gmultiset.v 14.9 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
(* Copyright (c) 2012-2016, Robbert Krebbers. *)
(* This file is distributed under the terms of the BSD license. *)
From stdpp Require Import gmap.

Record gmultiset A `{Countable A} := GMultiSet { gmultiset_car : gmap A nat }.
Arguments GMultiSet {_ _ _} _.
Arguments gmultiset_car {_ _ _} _.

Instance gmultiset_eq_dec `{Countable A} : EqDecision (gmultiset A).
Proof. solve_decision. Defined.

Program Instance gmultiset_countable `{Countable A} :
    Countable (gmultiset A) := {|
  encode X := encode (gmultiset_car X);  decode p := GMultiSet <$> decode p
|}.
Next Obligation. intros A ?? [X]; simpl. by rewrite decode_encode. Qed.

Section definitions.
  Context `{Countable A}.

  Definition multiplicity (x : A) (X : gmultiset A) : nat :=
    match gmultiset_car X !! x with Some n => S n | None => 0 end.
  Instance gmultiset_elem_of : ElemOf A (gmultiset A) := λ x X,
    0 < multiplicity x X.
  Instance gmultiset_subseteq : SubsetEq (gmultiset A) := λ X Y,  x,
    multiplicity x X  multiplicity x Y.

  Instance gmultiset_elements : Elements A (gmultiset A) := λ X,
    let (X) := X in '(x,n)  map_to_list X; replicate (S n) x.
  Instance gmultiset_size : Size (gmultiset A) := length  elements.

  Instance gmultiset_empty : Empty (gmultiset A) := GMultiSet .
  Instance gmultiset_singleton : Singleton A (gmultiset A) := λ x,
    GMultiSet {[ x := 0 ]}.
  Instance gmultiset_union : Union (gmultiset A) := λ X Y,
    let (X) := X in let (Y) := Y in
    GMultiSet $ union_with (λ x y, Some (S (x + y))) X Y.
  Instance gmultiset_difference : Difference (gmultiset A) := λ X Y,
    let (X) := X in let (Y) := Y in
    GMultiSet $ difference_with (λ x y,
      let z := x - y in guard (0 < z); Some (pred z)) X Y.
42
43
44

  Instance gmultiset_dom : Dom (gmultiset A) (gset A) := λ X,
    let (X) := X in dom _ X.
Robbert Krebbers's avatar
Robbert Krebbers committed
45
46
End definitions.

47
48
49
Typeclasses Opaque gmultiset_elem_of gmultiset_subseteq.
Typeclasses Opaque gmultiset_elements gmultiset_size gmultiset_empty.
Typeclasses Opaque gmultiset_singleton gmultiset_union gmultiset_difference.
50
Typeclasses Opaque gmultiset_dom.
51

Robbert Krebbers's avatar
Robbert Krebbers committed
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
(** These instances are declared using [Hint Extern] to avoid too
eager type class search. *)
Hint Extern 1 (ElemOf _ (gmultiset _)) =>
  eapply @gmultiset_elem_of : typeclass_instances.
Hint Extern 1 (SubsetEq (gmultiset _)) =>
  eapply @gmultiset_subseteq : typeclass_instances.
Hint Extern 1 (Empty (gmultiset _)) =>
  eapply @gmultiset_empty : typeclass_instances.
Hint Extern 1 (Singleton _ (gmultiset _)) =>
  eapply @gmultiset_singleton : typeclass_instances.
Hint Extern 1 (Union (gmultiset _)) =>
  eapply @gmultiset_union : typeclass_instances.
Hint Extern 1 (Difference (gmultiset _)) =>
  eapply @gmultiset_difference : typeclass_instances.
Hint Extern 1 (Elements _ (gmultiset _)) =>
  eapply @gmultiset_elements : typeclass_instances.
Hint Extern 1 (Size (gmultiset _)) =>
  eapply @gmultiset_size : typeclass_instances.
70
71
Hint Extern 1 (Dom (gmultiset _) _) =>
  eapply @gmultiset_dom : typeclass_instances.
Robbert Krebbers's avatar
Robbert Krebbers committed
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

Section lemmas.
Context `{Countable A}.
Implicit Types x y : A.
Implicit Types X Y : gmultiset A.

