list.v 153 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
2 3 4
(* This file is distributed under the terms of the BSD license. *)
(** This file collects general purpose definitions and theorems on lists that
are not in the Coq standard library. *)
5
From Coq Require Export Permutation.
6
From stdpp Require Export numbers base option.
Robbert Krebbers's avatar
Robbert Krebbers committed
7

8
Arguments length {_} _.
Robbert Krebbers's avatar
Robbert Krebbers committed
9 10 11
Arguments cons {_} _ _.
Arguments app {_} _ _.
Arguments Permutation {_} _ _.
12
Arguments Forall_cons {_} _ _ _ _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
13

14 15 16
Notation tail := tl.
Notation take := firstn.
Notation drop := skipn.
17

18 19 20
Arguments take {_} !_ !_ /.
Arguments drop {_} !_ !_ /.

Robbert Krebbers's avatar
Robbert Krebbers committed
21 22 23 24 25 26 27
Notation "(::)" := cons (only parsing) : C_scope.
Notation "( x ::)" := (cons x) (only parsing) : C_scope.
Notation "(:: l )" := (λ x, cons x l) (only parsing) : C_scope.
Notation "(++)" := app (only parsing) : C_scope.
Notation "( l ++)" := (app l) (only parsing) : C_scope.
Notation "(++ k )" := (λ l, app l k) (only parsing) : C_scope.

28 29 30 31 32 33 34 35 36
Infix "≡ₚ" := Permutation (at level 70, no associativity) : C_scope.
Notation "(≡ₚ)" := Permutation (only parsing) : C_scope.
Notation "( x ≡ₚ)" := (Permutation x) (only parsing) : C_scope.
Notation "(≡ₚ x )" := (λ y, y  x) (only parsing) : C_scope.
Notation "(≢ₚ)" := (λ x y, ¬x  y) (only parsing) : C_scope.
Notation "x ≢ₚ y":= (¬x  y) (at level 70, no associativity) : C_scope.
Notation "( x ≢ₚ)" := (λ y, x ≢ₚ y) (only parsing) : C_scope.
Notation "(≢ₚ x )" := (λ y, y ≢ₚ x) (only parsing) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
37 38 39
Instance maybe_cons {A} : Maybe2 (@cons A) := λ l,
  match l with x :: l => Some (x,l) | _ => None end.

40
(** * Definitions *)
41 42 43 44 45 46
(** Setoid equality lifted to lists *)
Inductive list_equiv `{Equiv A} : Equiv (list A) :=
  | nil_equiv : []  []
  | cons_equiv x y l k : x  y  l  k  x :: l  y :: k.
Existing Instance list_equiv.

47 48
(** The operation [l !! i] gives the [i]th element of the list [l], or [None]
in case [i] is out of bounds. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
49
Instance list_lookup {A} : Lookup nat A (list A) :=
50
  fix go i l {struct l} : option A := let _ : Lookup _ _ _ := @go in
51
  match l with
52
  | [] => None | x :: l => match i with 0 => Some x | S i => l !! i end
53
  end.
54 55 56

(** The operation [alter f i l] applies the function [f] to the [i]th element
of [l]. In case [i] is out of bounds, the list is returned unchanged. *)
57 58
Instance list_alter {A} : Alter nat A (list A) := λ f,
  fix go i l {struct l} :=
59 60
  match l with
  | [] => []
61
  | x :: l => match i with 0 => f x :: l | S i => x :: go i l end
62
  end.
63

64 65
(** The operation [<[i:=x]> l] overwrites the element at position [i] with the
value [x]. In case [i] is out of bounds, the list is returned unchanged. *)
66 67 68 69 70 71
Instance list_insert {A} : Insert nat A (list A) :=
  fix go i y l {struct l} := let _ : Insert _ _ _ := @go in
  match l with
  | [] => []
  | x :: l => match i with 0 => y :: l | S i => x :: <[i:=y]>l end
  end.
72 73 74 75 76
Fixpoint list_inserts {A} (i : nat) (k l : list A) : list A :=
  match k with
  | [] => l
  | y :: k => <[i:=y]>(list_inserts (S i) k l)
  end.
77

78 79 80
(** The operation [delete i l] removes the [i]th element of [l] and moves
all consecutive elements one position ahead. In case [i] is out of bounds,
the list is returned unchanged. *)
81 82
Instance list_delete {A} : Delete nat (list A) :=
  fix go (i : nat) (l : list A) {struct l} : list A :=
83 84
  match l with
  | [] => []
85
  | x :: l => match i with 0 => l | S i => x :: @delete _ _ go i l end
86
  end.
87 88 89

(** The function [option_list o] converts an element [Some x] into the
singleton list [[x]], and [None] into the empty list [[]]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
90
Definition option_list {A} : option A  list A := option_rect _ (λ x, [x]) [].
91 92
Definition list_singleton {A} (l : list A) : option A :=
  match l with [x] => Some x | _ => None end.
Robbert Krebbers's avatar
Robbert Krebbers committed
93 94 95 96

(** The function [filter P l] returns the list of elements of [l] that
satisfies [P]. The order remains unchanged. *)
Instance list_filter {A} : Filter A (list A) :=
97
  fix go P _ l := let _ : Filter _ _ := @go in
Robbert Krebbers's avatar
Robbert Krebbers committed
98 99
  match l with
  | [] => []
100
  | x :: l => if decide (P x) then x :: filter P l else filter P l
101 102 103 104
  end.

