list.v 160 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
2 3 4
(* This file is distributed under the terms of the BSD license. *)
(** This file collects general purpose definitions and theorems on lists that
are not in the Coq standard library. *)
5
From Coq Require Export Permutation.
6
From stdpp Require Export numbers base option.
Robbert Krebbers's avatar
Robbert Krebbers committed
7

8
Arguments length {_} _.
Robbert Krebbers's avatar
Robbert Krebbers committed
9 10
Arguments cons {_} _ _.
Arguments app {_} _ _.
11 12 13 14

Instance: Params (@length) 1.
Instance: Params (@cons) 1.
Instance: Params (@app) 1.
Robbert Krebbers's avatar
Robbert Krebbers committed
15

16 17 18
Notation tail := tl.
Notation take := firstn.
Notation drop := skipn.
19

20
Arguments tail {_} _.
21 22 23
Arguments take {_} !_ !_ /.
Arguments drop {_} !_ !_ /.

24 25 26 27 28 29
Instance: Params (@tail) 1.
Instance: Params (@take) 1.
Instance: Params (@drop) 1.

Arguments Permutation {_} _ _.
Arguments Forall_cons {_} _ _ _ _ _.
30
Remove Hints Permutation_cons : typeclass_instances.
31

Robbert Krebbers's avatar
Robbert Krebbers committed
32 33 34 35 36 37 38
Notation "(::)" := cons (only parsing) : C_scope.
Notation "( x ::)" := (cons x) (only parsing) : C_scope.
Notation "(:: l )" := (λ x, cons x l) (only parsing) : C_scope.
Notation "(++)" := app (only parsing) : C_scope.
Notation "( l ++)" := (app l) (only parsing) : C_scope.
Notation "(++ k )" := (λ l, app l k) (only parsing) : C_scope.

39 40 41 42 43 44 45 46 47
Infix "≡ₚ" := Permutation (at level 70, no associativity) : C_scope.
Notation "(≡ₚ)" := Permutation (only parsing) : C_scope.
Notation "( x ≡ₚ)" := (Permutation x) (only parsing) : C_scope.
Notation "(≡ₚ x )" := (λ y, y  x) (only parsing) : C_scope.
Notation "(≢ₚ)" := (λ x y, ¬x  y) (only parsing) : C_scope.
Notation "x ≢ₚ y":= (¬x  y) (at level 70, no associativity) : C_scope.
Notation "( x ≢ₚ)" := (λ y, x ≢ₚ y) (only parsing) : C_scope.
Notation "(≢ₚ x )" := (λ y, y ≢ₚ x) (only parsing) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
48 49 50
Instance maybe_cons {A} : Maybe2 (@cons A) := λ l,
  match l with x :: l => Some (x,l) | _ => None end.

51
(** * Definitions *)
52 53 54 55 56 57
(** Setoid equality lifted to lists *)
Inductive list_equiv `{Equiv A} : Equiv (list A) :=
  | nil_equiv : []  []
  | cons_equiv x y l k : x  y  l  k  x :: l  y :: k.
Existing Instance list_equiv.

58 59
(** The operation [l !! i] gives the [i]th element of the list [l], or [None]
in case [i] is out of bounds. *)
60 61
Instance list_lookup {A} : Lookup nat A (list A) :=
  fix go i l {struct l} : option A := let _ : Lookup _ _ _ := @go in
62
  match l with
63
  | [] => None | x :: l => match i with 0 => Some x | S i => l !! i end
64
  end.
65 66 67

(** The operation [alter f i l] applies the function [f] to the [i]th element
of [l]. In case [i] is out of bounds, the list is returned unchanged. *)
68
Instance list_alter {A} : Alter nat A (list A) := λ f,
69
  fix go i l {struct l} :=
70 71
  match l with
  | [] => []
72
  | x :: l => match i with 0 => f x :: l | S i => x :: go i l end
73
  end.
74

75 76
(** The operation [<[i:=x]> l] overwrites the element at position [i] with the
value [x]. In case [i] is out of bounds, the list is returned unchanged. *)
77 78
Instance list_insert {A} : Insert nat A (list A) :=
  fix go i y l {struct l} := let _ : Insert _ _ _ := @go in
79 80 81 82
  match l with
  | [] => []
  | x :: l => match i with 0 => y :: l | S i => x :: <[i:=y]>l end
  end.
83 84 85 86 87
Fixpoint list_inserts {A} (i : nat) (k l : list A) : list A :=
  match k with
  | [] => l
  | y :: k => <[i:=y]>(list_inserts (S i) k l)
  end.
88
Instance: Params (@list_inserts) 1.
89

90 91 92
(** The operation [delete i l] removes the [i]th element of [l] and moves
all consecutive elements one position ahead. In case [i] is out of bounds,
the list is returned unchanged. *)
93 94
Instance list_delete {A} : Delete nat (list A) :=
  fix go (i : nat) (l : list A) {struct l} : list A :=
95 96
  match l with
  | [] => []
97
  | x :: l => match i with 0 => l | S i => x :: @delete _ _ go i l end
98
  end.
99 100 101

(** The function [option_list o] converts an element [Some x] into the
singleton list [[x]], and [None] into the empty list [[]]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
102
Definition option_list {A} : option A  list A := option_rect _ (λ x, [x]) [].
103 104
Instance: Params (@option_list) 1.
Instance maybe_list_singleton {A} : Maybe (λ x : A, [x]) := λ l,
105
  match l with [x] => Some x | _ => None end.
Robbert Krebbers's avatar
Robbert Krebbers committed
106 107 108 109

(** The function [filter P l] returns the list of elements of [l] that
satisfies [P]. The order remains unchanged. *)
Instance list_filter {A} : Filter A (list A) :=
110
  fix go P _ l := let _ : Filter _ _ := @go in
Robbert Krebbers's avatar
Robbert Krebbers committed
111 112
  match l with
  | [] => []
113
  | x :: l => if decide (P x) then x :: filter P l else filter P l
114 115 116 117
  end.