Lemma gmultiset_eq X Y : X = Y   x, multiplicity x X = multiplicity x Y.
Proof.
  split; [by intros ->|intros HXY].
  destruct X as [X], Y as [Y]; f_equal; apply map_eq; intros x.
  specialize (HXY x); unfold multiplicity in *; simpl in *.
  repeat case_match; naive_solver.
Qed.

(* Multiplicity *)
Lemma multiplicity_empty x : multiplicity x  = 0.
Proof. done. Qed.
Lemma multiplicity_singleton x : multiplicity x {[ x ]} = 1.
Proof. unfold multiplicity; simpl. by rewrite lookup_singleton. Qed.
Lemma multiplicity_singleton_ne x y : x  y  multiplicity x {[ y ]} = 0.
Proof. intros. unfold multiplicity; simpl. by rewrite lookup_singleton_ne. Qed.
Lemma multiplicity_union X Y x :
  multiplicity x (X  Y) = multiplicity x X + multiplicity x Y.
Proof.
  destruct X as [X], Y as [Y]; unfold multiplicity; simpl.
  rewrite lookup_union_with. destruct (X !! _), (Y !! _); simpl; omega.
Qed.
Lemma multiplicity_difference X Y x :
  multiplicity x (X  Y) = multiplicity x X - multiplicity x Y.
Proof.
  destruct X as [X], Y as [Y]; unfold multiplicity; simpl.
  rewrite lookup_difference_with.
  destruct (X !! _), (Y !! _); simplify_option_eq; omega.
Qed.

107
(* Collection *)
108
109
110
111
112
113
114
115
116
117
118
119
120
Lemma elem_of_multiplicity x X : x  X  0 < multiplicity x X.
Proof. done. Qed.

Global Instance gmultiset_simple_collection : SimpleCollection A (gmultiset A).
Proof.
  split.
  - intros x. rewrite elem_of_multiplicity, multiplicity_empty. omega.
  - intros x y. destruct (decide (x = y)) as [->|].
    + rewrite elem_of_multiplicity, multiplicity_singleton. split; auto with lia.
    + rewrite elem_of_multiplicity, multiplicity_singleton_ne by done.
      by split; auto with lia.
  - intros X Y x. rewrite !elem_of_multiplicity, multiplicity_union. omega.
Qed.
121
122
Global Instance gmultiset_elem_of_dec x X : Decision (x  X).
Proof. unfold elem_of, gmultiset_elem_of. apply _. Defined.
123

124
(* Algebraic laws *)
Robbert Krebbers's avatar
Robbert Krebbers committed
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
Global Instance gmultiset_comm : Comm (@eq (gmultiset A)) ().
Proof.
  intros X Y. apply gmultiset_eq; intros x. rewrite !multiplicity_union; omega.
Qed.
Global Instance gmultiset_assoc : Assoc (@eq (gmultiset A)) ().
Proof.
  intros X Y Z. apply gmultiset_eq; intros x. rewrite !multiplicity_union; omega.
Qed.
Global Instance gmultiset_left_id : LeftId (@eq (gmultiset A))  ().
Proof.
  intros X. apply gmultiset_eq; intros x.
  by rewrite multiplicity_union, multiplicity_empty.
Qed.
Global Instance gmultiset_right_id : RightId (@eq (gmultiset A))  ().
Proof. intros X. by rewrite (comm_L ()), (left_id_L _ _). Qed.