(** The function [list_find P l] returns the first index [i] whose element
satisfies the predicate [P]. *)
105
Definition list_find {A} P `{ x, Decision (P x)} : list A  option (nat * A) :=
106 107
  fix go l :=
  match l with
108 109
  | [] => None
  | x :: l => if decide (P x) then Some (0,x) else prod_map S id <$> go l
110
  end.
Robbert Krebbers's avatar
Robbert Krebbers committed
111 112 113 114

(** The function [replicate n x] generates a list with length [n] of elements
with value [x]. *)
Fixpoint replicate {A} (n : nat) (x : A) : list A :=
115
  match n with 0 => [] | S n => x :: replicate n x end.
Robbert Krebbers's avatar
Robbert Krebbers committed
116 117 118 119

(** The function [reverse l] returns the elements of [l] in reverse order. *)
Definition reverse {A} (l : list A) : list A := rev_append l [].

120 121 122 123
(** The function [last l] returns the last element of the list [l], or [None]
if the list [l] is empty. *)
Fixpoint last {A} (l : list A) : option A :=
  match l with [] => None | [x] => Some x | _ :: l => last l end.
124

Robbert Krebbers's avatar
Robbert Krebbers committed
125 126 127 128 129 130
(** The function [resize n y l] takes the first [n] elements of [l] in case
[length l ≤ n], and otherwise appends elements with value [x] to [l] to obtain
a list of length [n]. *)
Fixpoint resize {A} (n : nat) (y : A) (l : list A) : list A :=
  match l with
  | [] => replicate n y
131
  | x :: l => match n with 0 => [] | S n => x :: resize n y l end
Robbert Krebbers's avatar
Robbert Krebbers committed
132 133 134
  end.
Arguments resize {_} !_ _ !_.

135 136 137
(** The function [reshape k l] transforms [l] into a list of lists whose sizes
are specified by [k]. In case [l] is too short, the resulting list will be
padded with empty lists. In case [l] is too long, it will be truncated. *)
138 139
Fixpoint reshape {A} (szs : list nat) (l : list A) : list (list A) :=
  match szs with
140
  | [] => [] | sz :: szs => take sz l :: reshape szs (drop sz l)
141 142
  end.

143
Definition sublist_lookup {A} (i n : nat) (l : list A) : option (list A) :=
144 145 146 147
  guard (i + n  length l); Some (take n (drop i l)).
Definition sublist_alter {A} (f : list A  list A)
    (i n : nat) (l : list A) : list A :=
  take i l ++ f (take n (drop i l)) ++ drop (i + n) l.
148

149 150 151 152
(** Functions to fold over a list. We redefine [foldl] with the arguments in
the same order as in Haskell. *)
Notation foldr := fold_right.
Definition foldl {A B} (f : A  B  A) : A  list B  A :=
153
  fix go a l := match l with [] => a | x :: l => go (f a x) l end.
154 155 156

(** The monadic operations. *)
Instance list_ret: MRet list := λ A x, x :: @nil A.
157 158
Instance list_fmap : FMap list := λ A B f,
  fix go (l : list A) := match l with [] => [] | x :: l => f x :: go l end.
159 160 161 162 163 164
Instance list_omap : OMap list := λ A B f,
  fix go (l : list A) :=
  match l with
  | [] => []
  | x :: l => match f x with Some y => y :: go l | None => go l end
  end.
165 166
Instance list_bind : MBind list := λ A B f,
  fix go (l : list A) := match l with [] => [] | x :: l => f x ++ go l end.
167 168
Instance list_join: MJoin list :=
  fix go A (ls : list (list A)) : list A :=
169
  match ls with [] => [] | l :: ls => l ++ @mjoin _ go _ ls end.
170
Definition mapM `{MBind M, MRet M} {A B} (f : A  M B) : list A  M (list B) :=
171
  fix go l :=
172
  match l with [] => mret [] | x :: l => y  f x; k  go l; mret (y :: k) end.
173 174 175 176 177

(** We define stronger variants of map and fold that allow the mapped
function to use the index of the elements. *)
Definition imap_go {A B} (f : nat  A  B) : nat  list A  list B :=
  fix go (n : nat) (l : list A) :=
178
  match l with [] => [] | x :: l => f n x :: go (S n) l end.
179
Definition imap {A B} (f : nat  A  B) : list A  list B := imap_go f 0.
180 181 182 183
Definition zipped_map {A B} (f : list A  list A  A  B) :
  list A  list A  list B := fix go l k :=
  match k with [] => [] | x :: k => f l k x :: go (x :: l) k end.

Robbert Krebbers's avatar
Robbert Krebbers committed
184 185 186 187 188 189 190 191 192
Definition imap2_go {A B C} (f : nat  A  B  C) :
    nat  list A  list B  list C:=
  fix go (n : nat) (l : list A) (k : list B) :=
  match l, k with
  | [], _ |_, [] => [] | x :: l, y :: k => f n x y :: go (S n) l k
  end.
Definition imap2 {A B C} (f : nat  A  B  C) :
  list A  list B  list C := imap2_go f 0.