(** The function [list_find P l] returns the first index [i] whose element
satisfies the predicate [P]. *)
118
Definition list_find {A} P `{ x, Decision (P x)} : list A  option (nat * A) :=
119 120
  fix go l :=
  match l with
121 122
  | [] => None
  | x :: l => if decide (P x) then Some (0,x) else prod_map S id <$> go l
123
  end.
124
Instance: Params (@list_find) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
125 126 127 128

(** The function [replicate n x] generates a list with length [n] of elements
with value [x]. *)
Fixpoint replicate {A} (n : nat) (x : A) : list A :=
129
  match n with 0 => [] | S n => x :: replicate n x end.
130
Instance: Params (@replicate) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
131 132 133

(** The function [reverse l] returns the elements of [l] in reverse order. *)
Definition reverse {A} (l : list A) : list A := rev_append l [].
134
Instance: Params (@reverse) 1.
Robbert Krebbers's avatar
Robbert Krebbers committed
135

136 137 138 139
(** The function [last l] returns the last element of the list [l], or [None]
if the list [l] is empty. *)
Fixpoint last {A} (l : list A) : option A :=
  match l with [] => None | [x] => Some x | _ :: l => last l end.
140
Instance: Params (@last) 1.
141

Robbert Krebbers's avatar
Robbert Krebbers committed
142 143 144 145 146 147
(** The function [resize n y l] takes the first [n] elements of [l] in case
[length l ≤ n], and otherwise appends elements with value [x] to [l] to obtain
a list of length [n]. *)
Fixpoint resize {A} (n : nat) (y : A) (l : list A) : list A :=
  match l with
  | [] => replicate n y
148
  | x :: l => match n with 0 => [] | S n => x :: resize n y l end
Robbert Krebbers's avatar
Robbert Krebbers committed
149 150
  end.
Arguments resize {_} !_ _ !_.
151
Instance: Params (@resize) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
152

153 154 155
(** The function [reshape k l] transforms [l] into a list of lists whose sizes
are specified by [k]. In case [l] is too short, the resulting list will be
padded with empty lists. In case [l] is too long, it will be truncated. *)
156 157
Fixpoint reshape {A} (szs : list nat) (l : list A) : list (list A) :=
  match szs with
158
  | [] => [] | sz :: szs => take sz l :: reshape szs (drop sz l)
159
  end.
160
Instance: Params (@reshape) 2.
161

162
Definition sublist_lookup {A} (i n : nat) (l : list A) : option (list A) :=
163 164 165 166
  guard (i + n  length l); Some (take n (drop i l)).
Definition sublist_alter {A} (f : list A  list A)
    (i n : nat) (l : list A) : list A :=
  take i l ++ f (take n (drop i l)) ++ drop (i + n) l.
167

168 169 170 171
(** Functions to fold over a list. We redefine [foldl] with the arguments in
the same order as in Haskell. *)
Notation foldr := fold_right.
Definition foldl {A B} (f : A  B  A) : A  list B  A :=
172
  fix go a l := match l with [] => a | x :: l => go (f a x) l end.
173 174 175

(** The monadic operations. *)
Instance list_ret: MRet list := λ A x, x :: @nil A.
176 177
Instance list_fmap : FMap list := λ A B f,
  fix go (l : list A) := match l with [] => [] | x :: l => f x :: go l end.
178 179 180 181 182 183
Instance list_omap : OMap list := λ A B f,
  fix go (l : list A) :=
  match l with
  | [] => []
  | x :: l => match f x with Some y => y :: go l | None => go l end
  end.
184 185
Instance list_bind : MBind list := λ A B f,
  fix go (l : list A) := match l with [] => [] | x :: l => f x ++ go l end.
186 187
Instance list_join: MJoin list :=
  fix go A (ls : list (list A)) : list A :=
188
  match ls with [] => [] | l :: ls => l ++ @mjoin _ go _ ls end.
189
Definition mapM `{MBind M, MRet M} {A B} (f : A  M B) : list A  M (list B) :=
190
  fix go l :=
191
  match l with [] => mret [] | x :: l => y  f x; k  go l; mret (y :: k) end.
192 193 194 195 196

(** We define stronger variants of map and fold that allow the mapped
function to use the index of the elements. *)
Definition imap_go {A B} (f : nat  A  B) : nat  list A  list B :=
  fix go (n : nat) (l : list A) :=
197
  match l with [] => [] | x :: l => f n x :: go (S n) l end.
198
Definition imap {A B} (f : nat  A  B) : list A  list B := imap_go f 0.
199 200 201 202
Definition zipped_map {A B} (f : list A  list A  A  B) :
  list A  list A  list B := fix go l k :=
  match k with [] => [] | x :: k => f l k x :: go (x :: l) k end.