Global Instance gmultiset_union_inj_1 X : Inj (=) (=) (X ).
Proof.
  intros Y1 Y2. rewrite !gmultiset_eq. intros HX x; generalize (HX x).
  rewrite !multiplicity_union. omega.
Qed.
Global Instance gmultiset_union_inj_2 X : Inj (=) (=) ( X).
Proof. intros Y1 Y2. rewrite <-!(comm_L _ X). apply (inj _). Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
149
Lemma gmultiset_non_empty_singleton x : {[ x ]}  ( : gmultiset A).
Robbert Krebbers's avatar
Robbert Krebbers committed
150
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
151
152
  rewrite gmultiset_eq. intros Hx; generalize (Hx x).
  by rewrite multiplicity_singleton, multiplicity_empty.
Robbert Krebbers's avatar
Robbert Krebbers committed
153
154
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
(* Properties of the elements operation *)
Lemma gmultiset_elements_empty : elements ( : gmultiset A) = [].
Proof.
  unfold elements, gmultiset_elements; simpl. by rewrite map_to_list_empty.
Qed.
Lemma gmultiset_elements_empty_inv X : elements X = []  X = .
Proof.
  destruct X as [X]; unfold elements, gmultiset_elements; simpl.
  intros; apply (f_equal GMultiSet). destruct (map_to_list X)
    as [|[]] eqn:?; naive_solver eauto using map_to_list_empty_inv.
Qed.
Lemma gmultiset_elements_empty' X : elements X = []  X = .
Proof.
  split; intros HX; [by apply gmultiset_elements_empty_inv|].
  by rewrite HX, gmultiset_elements_empty.
Qed.
Lemma gmultiset_elements_singleton x : elements ({[ x ]} : gmultiset A) = [ x ].
Proof.
  unfold elements, gmultiset_elements; simpl. by rewrite map_to_list_singleton.
Qed.
Lemma gmultiset_elements_union X Y :
  elements (X  Y)  elements X ++ elements Y.
Proof.
  destruct X as [X], Y as [Y]; unfold elements, gmultiset_elements.
  set (f xn := let '(x, n) := xn in replicate (S n) x); simpl.
  revert Y; induction X as [|x n X HX IH] using map_ind; intros Y.
  { by rewrite (left_id_L _ _), map_to_list_empty. }
  destruct (Y !! x) as [n'|] eqn:HY.
  - rewrite <-(insert_id Y x n'), <-(insert_delete Y) by done.
    erewrite <-insert_union_with by done.
    rewrite !map_to_list_insert, !bind_cons
      by (by rewrite ?lookup_union_with, ?lookup_delete, ?HX).
    rewrite (assoc_L _), <-(comm (++) (f (_,n'))), <-!(assoc_L _), <-IH.
188
189
    rewrite (assoc_L _). f_equiv.
    rewrite (comm _); simpl. by rewrite replicate_plus, Permutation_middle.
Robbert Krebbers's avatar
Robbert Krebbers committed
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
  - rewrite <-insert_union_with_l, !map_to_list_insert, !bind_cons
      by (by rewrite ?lookup_union_with, ?HX, ?HY).
    by rewrite <-(assoc_L (++)), <-IH.
Qed.
Lemma gmultiset_elem_of_elements x X : x  elements X  x  X.
Proof.
  destruct X as [X]. unfold elements, gmultiset_elements.
  set (f xn := let '(x, n) := xn in replicate (S n) x); simpl.
  unfold elem_of at 2, gmultiset_elem_of, multiplicity; simpl.
  rewrite elem_of_list_bind. split.
  - intros [[??] [[<- ?]%elem_of_replicate ->%elem_of_map_to_list]]; lia.
  - intros. destruct (X !! x) as [n|] eqn:Hx; [|omega].
    exists (x,n); split; [|by apply elem_of_map_to_list].
    apply elem_of_replicate; auto with omega.
Qed.
205
206
207
208
209
210
Lemma gmultiset_elem_of_dom x X : x  dom (gset A) X  x  X.
Proof.
  unfold dom, gmultiset_dom, elem_of at 2, gmultiset_elem_of, multiplicity.
  destruct X as [X]; simpl; rewrite elem_of_dom, <-not_eq_None_Some.
  destruct (X !! x); naive_solver omega.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250

(* Properties of the size operation *)
Lemma gmultiset_size_empty : size ( : gmultiset A) = 0.
Proof. done. Qed.
Lemma gmultiset_size_empty_inv X : size X = 0  X = .
Proof.
  unfold size, gmultiset_size; simpl. rewrite length_zero_iff_nil.
  apply gmultiset_elements_empty_inv.
Qed.
Lemma gmultiset_size_empty_iff X : size X = 0  X = .
Proof.
  split; [apply gmultiset_size_empty_inv|].
  by intros ->; rewrite gmultiset_size_empty.
Qed.
Lemma gmultiset_size_non_empty_iff X : size X  0  X  .
Proof. by rewrite gmultiset_size_empty_iff. Qed.