193 194 195 196 197 198 199
Inductive zipped_Forall {A} (P : list A  list A  A  Prop) :
    list A  list A  Prop :=
  | zipped_Forall_nil l : zipped_Forall P l []
  | zipped_Forall_cons l k x :
     P l k x  zipped_Forall P (x :: l) k  zipped_Forall P l (x :: k).
Arguments zipped_Forall_nil {_ _} _.
Arguments zipped_Forall_cons {_ _} _ _ _ _ _.
200

201 202 203 204 205 206 207
(** The function [mask f βs l] applies the function [f] to elements in [l] at
positions that are [true] in [βs]. *)
Fixpoint mask {A} (f : A  A) (βs : list bool) (l : list A) : list A :=
  match βs, l with
  | β :: βs, x :: l => (if β then f x else x) :: mask f βs l
  | _, _ => l
  end.
208 209 210 211

(** The function [permutations l] yields all permutations of [l]. *)
Fixpoint interleave {A} (x : A) (l : list A) : list (list A) :=
  match l with
212
  | [] => [[x]]| y :: l => (x :: y :: l) :: ((y ::) <$> interleave x l)
213 214
  end.
Fixpoint permutations {A} (l : list A) : list (list A) :=
215
  match l with [] => [[]] | x :: l => permutations l = interleave x end.
216

217 218
(** The predicate [suffix_of] holds if the first list is a suffix of the second.
The predicate [prefix_of] holds if the first list is a prefix of the second. *)
219 220
Definition suffix_of {A} : relation (list A) := λ l1 l2,  k, l2 = k ++ l1.
Definition prefix_of {A} : relation (list A) := λ l1 l2,  k, l2 = l1 ++ k.
221 222
Infix "`suffix_of`" := suffix_of (at level 70) : C_scope.
Infix "`prefix_of`" := prefix_of (at level 70) : C_scope.
223 224
Hint Extern 0 (_ `prefix_of` _) => reflexivity.
Hint Extern 0 (_ `suffix_of` _) => reflexivity.
Robbert Krebbers's avatar
Robbert Krebbers committed
225

226 227 228 229 230 231 232 233
Section prefix_suffix_ops.
  Context `{ x y : A, Decision (x = y)}.
  Definition max_prefix_of : list A  list A  list A * list A * list A :=
    fix go l1 l2 :=
    match l1, l2 with
    | [], l2 => ([], l2, [])
    | l1, [] => (l1, [], [])
    | x1 :: l1, x2 :: l2 =>
234
      if decide_rel (=) x1 x2
235
      then prod_map id (x1 ::) (go l1 l2) else (x1 :: l1, x2 :: l2, [])
236 237 238 239 240
    end.
  Definition max_suffix_of (l1 l2 : list A) : list A * list A * list A :=
    match max_prefix_of (reverse l1) (reverse l2) with
    | (k1, k2, k3) => (reverse k1, reverse k2, reverse k3)
    end.
241 242
  Definition strip_prefix (l1 l2 : list A) := (max_prefix_of l1 l2).1.2.
  Definition strip_suffix (l1 l2 : list A) := (max_suffix_of l1 l2).1.2.
243
End prefix_suffix_ops.
Robbert Krebbers's avatar
Robbert Krebbers committed
244

245
(** A list [l1] is a sublist of [l2] if [l2] is obtained by removing elements
246 247 248
from [l1] without changing the order. *)
Inductive sublist {A} : relation (list A) :=
  | sublist_nil : sublist [] []
249
  | sublist_skip x l1 l2 : sublist l1 l2  sublist (x :: l1) (x :: l2)
250
  | sublist_cons x l1 l2 : sublist l1 l2  sublist l1 (x :: l2).
251
Infix "`sublist`" := sublist (at level 70) : C_scope.
252
Hint Extern 0 (_ `sublist` _) => reflexivity.
253 254

(** A list [l2] contains a list [l1] if [l2] is obtained by removing elements
255
from [l1] while possiblity changing the order. *)
256 257 258 259
Inductive contains {A} : relation (list A) :=
  | contains_nil : contains [] []
  | contains_skip x l1 l2 : contains l1 l2  contains (x :: l1) (x :: l2)
  | contains_swap x y l : contains (y :: x :: l) (x :: y :: l)
260
  | contains_cons x l1 l2 : contains l1 l2  contains l1 (x :: l2)
261 262
  | contains_trans l1 l2 l3 : contains l1 l2  contains l2 l3  contains l1 l3.
Infix "`contains`" := contains (at level 70) : C_scope.
263
Hint Extern 0 (_ `contains` _) => reflexivity.
264 265 266 267 268 269 270 271 272 273

Section contains_dec_help.
  Context {A} {dec :  x y : A, Decision (x = y)}.
  Fixpoint list_remove (x : A) (l : list A) : option (list A) :=
    match l with
    | [] => None
    | y :: l => if decide (x = y) then Some l else (y ::) <$> list_remove x l
    end.
  Fixpoint list_remove_list (k : list A) (l : list A) : option (list A) :=
    match k with
274
    | [] => Some l | x :: k => list_remove x l = list_remove_list k
275 276
    end.
End contains_dec_help.
277

278 279 280 281 282
Inductive Forall3 {A B C} (P : A  B  C  Prop) :
     list A  list B  list C  Prop :=
  | Forall3_nil : Forall3 P [] [] []
  | Forall3_cons x y z l k k' :
     P x y z  Forall3 P l k k'  Forall3 P (x :: l) (y :: k) (z :: k').
283 284

(** Set operations on lists *)
285 286 287
Definition included {A} (l1 l2 : list A) :=  x, x  l1  x  l2.
Infix "`included`" := included (at level 70) : C_scope.

