189 190
Qed.
Lemma natmap_to_list_raw_nodup {A} i (l : natmap_raw A) :
  NoDup (natmap_to_list_raw i l).
Proof.
  revert i. induction l as [|[?|] ? IH]; simpl; try constructor; auto.
  rewrite natmap_elem_of_to_list_raw_aux. intros (?&?&?). lia.
Qed.
191
Instance natmap_to_list {A} : FinMapToList nat A (natmap A) := λ m,
192
  let (l,_) := m in natmap_to_list_raw 0 l.
193 194 195 196 197 198

Definition natmap_map_raw {A B} (f : A  B) : natmap_raw A  natmap_raw B :=
  fmap (fmap f).
Lemma natmap_map_wf {A B} (f : A  B) l :
  natmap_wf l  natmap_wf (natmap_map_raw f l).
Proof.
199 200
  unfold natmap_map_raw, natmap_wf. rewrite fmap_last.
  destruct (last l). by apply fmap_is_Some. done.
201 202 203
Qed.
Lemma natmap_lookup_map_raw {A B} (f : A  B) i l :
  mjoin (natmap_map_raw f l !! i) = f <$> mjoin (l !! i).
204 205 206
Proof.
  unfold natmap_map_raw. rewrite list_lookup_fmap. by destruct (l !! i).
Qed.
207
Instance natmap_map: FMap natmap := λ A B f m,
208
  let (l,Hl) := m in NatMap (natmap_map_raw f l) (natmap_map_wf _ _ Hl).
209 210 211 212

Instance: FinMap nat natmap.
Proof.
  split.
213
  - unfold lookup, natmap_lookup. intros A [l1 Hl1] [l2 Hl2] E.
214
    apply natmap_eq. revert l2 Hl1 Hl2 E. simpl.
215 216 217
    induction l1 as [|[x|] l1 IH]; intros [|[y|] l2] Hl1 Hl2 E; simpl in *.
    + done.
    + by specialize (E 0).
218
    + destruct (natmap_wf_lookup (None :: l2)) as (i&?&?); auto with congruence.
219 220 221 222
    + by specialize (E 0).
    + f_equal. apply (E 0). apply IH; eauto using natmap_wf_inv.
      intros i. apply (E (S i)).
    + by specialize (E 0).
223
    + destruct (natmap_wf_lookup (None :: l1)) as (i&?&?); auto with congruence.
224
    + by specialize (E 0).
225
    + f_equal. apply IH; eauto using natmap_wf_inv. intros i. apply (E (S i)).
226 227 228 229 230 231 232 233
  - done.
  - intros ?? [??] ?. apply natmap_lookup_alter_raw.
  - intros ?? [??] ??. apply natmap_lookup_alter_raw_ne.
  - intros ??? [??] ?. apply natmap_lookup_map_raw.
  - intros ? [??]. by apply natmap_to_list_raw_nodup.
  - intros ? [??] ??. by apply natmap_elem_of_to_list_raw.
  - intros ??? [??] ?. by apply natmap_lookup_omap_raw.
  - intros ????? [??] [??] ?. by apply natmap_lookup_merge_raw.
234
Qed.
235

236 237 238 239 240 241 242 243 244 245
Fixpoint strip_Nones {A} (l : list (option A)) : list (option A) :=
  match l with None :: l => strip_Nones l | _ => l end.

Lemma list_to_natmap_wf {A} (l : list (option A)) :
  natmap_wf (reverse (strip_Nones (reverse l))).
Proof.
  unfold natmap_wf. rewrite last_reverse.
  induction (reverse l) as [|[]]; simpl; eauto.
Qed.
Definition list_to_natmap {A} (l : list (option A)) : natmap A :=
246
  NatMap (reverse (strip_Nones (reverse l))) (list_to_natmap_wf l).
247 248 249 250 251 252 253 254 255
Lemma list_to_natmap_spec {A} (l : list (option A)) i :
  list_to_natmap l !! i = mjoin (l !! i).
Proof.
  unfold lookup at 1, natmap_lookup, list_to_natmap; simpl.
  rewrite <-(reverse_involutive l) at 2. revert i.
  induction (reverse l) as [|[x|] l' IH]; intros i; simpl; auto.
  rewrite reverse_cons, IH. clear IH. revert i.
  induction (reverse l'); intros [|?]; simpl; auto.
Qed.
256

257
(** Finally, we can construct sets of [nat]s satisfying extensional equality. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
258
Notation natset := (mapset natmap).
259
Instance natmap_dom {A} : Dom (natmap A) natset := mapset_dom.
260 261
Instance: FinMapDom nat natmap natset := mapset_dom_spec.