Lemma gmultiset_choose_or_empty X : ( x, x  X)  X = .
Proof.
  destruct (elements X) as [|x l] eqn:HX; [right|left].
  - by apply gmultiset_elements_empty_inv.
  - exists x. rewrite <-gmultiset_elem_of_elements, HX. by left.
Qed.
Lemma gmultiset_choose X : X     x, x  X.
Proof. intros. by destruct (gmultiset_choose_or_empty X). Qed.
Lemma gmultiset_size_pos_elem_of X : 0 < size X   x, x  X.
Proof.
  intros Hsz. destruct (gmultiset_choose_or_empty X) as [|HX]; [done|].
  contradict Hsz. rewrite HX, gmultiset_size_empty; lia.
Qed.

Lemma gmultiset_size_singleton x : size ({[ x ]} : gmultiset A) = 1.
Proof.
  unfold size, gmultiset_size; simpl. by rewrite gmultiset_elements_singleton.
Qed.
Lemma gmultiset_size_union X Y : size (X  Y) = size X + size Y.
Proof.
  unfold size, gmultiset_size; simpl.
  by rewrite gmultiset_elements_union, app_length.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
251
252
253
254
255
256
257
258
259
260

(* Order stuff *)
Global Instance gmultiset_po : PartialOrder (@subseteq (gmultiset A) _).
Proof.
  split; [split|].
  - by intros X x.
  - intros X Y Z HXY HYZ x. by trans (multiplicity x Y).
  - intros X Y HXY HYX; apply gmultiset_eq; intros x. by apply (anti_symm ()).
Qed.

261
262
263
264
265
266
267
268
269
270
271
272
273
274
Lemma gmultiset_subseteq_alt X Y :
  X  Y 
  map_relation () (λ _, False) (λ _, True) (gmultiset_car X) (gmultiset_car Y).
Proof.
  apply forall_proper; intros x. unfold multiplicity.
  destruct (gmultiset_car X !! x), (gmultiset_car Y !! x); naive_solver omega.
Qed.
Global Instance gmultiset_subseteq_dec X Y : Decision (X  Y).
Proof.
 refine (cast_if (decide (map_relation ()
   (λ _, False) (λ _, True) (gmultiset_car X) (gmultiset_car Y))));
   by rewrite gmultiset_subseteq_alt.
Defined.

Robbert Krebbers's avatar
Robbert Krebbers committed
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
Lemma gmultiset_subset_subseteq X Y : X  Y  X  Y.
Proof. apply strict_include. Qed.
Hint Resolve gmultiset_subset_subseteq.

Lemma gmultiset_empty_subseteq X :   X.
Proof. intros x. rewrite multiplicity_empty. omega. Qed.

Lemma gmultiset_union_subseteq_l X Y : X  X  Y.
Proof. intros x. rewrite multiplicity_union. omega. Qed.
Lemma gmultiset_union_subseteq_r X Y : Y  X  Y.
Proof. intros x. rewrite multiplicity_union. omega. Qed.
Lemma gmultiset_union_preserving X1 X2 Y1 Y2 : X1  X2  Y1  Y2  X1  Y1  X2  Y2.
Proof. intros ?? x. rewrite !multiplicity_union. by apply Nat.add_le_mono. Qed.
Lemma gmultiset_union_preserving_l X Y1 Y2 : Y1  Y2  X  Y1  X  Y2.
Proof. intros. by apply gmultiset_union_preserving. Qed.
Lemma gmultiset_union_preserving_r X1 X2 Y : X1  X2  X1  Y  X2  Y.
Proof. intros. by apply gmultiset_union_preserving. Qed.