Robbert Krebbers's avatar
Robbert Krebbers committed
203 204 205 206 207 208 209 210 211
Definition imap2_go {A B C} (f : nat  A  B  C) :
    nat  list A  list B  list C:=
  fix go (n : nat) (l : list A) (k : list B) :=
  match l, k with
  | [], _ |_, [] => [] | x :: l, y :: k => f n x y :: go (S n) l k
  end.
Definition imap2 {A B C} (f : nat  A  B  C) :
  list A  list B  list C := imap2_go f 0.

212 213 214 215 216 217 218
Inductive zipped_Forall {A} (P : list A  list A  A  Prop) :
    list A  list A  Prop :=
  | zipped_Forall_nil l : zipped_Forall P l []
  | zipped_Forall_cons l k x :
     P l k x  zipped_Forall P (x :: l) k  zipped_Forall P l (x :: k).
Arguments zipped_Forall_nil {_ _} _.
Arguments zipped_Forall_cons {_ _} _ _ _ _ _.
219

220 221 222 223 224 225 226
(** The function [mask f βs l] applies the function [f] to elements in [l] at
positions that are [true] in [βs]. *)
Fixpoint mask {A} (f : A  A) (βs : list bool) (l : list A) : list A :=
  match βs, l with
  | β :: βs, x :: l => (if β then f x else x) :: mask f βs l
  | _, _ => l
  end.
227 228 229 230

(** The function [permutations l] yields all permutations of [l]. *)
Fixpoint interleave {A} (x : A) (l : list A) : list (list A) :=
  match l with
231
  | [] => [[x]]| y :: l => (x :: y :: l) :: ((y ::) <$> interleave x l)
232 233
  end.
Fixpoint permutations {A} (l : list A) : list (list A) :=
234
  match l with [] => [[]] | x :: l => permutations l = interleave x end.
235

236 237
(** The predicate [suffix_of] holds if the first list is a suffix of the second.
The predicate [prefix_of] holds if the first list is a prefix of the second. *)
238 239
Definition suffix_of {A} : relation (list A) := λ l1 l2,  k, l2 = k ++ l1.
Definition prefix_of {A} : relation (list A) := λ l1 l2,  k, l2 = l1 ++ k.
240 241
Infix "`suffix_of`" := suffix_of (at level 70) : C_scope.
Infix "`prefix_of`" := prefix_of (at level 70) : C_scope.
242 243
Hint Extern 0 (_ `prefix_of` _) => reflexivity.
Hint Extern 0 (_ `suffix_of` _) => reflexivity.
Robbert Krebbers's avatar
Robbert Krebbers committed
244

245 246 247 248 249 250 251 252
Section prefix_suffix_ops.
  Context `{ x y : A, Decision (x = y)}.
  Definition max_prefix_of : list A  list A  list A * list A * list A :=
    fix go l1 l2 :=
    match l1, l2 with
    | [], l2 => ([], l2, [])
    | l1, [] => (l1, [], [])
    | x1 :: l1, x2 :: l2 =>
253
      if decide_rel (=) x1 x2
254
      then prod_map id (x1 ::) (go l1 l2) else (x1 :: l1, x2 :: l2, [])
255 256 257 258 259
    end.
  Definition max_suffix_of (l1 l2 : list A) : list A * list A * list A :=
    match max_prefix_of (reverse l1) (reverse l2) with
    | (k1, k2, k3) => (reverse k1, reverse k2, reverse k3)
    end.
260 261
  Definition strip_prefix (l1 l2 : list A) := (max_prefix_of l1 l2).1.2.
  Definition strip_suffix (l1 l2 : list A) := (max_suffix_of l1 l2).1.2.
262
End prefix_suffix_ops.
Robbert Krebbers's avatar
Robbert Krebbers committed
263

264
(** A list [l1] is a sublist of [l2] if [l2] is obtained by removing elements
265 266 267
from [l1] without changing the order. *)
Inductive sublist {A} : relation (list A) :=
  | sublist_nil : sublist [] []
268
  | sublist_skip x l1 l2 : sublist l1 l2  sublist (x :: l1) (x :: l2)
269
  | sublist_cons x l1 l2 : sublist l1 l2  sublist l1 (x :: l2).
270
Infix "`sublist`" := sublist (at level 70) : C_scope.
271
Hint Extern 0 (_ `sublist` _) => reflexivity.
272 273

(** A list [l2] contains a list [l1] if [l2] is obtained by removing elements
274
from [l1] while possiblity changing the order. *)
275 276 277 278
Inductive contains {A} : relation (list A) :=
  | contains_nil : contains [] []
  | contains_skip x l1 l2 : contains l1 l2  contains (x :: l1) (x :: l2)
  | contains_swap x y l : contains (y :: x :: l) (x :: y :: l)
279
  | contains_cons x l1 l2 : contains l1 l2  contains l1 (x :: l2)
280 281
  | contains_trans l1 l2 l3 : contains l1 l2  contains l2 l3  contains l1 l3.
Infix "`contains`" := contains (at level 70) : C_scope.
282
Hint Extern 0 (_ `contains` _) => reflexivity.
283 284 285 286 287 288 289 290 291 292