288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
Section list_set.
  Context {A} {dec :  x y : A, Decision (x = y)}.
  Global Instance elem_of_list_dec {dec :  x y : A, Decision (x = y)}
    (x : A) :  l, Decision (x  l).
  Proof.
   refine (
    fix go l :=
    match l return Decision (x  l) with
    | [] => right _
    | y :: l => cast_if_or (decide (x = y)) (go l)
    end); clear go dec; subst; try (by constructor); abstract by inversion 1.
  Defined.
  Fixpoint remove_dups (l : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x l then remove_dups l else x :: remove_dups l
    end.
  Fixpoint list_difference (l k : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x k
311
      then list_difference l k else x :: list_difference l k
312
    end.
313
  Definition list_union (l k : list A) : list A := list_difference l k ++ k.
314 315 316 317 318
  Fixpoint list_intersection (l k : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x k
319
      then x :: list_intersection l k else list_intersection l k
320 321 322 323 324 325 326 327 328
    end.
  Definition list_intersection_with (f : A  A  option A) :
    list A  list A  list A := fix go l k :=
    match l with
    | [] => []
    | x :: l => foldr (λ y,
        match f x y with None => id | Some z => (z ::) end) (go l k) k
    end.
End list_set.
329 330

(** * Basic tactics on lists *)
331
(** The tactic [discriminate_list] discharges a goal if it contains
332 333
a list equality involving [(::)] and [(++)] of two lists that have a different
length as one of its hypotheses. *)
334
Tactic Notation "discriminate_list" hyp(H) :=
335
  apply (f_equal length) in H;
336
  repeat (csimpl in H || rewrite app_length in H); exfalso; lia.
337 338
Tactic Notation "discriminate_list" :=
  match goal with H : @eq (list _) _ _ |- _ => discriminate_list H end.
339

340
(** The tactic [simplify_list_eq] simplifies hypotheses involving
341 342
equalities on lists using injectivity of [(::)] and [(++)]. Also, it simplifies
lookups in singleton lists. *)
343
Lemma app_inj_1 {A} (l1 k1 l2 k2 : list A) :
344 345
  length l1 = length k1  l1 ++ l2 = k1 ++ k2  l1 = k1  l2 = k2.
Proof. revert k1. induction l1; intros [|??]; naive_solver. Qed.
346
Lemma app_inj_2 {A} (l1 k1 l2 k2 : list A) :
347 348
  length l2 = length k2  l1 ++ l2 = k1 ++ k2  l1 = k1  l2 = k2.
Proof.
349
  intros ? Hl. apply app_inj_1; auto.
350 351
  apply (f_equal length) in Hl. rewrite !app_length in Hl. lia.
Qed.
352
Ltac simplify_list_eq :=
353
  repeat match goal with
354
  | _ => progress simplify_eq/=
355
  | H : _ ++ _ = _ ++ _ |- _ => first
356
    [ apply app_inv_head in H | apply app_inv_tail in H
357 358
    | apply app_inj_1 in H; [destruct H|done]
    | apply app_inj_2 in H; [destruct H|done] ]
Robbert Krebbers's avatar
Robbert Krebbers committed
359
  | H : [?x] !! ?i = Some ?y |- _ =>
360
    destruct i; [change (Some x = Some y) in H | discriminate]
361
  end.
362

363 364
(** * General theorems *)
Section general_properties.
Robbert Krebbers's avatar
Robbert Krebbers committed
365
Context {A : Type}.
366 367
Implicit Types x y z : A.
Implicit Types l k : list A.
Robbert Krebbers's avatar
Robbert Krebbers committed
368

369 370 371 372 373
Section setoid.
  Context `{Equiv A} `{!Equivalence (() : relation A)}.
  Global Instance map_equivalence : Equivalence (() : relation (list A)).
  Proof.
    split.
374 375 376
    - intros l; induction l; constructor; auto.
    - induction 1; constructor; auto.
    - intros l1 l2 l3 Hl; revert l3.
377
      induction Hl; inversion_clear 1; constructor; try etrans; eauto.
378 379 380 381 382 383 384 385 386
  Qed.
  Global Instance cons_proper : Proper (() ==> () ==> ()) (@cons A).
  Proof. by constructor. Qed.
  Global Instance app_proper : Proper (() ==> () ==> ()) (@app A).
  Proof.
    induction 1 as [|x y l k ?? IH]; intros ?? Htl; simpl; auto.
    by apply cons_equiv, IH.
  Qed.
  Global Instance list_leibniz `{!LeibnizEquiv A} : LeibnizEquiv (list A).
387
  Proof. induction 1; f_equal; fold_leibniz; auto. Qed.
388 389
End setoid.