Lemma gmultiset_subset X Y : X  Y  size X < size Y  X  Y.
Proof. intros. apply strict_spec_alt; split; naive_solver auto with omega. Qed.
Lemma gmultiset_union_subset_l X Y : Y    X  X  Y.
Proof.
  intros HY%gmultiset_size_non_empty_iff.
  apply gmultiset_subset; auto using gmultiset_union_subseteq_l.
  rewrite gmultiset_size_union; omega.
Qed.
Lemma gmultiset_union_subset_r X Y : X    Y  X  Y.
Proof. rewrite (comm_L ()). apply gmultiset_union_subset_l. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
304
Lemma gmultiset_elem_of_singleton_subseteq x X : x  X  {[ x ]}  X.
Robbert Krebbers's avatar
Robbert Krebbers committed
305
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
306
307
308
309
310
  rewrite elem_of_multiplicity. split.
  - intros Hx y; destruct (decide (x = y)) as [->|].
    + rewrite multiplicity_singleton; omega.
    + rewrite multiplicity_singleton_ne by done; omega.
  - intros Hx. generalize (Hx x). rewrite multiplicity_singleton. omega.
Robbert Krebbers's avatar
Robbert Krebbers committed
311
312
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
313
314
315
Lemma gmultiset_elem_of_subseteq X1 X2 x : x  X1  X1  X2  x  X2.
Proof. rewrite !gmultiset_elem_of_singleton_subseteq. by intros ->. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
316
317
318
319
320
321
Lemma gmultiset_union_difference X Y : X  Y  Y = X  Y  X.
Proof.
  intros HXY. apply gmultiset_eq; intros x; specialize (HXY x).
  rewrite multiplicity_union, multiplicity_difference; omega.
Qed.
Lemma gmultiset_union_difference' x Y : x  Y  Y = {[ x ]}  Y  {[ x ]}.
Robbert Krebbers's avatar
Robbert Krebbers committed
322
323
324
325
Proof.
  intros. by apply gmultiset_union_difference,
    gmultiset_elem_of_singleton_subseteq.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
326

Robbert Krebbers's avatar
Robbert Krebbers committed
327
328
329
330
331
332
Lemma gmultiset_size_difference X Y : Y  X  size (X  Y) = size X - size Y.
Proof.
  intros HX%gmultiset_union_difference.
  rewrite HX at 2; rewrite gmultiset_size_union. omega.
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
333
334
335
336
337
338
339
340
341
342
343
344
345
Lemma gmultiset_non_empty_difference X Y : X  Y  Y  X  .
Proof.
  intros [_ HXY2] Hdiff; destruct HXY2; intros x.
  generalize (f_equal (multiplicity x) Hdiff).
  rewrite multiplicity_difference, multiplicity_empty; omega.
Qed.

Lemma gmultiset_difference_subset X Y : X    X  Y  Y  X  Y.
Proof.
  intros. eapply strict_transitive_l; [by apply gmultiset_union_subset_r|].
  by rewrite <-(gmultiset_union_difference X Y).
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
346
(* Mononicity *)
Robbert Krebbers's avatar
Robbert Krebbers committed
347
348
349
350
351
352
Lemma gmultiset_elements_contains X Y : X  Y  elements X `contains` elements Y.
Proof.
  intros ->%gmultiset_union_difference. rewrite gmultiset_elements_union.
  by apply contains_inserts_r.
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
353
354
355
356
357
358
Lemma gmultiset_subseteq_size X Y : X  Y  size X  size Y.
Proof. intros. by apply contains_length, gmultiset_elements_contains. Qed.

Lemma gmultiset_subset_size X Y : X  Y  size X < size Y.
Proof.
  intros HXY. assert (size (Y  X)  0).
Robbert Krebbers's avatar
Robbert Krebbers committed
359
  { by apply gmultiset_size_non_empty_iff, gmultiset_non_empty_difference. }
Robbert Krebbers's avatar
Robbert Krebbers committed
360
361
362
363
364
365
366
367
  rewrite (gmultiset_union_difference X Y), gmultiset_size_union by auto. lia.
Qed.

(* Well-foundedness *)
Lemma gmultiset_wf : wf (strict (@subseteq (gmultiset A) _)).
Proof.
  apply (wf_projected (<) size); auto using gmultiset_subset_size, lt_wf.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
368
369
370
371
372
373
374

Lemma gmultiset_ind (P : gmultiset A  Prop) :
  P   ( x X, P X  P ({[ x ]}  X))   X, P X.
Proof.
  intros Hemp Hinsert X. induction (gmultiset_wf X) as [X _ IH].
  destruct (gmultiset_choose_or_empty X) as [[x Hx]| ->]; auto.
  rewrite (gmultiset_union_difference' x X) by done.
Robbert Krebbers's avatar
Robbert Krebbers committed
375
376
  apply Hinsert, IH, gmultiset_difference_subset,
    gmultiset_elem_of_singleton_subseteq; auto using gmultiset_non_empty_singleton.
Robbert Krebbers's avatar
Robbert Krebbers committed
377
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
378
End lemmas.