Section contains_dec_help.
  Context {A} {dec :  x y : A, Decision (x = y)}.
  Fixpoint list_remove (x : A) (l : list A) : option (list A) :=
    match l with
    | [] => None
    | y :: l => if decide (x = y) then Some l else (y ::) <$> list_remove x l
    end.
  Fixpoint list_remove_list (k : list A) (l : list A) : option (list A) :=
    match k with
293
    | [] => Some l | x :: k => list_remove x l = list_remove_list k
294 295
    end.
End contains_dec_help.
296

297 298 299 300 301
Inductive Forall3 {A B C} (P : A  B  C  Prop) :
     list A  list B  list C  Prop :=
  | Forall3_nil : Forall3 P [] [] []
  | Forall3_cons x y z l k k' :
     P x y z  Forall3 P l k k'  Forall3 P (x :: l) (y :: k) (z :: k').
302 303

(** Set operations on lists *)
304 305 306
Definition included {A} (l1 l2 : list A) :=  x, x  l1  x  l2.
Infix "`included`" := included (at level 70) : C_scope.

307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
Section list_set.
  Context {A} {dec :  x y : A, Decision (x = y)}.
  Global Instance elem_of_list_dec {dec :  x y : A, Decision (x = y)}
    (x : A) :  l, Decision (x  l).
  Proof.
   refine (
    fix go l :=
    match l return Decision (x  l) with
    | [] => right _
    | y :: l => cast_if_or (decide (x = y)) (go l)
    end); clear go dec; subst; try (by constructor); abstract by inversion 1.
  Defined.
  Fixpoint remove_dups (l : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x l then remove_dups l else x :: remove_dups l
    end.
  Fixpoint list_difference (l k : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x k
330
      then list_difference l k else x :: list_difference l k
331
    end.
332
  Definition list_union (l k : list A) : list A := list_difference l k ++ k.
333 334 335 336 337
  Fixpoint list_intersection (l k : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x k
338
      then x :: list_intersection l k else list_intersection l k
339 340 341 342 343 344 345 346 347
    end.
  Definition list_intersection_with (f : A  A  option A) :
    list A  list A  list A := fix go l k :=
    match l with
    | [] => []
    | x :: l => foldr (λ y,
        match f x y with None => id | Some z => (z ::) end) (go l k) k
    end.
End list_set.
348 349

(** * Basic tactics on lists *)
350
(** The tactic [discriminate_list] discharges a goal if it contains
351 352
a list equality involving [(::)] and [(++)] of two lists that have a different
length as one of its hypotheses. *)
353
Tactic Notation "discriminate_list" hyp(H) :=
354
  apply (f_equal length) in H;
355
  repeat (csimpl in H || rewrite app_length in H); exfalso; lia.
356 357
Tactic Notation "discriminate_list" :=
  match goal with H : @eq (list _) _ _ |- _ => discriminate_list H end.
358

359
(** The tactic [simplify_list_eq] simplifies hypotheses involving
360 361
equalities on lists using injectivity of [(::)] and [(++)]. Also, it simplifies
lookups in singleton lists. *)
362
Lemma app_inj_1 {A} (l1 k1 l2 k2 : list A) :
363 364
  length l1 = length k1  l1 ++ l2 = k1 ++ k2  l1 = k1  l2 = k2.
Proof. revert k1. induction l1; intros [|??]; naive_solver. Qed.
365
Lemma app_inj_2 {A} (l1 k1 l2 k2 : list A) :
366 367
  length l2 = length k2  l1 ++ l2 = k1 ++ k2  l1 = k1  l2 = k2.
Proof.
368
  intros ? Hl. apply app_inj_1; auto.
369 370
  apply (f_equal length) in Hl. rewrite !app_length in Hl. lia.
Qed.
371
Ltac simplify_list_eq :=
372
  repeat match goal with
373
  | _ => progress simplify_eq/=
374
  | H : _ ++ _ = _ ++ _ |- _ => first
375
    [ apply app_inv_head in H | apply app_inv_tail in H
376 377
    | apply app_inj_1 in H; [destruct H|done]
    | apply app_inj_2 in H; [destruct H|done] ]
Robbert Krebbers's avatar
Robbert Krebbers committed
378
  | H : [?x] !! ?i = Some ?y |- _ =>
379
    destruct i; [change (Some x = Some y) in H | discriminate]
380
  end.
381

382 383
(** * General theorems *)
Section general_properties.
Robbert Krebbers's avatar
Robbert Krebbers committed
384
Context {A : Type}.
385 386
Implicit Types x y z : A.
Implicit Types l k : list A.
Robbert Krebbers's avatar
Robbert Krebbers committed
387

388
Global Instance: Inj2 (=) (=) (=) (@cons A).
389
Proof. by injection 1. Qed.
390
Global Instance:  k, Inj (=) (=) (k ++).
391
Proof. intros ???. apply app_inv_head. Qed.
392
Global Instance:  k, Inj (=) (=) (++ k).
393
Proof. intros ???. apply app_inv_tail. Qed.
394
Global Instance: Assoc (=) (@app A).
395 396 397 398 399
Proof. intros ???. apply app_assoc. Qed.
Global Instance: LeftId (=) [] (@app A).
Proof. done. Qed.
Global Instance: RightId (=) [] (@app A).
Proof. intro. apply app_nil_r. Qed.
400