262 263
(* Fixpoint avoids this definition from being unfolded *)
Fixpoint of_bools (βs : list bool) : natset :=
264 265 266 267 268
  let f (β : bool) := if β then Some () else None in
  Mapset $ list_to_natmap $ f <$> βs.
Definition to_bools (sz : nat) (X : natset) : list bool :=
  let f (mu : option ()) := match mu with Some _ => true | None => false end in
  resize sz false $ f <$> natmap_car (mapset_car X).
269 270

Lemma of_bools_unfold βs :
271 272
  let f (β : bool) := if β then Some () else None in
  of_bools βs = Mapset $ list_to_natmap $ f <$> βs.
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
Proof. by destruct βs. Qed.
Lemma elem_of_of_bools βs i : i  of_bools βs  βs !! i = Some true.
Proof.
  rewrite of_bools_unfold; unfold elem_of, mapset_elem_of; simpl.
  rewrite list_to_natmap_spec, list_lookup_fmap.
  destruct (βs !! i) as [[]|]; compute; intuition congruence.
Qed.
Lemma of_bools_union βs1 βs2 :
  length βs1 = length βs2 
  of_bools (βs1 ||* βs2) = of_bools βs1  of_bools βs2.
Proof.
  rewrite <-Forall2_same_length; intros Hβs.
  apply elem_of_equiv_L. intros i. rewrite elem_of_union, !elem_of_of_bools.
  revert i. induction Hβs as [|[] []]; intros [|?]; naive_solver.
Qed.
288 289
Lemma to_bools_length (X : natset) sz : length (to_bools sz X) = sz.
Proof. apply resize_length. Qed.
290 291
Lemma lookup_to_bools_ge sz X i : sz  i  to_bools sz X !! i = None.
Proof. by apply lookup_resize_old. Qed.
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
Lemma lookup_to_bools sz X i β :
  i < sz  to_bools sz X !! i = Some β  (i  X  β = true).
Proof.
  unfold to_bools, elem_of, mapset_elem_of, lookup at 2, natmap_lookup; simpl.
  intros. destruct (mapset_car X) as [l ?]; simpl.
  destruct (l !! i) as [mu|] eqn:Hmu; simpl.
  { rewrite lookup_resize, list_lookup_fmap, Hmu
      by (rewrite ?fmap_length; eauto using lookup_lt_Some).
    destruct mu as [[]|], β; simpl; intuition congruence. }
  rewrite lookup_resize_new by (rewrite ?fmap_length;
    eauto using lookup_ge_None_1); destruct β; intuition congruence.
Qed.
Lemma lookup_to_bools_true sz X i :
  i < sz  to_bools sz X !! i = Some true  i  X.
Proof. intros. rewrite lookup_to_bools by done. intuition. Qed.
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
Lemma lookup_to_bools_false sz X i :
  i < sz  to_bools sz X !! i = Some false  i  X.
Proof. intros. rewrite lookup_to_bools by done. naive_solver. Qed.
Lemma to_bools_union sz X1 X2 :
  to_bools sz (X1  X2) = to_bools sz X1 ||* to_bools sz X2.
Proof.
  apply list_eq; intros i; rewrite lookup_zip_with.
  destruct (decide (i < sz)); [|by rewrite !lookup_to_bools_ge by lia].
  apply option_eq; intros β.
  rewrite lookup_to_bools, elem_of_union by done; intros.
  destruct (decide (i  X1)), (decide (i  X2)); repeat first
    [ rewrite (λ X H, proj2 (lookup_to_bools_true sz X i H)) by done
    | rewrite (λ X H, proj2 (lookup_to_bools_false sz X i H)) by done];
    destruct β; naive_solver.
Qed.
Lemma to_of_bools βs sz : to_bools sz (of_bools βs) = resize sz false βs.
Proof.
  apply list_eq; intros i. destruct (decide (i < sz));
    [|by rewrite lookup_to_bools_ge, lookup_resize_old by lia].
  apply option_eq; intros β.
  rewrite lookup_to_bools, elem_of_of_bools by done.
  destruct (decide (i < length βs)).
  { rewrite lookup_resize by done.
    destruct (lookup_lt_is_Some_2 βs i) as [[]]; destruct β; naive_solver. }
  rewrite lookup_resize_new, lookup_ge_None_2 by lia. destruct β; naive_solver.
Qed.
333

334 335
(** A [natmap A] forms a stack with elements of type [A] and possible holes *)
Definition natmap_push {A} (o : option A) (m : natmap A) : natmap A :=
336
  let (l,Hl) := m in NatMap _ (natmap_cons_canon_wf o l Hl).
337 338 339 340 341 342

Definition natmap_pop_raw {A} (l : natmap_raw A) : natmap_raw A := tail l.
Lemma natmap_pop_wf {A} (l : natmap_raw A) :
  natmap_wf l  natmap_wf (natmap_pop_raw l).
Proof. destruct l; simpl; eauto using natmap_wf_inv. Qed.
Definition natmap_pop {A} (m : natmap A) : natmap A :=
343
  let (l,Hl) := m in NatMap _ (natmap_pop_wf _ Hl).
344 345 346 347 348 349 350 351 352 353 354 355

Lemma lookup_natmap_push_O {A} o (m : natmap A) : natmap_push o m !! 0 = o.
Proof. by destruct o, m as [[|??]]. Qed.
Lemma lookup_natmap_push_S {A} o (m : natmap A) i :
  natmap_push o m !! S i = m !! i.
Proof. by destruct o, m as [[|??]]. Qed.
Lemma lookup_natmap_pop {A} (m : natmap A) i : natmap_pop m !! i = m !! S i.
Proof. by destruct m as [[|??]]. Qed.
Lemma natmap_push_pop {A} (m : natmap A) :
  natmap_push (m !! 0) (natmap_pop m) = m.
Proof.
  apply map_eq. intros i. destruct i.
356 357
  - by rewrite lookup_natmap_push_O.
  - by rewrite lookup_natmap_push_S, lookup_natmap_pop.
358 359
Qed.
Lemma natmap_pop_push {A} o (m : natmap A) : natmap_pop (natmap_push o m) = m.
360
Proof. apply natmap_eq. by destruct o, m as [[|??]]. Qed.