390
Global Instance: Inj2 (=) (=) (=) (@cons A).
391
Proof. by injection 1. Qed.
392
Global Instance:  k, Inj (=) (=) (k ++).
393
Proof. intros ???. apply app_inv_head. Qed.
394
Global Instance:  k, Inj (=) (=) (++ k).
395
Proof. intros ???. apply app_inv_tail. Qed.
396
Global Instance: Assoc (=) (@app A).
397 398 399 400 401
Proof. intros ???. apply app_assoc. Qed.
Global Instance: LeftId (=) [] (@app A).
Proof. done. Qed.
Global Instance: RightId (=) [] (@app A).
Proof. intro. apply app_nil_r. Qed.
402

403
Lemma app_nil l1 l2 : l1 ++ l2 = []  l1 = []  l2 = [].
404
Proof. split. apply app_eq_nil. by intros [-> ->]. Qed.
405 406
Lemma app_singleton l1 l2 x :
  l1 ++ l2 = [x]  l1 = []  l2 = [x]  l1 = [x]  l2 = [].
407
Proof. split. apply app_eq_unit. by intros [[-> ->]|[-> ->]]. Qed.
408 409 410
Lemma cons_middle x l1 l2 : l1 ++ x :: l2 = l1 ++ [x] ++ l2.
Proof. done. Qed.
Lemma list_eq l1 l2 : ( i, l1 !! i = l2 !! i)  l1 = l2.
411 412
Proof.
  revert l2. induction l1; intros [|??] H.
413 414 415 416
  - done.
  - discriminate (H 0).
  - discriminate (H 0).
  - f_equal; [by injection (H 0)|]. apply (IHl1 _ $ λ i, H (S i)).
417
Qed.
418
Global Instance list_eq_dec {dec :  x y, Decision (x = y)} :  l k,
419
  Decision (l = k) := list_eq_dec dec.
420 421 422 423 424 425 426 427
Global Instance list_eq_nil_dec l : Decision (l = []).
Proof. by refine match l with [] => left _ | _ => right _ end. Defined.
Lemma list_singleton_reflect l :
  option_reflect (λ x, l = [x]) (length l  1) (list_singleton l).
Proof. by destruct l as [|? []]; constructor. Defined.

Definition nil_length : length (@nil A) = 0 := eq_refl.
Definition cons_length x l : length (x :: l) = S (length l) := eq_refl.
428
Lemma nil_or_length_pos l : l = []  length l  0.
429
Proof. destruct l; simpl; auto with lia. Qed.
430
Lemma nil_length_inv l : length l = 0  l = [].
431 432
Proof. by destruct l. Qed.
Lemma lookup_nil i : @nil A !! i = None.
433
Proof. by destruct i. Qed.
434
Lemma lookup_tail l i : tail l !! i = l !! S i.
435
Proof. by destruct l. Qed.
436 437
Lemma lookup_lt_Some l i x : l !! i = Some x  i < length l.
Proof.
438
  revert i. induction l; intros [|?] ?; simplify_eq/=; auto with arith.
439 440 441 442 443
Qed.
Lemma lookup_lt_is_Some_1 l i : is_Some (l !! i)  i < length l.
Proof. intros [??]; eauto using lookup_lt_Some. Qed.
Lemma lookup_lt_is_Some_2 l i : i < length l  is_Some (l !! i).
Proof.
444
  revert i. induction l; intros [|?] ?; simplify_eq/=; eauto with lia.
445 446 447 448 449 450 451 452 453
Qed.
Lemma lookup_lt_is_Some l i : is_Some (l !! i)  i < length l.
Proof. split; auto using lookup_lt_is_Some_1, lookup_lt_is_Some_2. Qed.
Lemma lookup_ge_None l i : l !! i = None  length l  i.
Proof. rewrite eq_None_not_Some, lookup_lt_is_Some. lia. Qed.
Lemma lookup_ge_None_1 l i : l !! i = None  length l  i.
Proof. by rewrite lookup_ge_None. Qed.
Lemma lookup_ge_None_2 l i : length l  i  l !! i = None.
Proof. by rewrite lookup_ge_None. Qed.
454 455 456
Lemma list_eq_same_length l1 l2 n :
  length l2 = n  length l1 = n 
  ( i x y, i < n  l1 !! i = Some x  l2 !! i = Some y  x = y)  l1 = l2.
Robbert Krebbers's avatar
Robbert Krebbers committed
457
Proof.
458
  intros <- Hlen Hl; apply list_eq; intros i. destruct (l2 !! i) as [x|] eqn:Hx.
459
  - destruct (lookup_lt_is_Some_2 l1 i) as [y Hy].
460 461
    { rewrite Hlen; eauto using lookup_lt_Some. }
    rewrite Hy; f_equal; apply (Hl i); eauto using lookup_lt_Some.
462
  - by rewrite lookup_ge_None, Hlen, <-lookup_ge_None.
Robbert Krebbers's avatar
Robbert Krebbers committed
463
Qed.
464
Lemma lookup_app_l l1 l2 i : i < length l1  (l1 ++ l2) !! i = l1 !! i.
465
Proof. revert i. induction l1; intros [|?]; simpl; auto with lia. Qed.
466 467
Lemma lookup_app_l_Some l1 l2 i x : l1 !! i = Some x  (l1 ++ l2) !! i = Some x.
Proof. intros. rewrite lookup_app_l; eauto using lookup_lt_Some. Qed.
468
Lemma lookup_app_r l1 l2 i :
469
  length l1  i  (l1 ++ l2) !! i = l2 !! (i - length l1).
470 471 472 473 474 475
Proof. revert i. induction l1; intros [|?]; simpl; auto with lia. Qed.
Lemma lookup_app_Some l1 l2 i x :
  (l1 ++ l2) !! i = Some x 
    l1 !! i = Some x  length l1  i  l2 !! (i - length l1) = Some x.
Proof.
  split.
476
  - revert i. induction l1 as [|y l1 IH]; intros [|i] ?;
477
      simplify_eq/=; auto with lia.
478
    destruct (IH i) as [?|[??]]; auto with lia.
479
  - intros [?|[??]]; auto using lookup_app_l_Some. by rewrite lookup_app_r.
480
Qed.
481 482 483
Lemma list_lookup_middle l1 l2 x n :
  n = length l1  (l1 ++ x :: l2) !! n = Some x.
Proof. intros ->. by induction l1. Qed.
484