401
Lemma app_nil l1 l2 : l1 ++ l2 = []  l1 = []  l2 = [].
402
Proof. split. apply app_eq_nil. by intros [-> ->]. Qed.
403 404
Lemma app_singleton l1 l2 x :
  l1 ++ l2 = [x]  l1 = []  l2 = [x]  l1 = [x]  l2 = [].
405
Proof. split. apply app_eq_unit. by intros [[-> ->]|[-> ->]]. Qed.
406 407 408
Lemma cons_middle x l1 l2 : l1 ++ x :: l2 = l1 ++ [x] ++ l2.
Proof. done. Qed.
Lemma list_eq l1 l2 : ( i, l1 !! i = l2 !! i)  l1 = l2.
409
Proof.
410
  revert l2. induction l1 as [|x l1 IH]; intros [|y l2] H.
411 412 413
  - done.
  - discriminate (H 0).
  - discriminate (H 0).
414
  - f_equal; [by injection (H 0)|]. apply (IH _ $ λ i, H (S i)).
415
Qed.
416
Global Instance list_eq_dec {dec :  x y, Decision (x = y)} :  l k,
417
  Decision (l = k) := list_eq_dec dec.
418 419 420
Global Instance list_eq_nil_dec l : Decision (l = []).
Proof. by refine match l with [] => left _ | _ => right _ end. Defined.
Lemma list_singleton_reflect l :
421
  option_reflect (λ x, l = [x]) (length l  1) (maybe (λ x, [x]) l).
422 423 424 425
Proof. by destruct l as [|? []]; constructor. Defined.

Definition nil_length : length (@nil A) = 0 := eq_refl.
Definition cons_length x l : length (x :: l) = S (length l) := eq_refl.
426
Lemma nil_or_length_pos l : l = []  length l  0.
427
Proof. destruct l; simpl; auto with lia. Qed.
428
Lemma nil_length_inv l : length l = 0  l = [].
429 430
Proof. by destruct l. Qed.
Lemma lookup_nil i : @nil A !! i = None.
431
Proof. by destruct i. Qed.
432
Lemma lookup_tail l i : tail l !! i = l !! S i.
433
Proof. by destruct l. Qed.
434
Lemma lookup_lt_Some l i x : l !! i = Some x  i < length l.
435
Proof. revert i. induction l; intros [|?] ?; naive_solver auto with arith. Qed.
436 437 438
Lemma lookup_lt_is_Some_1 l i : is_Some (l !! i)  i < length l.
Proof. intros [??]; eauto using lookup_lt_Some. Qed.
Lemma lookup_lt_is_Some_2 l i : i < length l  is_Some (l !! i).
439
Proof. revert i. induction l; intros [|?] ?; naive_solver eauto with lia. Qed.
440 441 442 443 444 445 446 447
Lemma lookup_lt_is_Some l i : is_Some (l !! i)  i < length l.
Proof. split; auto using lookup_lt_is_Some_1, lookup_lt_is_Some_2. Qed.
Lemma lookup_ge_None l i : l !! i = None  length l  i.
Proof. rewrite eq_None_not_Some, lookup_lt_is_Some. lia. Qed.
Lemma lookup_ge_None_1 l i : l !! i = None  length l  i.
Proof. by rewrite lookup_ge_None. Qed.
Lemma lookup_ge_None_2 l i : length l  i  l !! i = None.
Proof. by rewrite lookup_ge_None. Qed.
448 449 450
Lemma list_eq_same_length l1 l2 n :
  length l2 = n  length l1 = n 
  ( i x y, i < n  l1 !! i = Some x  l2 !! i = Some y  x = y)  l1 = l2.
Robbert Krebbers's avatar
Robbert Krebbers committed
451
Proof.
452
  intros <- Hlen Hl; apply list_eq; intros i. destruct (l2 !! i) as [x|] eqn:Hx.
453
  - destruct (lookup_lt_is_Some_2 l1 i) as [y Hy].
454 455
    { rewrite Hlen; eauto using lookup_lt_Some. }
    rewrite Hy; f_equal; apply (Hl i); eauto using lookup_lt_Some.
456
  - by rewrite lookup_ge_None, Hlen, <-lookup_ge_None.
Robbert Krebbers's avatar
Robbert Krebbers committed
457
Qed.
458
Lemma lookup_app_l l1 l2 i : i < length l1  (l1 ++ l2) !! i = l1 !! i.
459
Proof. revert i. induction l1; intros [|?]; naive_solver auto with lia. Qed.
460 461
Lemma lookup_app_l_Some l1 l2 i x : l1 !! i = Some x  (l1 ++ l2) !! i = Some x.
Proof. intros. rewrite lookup_app_l; eauto using lookup_lt_Some. Qed.
462
Lemma lookup_app_r l1 l2 i :
463
  length l1  i  (l1 ++ l2) !! i = l2 !! (i - length l1).
464 465 466 467 468 469
Proof. revert i. induction l1; intros [|?]; simpl; auto with lia. Qed.
Lemma lookup_app_Some l1 l2 i x :
  (l1 ++ l2) !! i = Some x 
    l1 !! i = Some x  length l1  i  l2 !! (i - length l1) = Some x.
Proof.
  split.
470
  - revert i. induction l1 as [|y l1 IH]; intros [|i] ?;
471
      simplify_eq/=; auto with lia.
472
    destruct (IH i) as [?|[??]]; auto with lia.
473
  - intros [?|[??]]; auto using lookup_app_l_Some. by rewrite lookup_app_r.
474
Qed.
475 476 477
Lemma list_lookup_middle l1 l2 x n :
  n = length l1  (l1 ++ x :: l2) !! n = Some x.
Proof. intros ->. by induction l1. Qed.
478

