(* Copyright (c) 2012-2015, Robbert Krebbers. *) (* This file is distributed under the terms of the BSD license. *) (** This file implements sets as functions into Prop. *)
Require Export prelude.prelude.
Record set (A : Type) : Type := mkSet { set_car : A → Prop }. Arguments mkSet {_} _. Arguments set_car {_} _ _. Definition set_all {A} : set A := mkSet (λ _, True). Instance set_empty {A} : Empty (set A) := mkSet (λ _, False). Instance set_singleton {A} : Singleton A (set A) := λ x, mkSet (x =). Instance set_elem_of {A} : ElemOf A (set A) := λ x X, set_car X x. Instance set_union {A} : Union (set A) := λ X1 X2, mkSet (λ x, x ∈ X1 ∨ x ∈ X2). Instance set_intersection {A} : Intersection (set A) := λ X1 X2, mkSet (λ x, x ∈ X1 ∧ x ∈ X2). Instance set_difference {A} : Difference (set A) := λ X1 X2, mkSet (λ x, x ∈ X1 ∧ x ∉ X2). Instance set_collection : Collection A (set A). Proof. by split; [split | |]; repeat intro. Qed. Instance set_ret : MRet set := λ A (x : A), {[ x ]}. Instance set_bind : MBind set := λ A B (f : A → set B) (X : set A), mkSet (λ b, ∃ a, b ∈ f a ∧ a ∈ X). Instance set_fmap : FMap set := λ A B (f : A → B) (X : set A), mkSet (λ b, ∃ a, b = f a ∧ a ∈ X). Instance set_join : MJoin set := λ A (XX : set (set A)), mkSet (λ a, ∃ X, a ∈ X ∧ X ∈ XX). Instance set_collection_monad : CollectionMonad set. Proof. by split; try apply _. Qed.
Global Opaque set_union set_intersection.