485
Lemma list_insert_alter l i x : <[i:=x]>l = alter (λ _, x) i l.
486
Proof. by revert i; induction l; intros []; intros; f_equal/=. Qed.
487
Lemma alter_length f l i : length (alter f i l) = length l.
488
Proof. revert i. by induction l; intros [|?]; f_equal/=. Qed.
489
Lemma insert_length l i x : length (<[i:=x]>l) = length l.
490
Proof. revert i. by induction l; intros [|?]; f_equal/=. Qed.
491
Lemma list_lookup_alter f l i : alter f i l !! i = f <$> l !! i.
492
Proof. revert i. induction l. done. intros [|i]. done. apply (IHl i). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
493
Lemma list_lookup_alter_ne f l i j : i  j  alter f i l !! j = l !! j.
494
Proof.
495
  revert i j. induction l; [done|]. intros [][] ?; csimpl; auto with congruence.
496
Qed.
497
Lemma list_lookup_insert l i x : i < length l  <[i:=x]>l !! i = Some x.
498
Proof. revert i. induction l; intros [|?] ?; f_equal/=; auto with lia. Qed.
499
Lemma list_lookup_insert_ne l i j x : i  j  <[i:=x]>l !! j = l !! j.
500
Proof.
501
  revert i j. induction l; [done|]. intros [] [] ?; simpl; auto with congruence.
502
Qed.
503 504 505 506 507 508
Lemma list_lookup_insert_Some l i x j y :
  <[i:=x]>l !! j = Some y 
    i = j  x = y  j < length l  i  j  l !! j = Some y.
Proof.
  destruct (decide (i = j)) as [->|];
    [split|rewrite list_lookup_insert_ne by done; tauto].
509
  - intros Hy. assert (j < length l).
510 511
    { rewrite <-(insert_length l j x); eauto using lookup_lt_Some. }
    rewrite list_lookup_insert in Hy by done; naive_solver.
512
  - intros [(?&?&?)|[??]]; rewrite ?list_lookup_insert; naive_solver.
513 514 515
Qed.
Lemma list_insert_commute l i j x y :
  i  j  <[i:=x]>(<[j:=y]>l) = <[j:=y]>(<[i:=x]>l).
516
Proof. revert i j. by induction l; intros [|?] [|?] ?; f_equal/=; auto. Qed.
517 518
Lemma list_lookup_other l i x :
  length l  1  l !! i = Some x   j y, j  i  l !! j = Some y.
Robbert Krebbers's avatar
Robbert Krebbers committed
519
Proof.
520
  intros. destruct i, l as [|x0 [|x1 l]]; simplify_eq/=.
521 522
  - by exists 1, x1.
  - by exists 0, x0.
Robbert Krebbers's avatar
Robbert Krebbers committed
523
Qed.
524 525
Lemma alter_app_l f l1 l2 i :
  i < length l1  alter f i (l1 ++ l2) = alter f i l1 ++ l2.
526
Proof. revert i. induction l1; intros [|?] ?; f_equal/=; auto with lia. Qed.
527
Lemma alter_app_r f l1 l2 i :
528
  alter f (length l1 + i) (l1 ++ l2) = l1 ++ alter f i l2.
529
Proof. revert i. induction l1; intros [|?]; f_equal/=; auto. Qed.
530 531
Lemma alter_app_r_alt f l1 l2 i :
  length l1  i  alter f i (l1 ++ l2) = l1 ++ alter f (i - length l1) l2.
532 533 534 535
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply alter_app_r.
Qed.
536
Lemma list_alter_id f l i : ( x, f x = x)  alter f i l = l.
537
Proof. intros ?. revert i. induction l; intros [|?]; f_equal/=; auto. Qed.
538 539
Lemma list_alter_ext f g l k i :
  ( x, l !! i = Some x  f x = g x)  l = k  alter f i l = alter g i k.
540
Proof. intros H ->. revert i H. induction k; intros [|?] ?; f_equal/=; auto. Qed.
541 542
Lemma list_alter_compose f g l i :
  alter (f  g) i l = alter f i (alter g i l).
543
Proof. revert i. induction l; intros [|?]; f_equal/=; auto. Qed.
544 545
Lemma list_alter_commute f g l i j :
  i  j  alter f i (alter g j l) = alter g j (alter f i l).
546
Proof. revert i j. induction l; intros [|?][|?] ?; f_equal/=; auto with lia. Qed.
547 548
Lemma insert_app_l l1 l2 i x :
  i < length l1  <[i:=x]>(l1 ++ l2) = <[i:=x]>l1 ++ l2.
549
Proof. revert i. induction l1; intros [|?] ?; f_equal/=; auto with lia. Qed.
550
Lemma insert_app_r l1 l2 i x : <[length l1+i:=x]>(l1 ++ l2) = l1 ++ <[i:=x]>l2.
551
Proof. revert i. induction l1; intros [|?]; f_equal/=; auto. Qed.
552 553
Lemma insert_app_r_alt l1 l2 i x :
  length l1  i  <[i:=x]>(l1 ++ l2) = l1 ++ <[i - length l1:=x]>l2.
554 555 556 557
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply insert_app_r.
Qed.
558
Lemma delete_middle l1 l2 x : delete (length l1) (l1 ++ x :: l2) = l1 ++ l2.
559
Proof. induction l1; f_equal/=; auto. Qed.
560