479
Lemma list_insert_alter l i x : <[i:=x]>l = alter (λ _, x) i l.
480
Proof. by revert i; induction l; intros []; intros; f_equal/=. Qed.
481
Lemma alter_length f l i : length (alter f i l) = length l.
482
Proof. revert i. by induction l; intros [|?]; f_equal/=. Qed.
483
Lemma insert_length l i x : length (<[i:=x]>l) = length l.
484
Proof. revert i. by induction l; intros [|?]; f_equal/=. Qed.
485
Lemma list_lookup_alter f l i : alter f i l !! i = f <$> l !! i.
486
Proof. revert i. induction l. done. intros [|i]. done. apply (IHl i). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
487
Lemma list_lookup_alter_ne f l i j : i  j  alter f i l !! j = l !! j.
488
Proof. revert i j. induction l; [done|]. intros [] []; naive_solver. Qed.
489
Lemma list_lookup_insert l i x : i < length l  <[i:=x]>l !! i = Some x.
490
Proof. revert i. induction l; intros [|?] ?; f_equal/=; auto with lia. Qed.
491
Lemma list_lookup_insert_ne l i j x : i  j  <[i:=x]>l !! j = l !! j.
492
Proof. revert i j. induction l; [done|]. intros [] []; naive_solver. Qed.
493 494 495 496 497 498
Lemma list_lookup_insert_Some l i x j y :
  <[i:=x]>l !! j = Some y 
    i = j  x = y  j < length l  i  j  l !! j = Some y.
Proof.
  destruct (decide (i = j)) as [->|];
    [split|rewrite list_lookup_insert_ne by done; tauto].
499
  - intros Hy. assert (j < length l).
500 501
    { rewrite <-(insert_length l j x); eauto using lookup_lt_Some. }
    rewrite list_lookup_insert in Hy by done; naive_solver.
502
  - intros [(?&?&?)|[??]]; rewrite ?list_lookup_insert; naive_solver.
503 504 505
Qed.
Lemma list_insert_commute l i j x y :
  i  j  <[i:=x]>(<[j:=y]>l) = <[j:=y]>(<[i:=x]>l).
506
Proof. revert i j. by induction l; intros [|?] [|?] ?; f_equal/=; auto. Qed.
507 508
Lemma list_lookup_other l i x :
  length l  1  l !! i = Some x   j y, j  i  l !! j = Some y.
Robbert Krebbers's avatar
Robbert Krebbers committed
509
Proof.
510
  intros. destruct i, l as [|x0 [|x1 l]]; simplify_eq/=.
511 512
  - by exists 1, x1.
  - by exists 0, x0.
Robbert Krebbers's avatar
Robbert Krebbers committed
513
Qed.
514 515
Lemma alter_app_l f l1 l2 i :
  i < length l1  alter f i (l1 ++ l2) = alter f i l1 ++ l2.
516
Proof. revert i. induction l1; intros [|?] ?; f_equal/=; auto with lia. Qed.
517
Lemma alter_app_r f l1 l2 i :
518
  alter f (length l1 + i) (l1 ++ l2) = l1 ++ alter f i l2.
519
Proof. revert i. induction l1; intros [|?]; f_equal/=; auto. Qed.
520 521
Lemma alter_app_r_alt f l1 l2 i :
  length l1  i  alter f i (l1 ++ l2) = l1 ++ alter f (i - length l1) l2.
522 523 524 525
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply alter_app_r.
Qed.
526
Lemma list_alter_id f l i : ( x, f x = x)  alter f i l = l.
527
Proof. intros ?. revert i. induction l; intros [|?]; f_equal/=; auto. Qed.
528 529
Lemma list_alter_ext f g l k i :
  ( x, l !! i = Some x  f x = g x)  l = k  alter f i l = alter g i k.
530
Proof. intros H ->. revert i H. induction k; intros [|?] ?; f_equal/=; auto. Qed.
531 532
Lemma list_alter_compose f g l i :
  alter (f  g) i l = alter f i (alter g i l).
533
Proof. revert i. induction l; intros [|?]; f_equal/=; auto. Qed.
534 535
Lemma list_alter_commute f g l i j :
  i  j  alter f i (alter g j l) = alter g j (alter f i l).
536
Proof. revert i j. induction l; intros [|?][|?] ?; f_equal/=; auto with lia. Qed.
537 538
Lemma insert_app_l l1 l2 i x :
  i < length l1  <[i:=x]>(l1 ++ l2) = <[i:=x]>l1 ++ l2.
539
Proof. revert i. induction l1; intros [|?] ?; f_equal/=; auto with lia. Qed.
540
Lemma insert_app_r l1 l2 i x : <[length l1+i:=x]>(l1 ++ l2) = l1 ++ <[i:=x]>l2.
541
Proof. revert i. induction l1; intros [|?]; f_equal/=; auto. Qed.
542 543
Lemma insert_app_r_alt l1 l2 i x :
  length l1  i  <[i:=x]>(l1 ++ l2) = l1 ++ <[i - length l1:=x]>l2.
544 545 546 547
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply insert_app_r.
Qed.
548
Lemma delete_middle l1 l2 x : delete (length l1) (l1 ++ x :: l2) = l1 ++ l2.
549
Proof. induction l1; f_equal/=; auto. Qed.
550

551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
Lemma inserts_length l i k : length (list_inserts i k l) = length l.
Proof.
  revert i. induction k; intros ?; csimpl; rewrite ?insert_length; auto.
Qed.
Lemma list_lookup_inserts l i k j :
  i  j < i + length k  j < length l 
  list_inserts i k l !! j = k !! (j - i).
Proof.
  revert i j. induction k as [|y k IH]; csimpl; intros i j ??; [lia|].
  destruct (decide (i = j)) as [->|].
  { by rewrite list_lookup_insert, Nat.sub_diag
      by (rewrite inserts_length; lia). }
  rewrite list_lookup_insert_ne, IH by lia.
  by replace (j - i) with (S (j - S i)) by lia.
Qed.
Lemma list_lookup_inserts_lt l i k j :
  j < i  list_inserts i k l !! j = l !! j.
Proof.
  revert i j. induction k; intros i j ?; csimpl;
    rewrite ?list_lookup_insert_ne by lia; auto with lia.
Qed.
Lemma list_lookup_inserts_ge l i k j :
  i + length k  j  list_inserts i k l !! j = l !! j.
Proof.
  revert i j. induction k; csimpl; intros i j ?;
    rewrite ?list_lookup_insert_ne by lia; auto with lia.
Qed.
Lemma list_lookup_inserts_Some l i k j y :
  list_inserts i k l !! j = Some y 
    (j < i  i + length k  j)  l !! j = Some y 
    i  j < i + length k  j < length l  k !! (j - i) = Some y.
Proof.
  destruct (decide (j < i)).
  { rewrite list_lookup_inserts_lt by done; intuition lia. }
  destruct (decide (i + length k  j)).
  { rewrite list_lookup_inserts_ge by done; intuition lia. }
  split.
588
  - intros Hy. assert (j < length l).
589 590
    { rewrite <-(inserts_length l i k); eauto using lookup_lt_Some. }
    rewrite list_lookup_inserts in Hy by lia. intuition lia.
591
  - intuition. by rewrite list_lookup_inserts by lia.
592 593 594 595 596 597 598 599
Qed.
Lemma list_insert_inserts_lt l i j x k :
  i < j  <[i:=x]>(list_inserts j k l) = list_inserts j k (<[i:=x]>l).
Proof.
  revert i j. induction k; intros i j ?; simpl;
    rewrite 1?list_insert_commute by lia; auto with f_equal.
Qed.

600
(** ** Properties of the [elem_of] predicate *)
601
Lemma not_elem_of_nil x : x  [].
602
Proof. by inversion 1. Qed.
603
Lemma elem_of_nil x : x  []  False.
604
Proof. intuition. by destruct (not_elem_of_nil x). Qed.
605
Lemma elem_of_nil_inv l : ( x, x  l)  l = [].
606
Proof. destruct l. done. by edestruct 1; constructor. Qed.
607 608
Lemma elem_of_not_nil x l : x  l  l  [].
Proof. intros ? ->. by apply (elem_of_nil x). Qed.
609
Lemma elem_of_cons l x y : x  y :: l  x = y  x  l.
Robbert Krebbers's avatar
Robbert Krebbers committed
610
Proof. by split; [inversion 1; subst|intros [->|?]]; constructor. Qed.
611
Lemma not_elem_of_cons l x y : x  y :: l  x  y  x  l.
Robbert Krebbers's avatar
Robbert Krebbers committed
612
Proof. rewrite elem_of_cons. tauto. Qed.
613
Lemma elem_of_app l1 l2 x : x  l1 ++ l2  x  l1  x  l2.
614
Proof.
615
  induction l1.
616 617
  - split; [by right|]. intros [Hx|]; [|done]. by destruct (elem_of_nil x).
  - simpl. rewrite !elem_of_cons, IHl1. tauto.
618
Qed.
619
Lemma not_elem_of_app l1 l2 x : x  l1 ++ l2  x  l1  x  l2.
Robbert Krebbers's avatar
Robbert Krebbers committed
620
Proof. rewrite elem_of_app. tauto. Qed.
621
Lemma elem_of_list_singleton x y : x  [y]  x = y.
622
Proof. rewrite elem_of_cons, elem_of_nil. tauto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
623
Global Instance elem_of_list_permutation_proper x : Proper (() ==> iff) (x ).
624
Proof. induction 1; rewrite ?elem_of_nil, ?elem_of_cons; intuition. Qed.
625
Lemma elem_of_list_split l x : x  l   l1 l2, l = l1 ++ x :: l2.
626
Proof.
627
  induction 1 as [x l|x y l ? [l1 [l2 ->]]]; [by eexists [], l|].
628
  by exists (y :: l1), l2.
629
Qed.
630
Lemma elem_of_list_lookup_1 l x : x  l   i, l !! i = Some x.
631
Proof.
632 633
  induction 1 as [|???? IH]; [by exists 0 |].
  destruct IH as [i ?]; auto. by exists (S i).
634
Qed.
635
Lemma elem_of_list_lookup_2 l i x : l !! i = Some x  x  l.
636
Proof.
637
  revert i. induction l; intros [|i] ?; simplify_eq/=; constructor; eauto.
638
Qed.
639 640
Lemma elem_of_list_lookup l x : x  l   i, l !! i = Some x.
Proof. firstorder eauto using elem_of_list_lookup_1, elem_of_list_lookup_2. Qed.
641 642 643 644
Lemma elem_of_list_omap {B} (f : A  option B) l (y : B) :
  y  omap f l   x, x  l  f x = Some y.
Proof.
  split.
645
  - induction l as [|x l]; csimpl; repeat case_match; inversion 1; subst;
646
      setoid_rewrite elem_of_cons; naive_solver.
647
  - intros (x&Hx&?). by induction Hx; csimpl; repeat case_match;
648
      simplify_eq; try constructor; auto.
649
Qed.
650