561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
Lemma inserts_length l i k : length (list_inserts i k l) = length l.
Proof.
  revert i. induction k; intros ?; csimpl; rewrite ?insert_length; auto.
Qed.
Lemma list_lookup_inserts l i k j :
  i  j < i + length k  j < length l 
  list_inserts i k l !! j = k !! (j - i).
Proof.
  revert i j. induction k as [|y k IH]; csimpl; intros i j ??; [lia|].
  destruct (decide (i = j)) as [->|].
  { by rewrite list_lookup_insert, Nat.sub_diag
      by (rewrite inserts_length; lia). }
  rewrite list_lookup_insert_ne, IH by lia.
  by replace (j - i) with (S (j - S i)) by lia.
Qed.
Lemma list_lookup_inserts_lt l i k j :
  j < i  list_inserts i k l !! j = l !! j.
Proof.
  revert i j. induction k; intros i j ?; csimpl;
    rewrite ?list_lookup_insert_ne by lia; auto with lia.
Qed.
Lemma list_lookup_inserts_ge l i k j :
  i + length k  j  list_inserts i k l !! j = l !! j.
Proof.
  revert i j. induction k; csimpl; intros i j ?;
    rewrite ?list_lookup_insert_ne by lia; auto with lia.
Qed.
Lemma list_lookup_inserts_Some l i k j y :
  list_inserts i k l !! j = Some y 
    (j < i  i + length k  j)  l !! j = Some y 
    i  j < i + length k  j < length l  k !! (j - i) = Some y.
Proof.
  destruct (decide (j < i)).
  { rewrite list_lookup_inserts_lt by done; intuition lia. }
  destruct (decide (i + length k  j)).
  { rewrite list_lookup_inserts_ge by done; intuition lia. }
  split.
598
  - intros Hy. assert (j < length l).
599 600
    { rewrite <-(inserts_length l i k); eauto using lookup_lt_Some. }
    rewrite list_lookup_inserts in Hy by lia. intuition lia.
601
  - intuition. by rewrite list_lookup_inserts by lia.
602 603 604 605 606 607 608 609
Qed.
Lemma list_insert_inserts_lt l i j x k :
  i < j  <[i:=x]>(list_inserts j k l) = list_inserts j k (<[i:=x]>l).
Proof.
  revert i j. induction k; intros i j ?; simpl;
    rewrite 1?list_insert_commute by lia; auto with f_equal.
Qed.

610
(** ** Properties of the [elem_of] predicate *)
611
Lemma not_elem_of_nil x : x  [].
612
Proof. by inversion 1. Qed.
613
Lemma elem_of_nil x : x  []  False.
614
Proof. intuition. by destruct (not_elem_of_nil x). Qed.
615
Lemma elem_of_nil_inv l : ( x, x  l)  l = [].
616
Proof. destruct l. done. by edestruct 1; constructor. Qed.
617 618
Lemma elem_of_not_nil x l : x  l  l  [].
Proof. intros ? ->. by apply (elem_of_nil x). Qed.
619
Lemma elem_of_cons l x y : x  y :: l  x = y  x  l.
Robbert Krebbers's avatar
Robbert Krebbers committed
620
Proof. by split; [inversion 1; subst|intros [->|?]]; constructor. Qed.
621
Lemma not_elem_of_cons l x y : x  y :: l  x  y  x  l.
Robbert Krebbers's avatar
Robbert Krebbers committed
622
Proof. rewrite elem_of_cons. tauto. Qed.
623
Lemma elem_of_app l1 l2 x : x  l1 ++ l2  x  l1  x  l2.
624
Proof.
625
  induction l1.
626 627
  - split; [by right|]. intros [Hx|]; [|done]. by destruct (elem_of_nil x).
  - simpl. rewrite !elem_of_cons, IHl1. tauto.
628
Qed.
629
Lemma not_elem_of_app l1 l2 x : x  l1 ++ l2  x  l1  x  l2.
Robbert Krebbers's avatar
Robbert Krebbers committed
630
Proof. rewrite elem_of_app. tauto. Qed.
631
Lemma elem_of_list_singleton x y : x  [y]  x = y.
632
Proof. rewrite elem_of_cons, elem_of_nil. tauto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
633
Global Instance elem_of_list_permutation_proper x : Proper (() ==> iff) (x ).
634
Proof. induction 1; rewrite ?elem_of_nil, ?elem_of_cons; intuition. Qed.
635
Lemma elem_of_list_split l x : x  l   l1 l2, l = l1 ++ x :: l2.
636
Proof.
637
  induction 1 as [x l|x y l ? [l1 [l2 ->]]]; [by eexists [], l|].
638
  by exists (y :: l1), l2.
639
Qed.
640
Lemma elem_of_list_lookup_1 l x : x  l   i, l !! i = Some x.
641
Proof.
642 643
  induction 1 as [|???? IH]; [by exists 0 |].
  destruct IH as [i ?]; auto. by exists (S i).
644
Qed.
645
Lemma elem_of_list_lookup_2 l i x : l !! i = Some x  x  l.
646
Proof.
647
  revert i. induction l; intros [|i] ?; simplify_eq/=; constructor; eauto.
648
Qed.
649 650
Lemma elem_of_list_lookup l x : x  l   i, l !! i = Some x.
Proof. firstorder eauto using elem_of_list_lookup_1, elem_of_list_lookup_2. Qed.
651 652 653 654
Lemma elem_of_list_omap {B} (f : A  option B) l (y : B) :
  y  omap f l   x, x  l  f x = Some y.
Proof.
  split.
655
  - induction l as [|x l]; csimpl; repeat case_match; inversion 1; subst;
656
      setoid_rewrite elem_of_cons; naive_solver.
657
  - intros (x&Hx&?). by induction Hx; csimpl; repeat case_match;
658
      simplify_eq; try constructor; auto.
659
Qed.
660