651
(** ** Properties of the [NoDup] predicate *)
652 653
Lemma NoDup_nil : NoDup (@nil A)  True.
Proof. split; constructor. Qed.
654
Lemma NoDup_cons x l : NoDup (x :: l)  x  l  NoDup l.
655
Proof. split. by inversion 1. intros [??]. by constructor. Qed.
656
Lemma NoDup_cons_11 x l : NoDup (x :: l)  x  l.
657
Proof. rewrite NoDup_cons. by intros [??]. Qed.
658
Lemma NoDup_cons_12 x l : NoDup (x :: l)  NoDup l.
659
Proof. rewrite NoDup_cons. by intros [??]. Qed.
660
Lemma NoDup_singleton x : NoDup [x].
661
Proof. constructor. apply not_elem_of_nil. constructor. Qed.
662
Lemma NoDup_app l k : NoDup (l ++ k)  NoDup l  ( x, x  l  x  k)  NoDup k.
Robbert Krebbers's avatar
Robbert Krebbers committed
663
Proof.
664
  induction l; simpl.
665 666
  - rewrite NoDup_nil. setoid_rewrite elem_of_nil. naive_solver.
  - rewrite !NoDup_cons.
Robbert Krebbers's avatar
Robbert Krebbers committed
667
    setoid_rewrite elem_of_cons. setoid_rewrite elem_of_app. naive_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
668
Qed.
669
Global Instance NoDup_proper: Proper (() ==> iff) (@NoDup A).
670 671
Proof.
  induction 1 as [|x l k Hlk IH | |].
672 673 674 675
  - by rewrite !NoDup_nil.
  - by rewrite !NoDup_cons, IH, Hlk.
  - rewrite !NoDup_cons, !elem_of_cons. intuition.
  - intuition.
676
Qed.
677 678
Lemma NoDup_lookup l i j x :
  NoDup l  l !! i = Some x  l !! j = Some x  i = j.
679 680
Proof.
  intros Hl. revert i j. induction Hl as [|x' l Hx Hl IH].
681 682
  { intros; simplify_eq. }
  intros [|i] [|j] ??; simplify_eq/=; eauto with f_equal;
683 684
    exfalso; eauto using elem_of_list_lookup_2.
Qed.
685 686
Lemma NoDup_alt l :
  NoDup l   i j x, l !! i = Some x  l !! j = Some x  i = j.
687
Proof.
688 689
  split; eauto using NoDup_lookup.
  induction l as [|x l IH]; intros Hl; constructor.
690
  - rewrite elem_of_list_lookup. intros [i ?].
691
    by feed pose proof (Hl (S i) 0 x); auto.
692
  - apply IH. intros i j x' ??. by apply (inj S), (Hl (S i) (S j) x').
693
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
694

695 696 697 698 699 700
Section no_dup_dec.
  Context `{! x y, Decision (x = y)}.
  Global Instance NoDup_dec:  l, Decision (NoDup l) :=
    fix NoDup_dec l :=
    match l return Decision (NoDup l) with
    | [] => left NoDup_nil_2
701
    | x :: l =>
702 703 704 705 706 707 708 709
      match decide_rel () x l with
      | left Hin => right (λ H, NoDup_cons_11 _ _ H Hin)
      | right Hin =>
        match NoDup_dec l with
        | left H => left (NoDup_cons_2 _ _ Hin H)
        | right H => right (H  NoDup_cons_12 _ _)
        end
      end
710
    end.
711
  Lemma elem_of_remove_dups l x : x  remove_dups l  x  l.
712 713
  Proof.
    split; induction l; simpl; repeat case_decide;
714
      rewrite ?elem_of_cons; intuition (simplify_eq; auto).
715
  Qed.
716
  Lemma NoDup_remove_dups l : NoDup (remove_dups l).
717 718 719 720
  Proof.
    induction l; simpl; repeat case_decide; try constructor; auto.
    by rewrite elem_of_remove_dups.
  Qed.
721
End no_dup_dec.
722

723 724 725 726 727 728 729 730 731 732 733
(** ** Set operations on lists *)
Section list_set.
  Context {dec :  x y, Decision (x = y)}.
  Lemma elem_of_list_difference l k x : x  list_difference l k  x  l  x  k.
  Proof.
    split; induction l; simpl; try case_decide;
      rewrite ?elem_of_nil, ?elem_of_cons; intuition congruence.
  Qed.
  Lemma NoDup_list_difference l k : NoDup l  NoDup (list_difference l k).
  Proof.
    induction 1; simpl; try case_decide.