661
(** ** Properties of the [NoDup] predicate *)
662 663
Lemma NoDup_nil : NoDup (@nil A)  True.
Proof. split; constructor. Qed.
664
Lemma NoDup_cons x l : NoDup (x :: l)  x  l  NoDup l.
665
Proof. split. by inversion 1. intros [??]. by constructor. Qed.
666
Lemma NoDup_cons_11 x l : NoDup (x :: l)  x  l.
667
Proof. rewrite NoDup_cons. by intros [??]. Qed.
668
Lemma NoDup_cons_12 x l : NoDup (x :: l)  NoDup l.
669
Proof. rewrite NoDup_cons. by intros [??]. Qed.
670
Lemma NoDup_singleton x : NoDup [x].
671
Proof. constructor. apply not_elem_of_nil. constructor. Qed.
672
Lemma NoDup_app l k : NoDup (l ++ k)  NoDup l  ( x, x  l  x  k)  NoDup k.
Robbert Krebbers's avatar
Robbert Krebbers committed
673
Proof.
674
  induction l; simpl.
675 676
  - rewrite NoDup_nil. setoid_rewrite elem_of_nil. naive_solver.
  - rewrite !NoDup_cons.
Robbert Krebbers's avatar
Robbert Krebbers committed
677
    setoid_rewrite elem_of_cons. setoid_rewrite elem_of_app. naive_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
678
Qed.
679
Global Instance NoDup_proper: Proper (() ==> iff) (@NoDup A).
680 681
Proof.
  induction 1 as [|x l k Hlk IH | |].
682 683 684 685
  - by rewrite !NoDup_nil.
  - by rewrite !NoDup_cons, IH, Hlk.
  - rewrite !NoDup_cons, !elem_of_cons. intuition.
  - intuition.
686
Qed.
687 688
Lemma NoDup_lookup l i j x :
  NoDup l  l !! i = Some x  l !! j = Some x  i = j.
689 690
Proof.
  intros Hl. revert i j. induction Hl as [|x' l Hx Hl IH].
691 692
  { intros; simplify_eq. }
  intros [|i] [|j] ??; simplify_eq/=; eauto with f_equal;
693 694
    exfalso; eauto using elem_of_list_lookup_2.
Qed.
695 696
Lemma NoDup_alt l :
  NoDup l   i j x, l !! i = Some x  l !! j = Some x  i = j.
697
Proof.
698 699
  split; eauto using NoDup_lookup.
  induction l as [|x l IH]; intros Hl; constructor.
700
  - rewrite elem_of_list_lookup. intros [i ?].
701
    by feed pose proof (Hl (S i) 0 x); auto.
702
  - apply IH. intros i j x' ??. by apply (inj S), (Hl (S i) (S j) x').
703
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
704

705 706 707 708 709 710
Section no_dup_dec.
  Context `{! x y, Decision (x = y)}.
  Global Instance NoDup_dec:  l, Decision (NoDup l) :=
    fix NoDup_dec l :=
    match l return Decision (NoDup l) with
    | [] => left NoDup_nil_2
711
    | x :: l =>
712 713 714 715 716 717 718 719
      match decide_rel () x l with
      | left Hin => right (λ H, NoDup_cons_11 _ _ H Hin)
      | right Hin =>
        match NoDup_dec l with
        | left H => left (NoDup_cons_2 _ _ Hin H)
        | right H => right (H  NoDup_cons_12 _ _)
        end
      end
720
    end.
721
  Lemma elem_of_remove_dups l x : x  remove_dups l  x  l.
722 723
  Proof.
    split; induction l; simpl; repeat case_decide;
724
      rewrite ?elem_of_cons; intuition (simplify_eq; auto).
725
  Qed.
726
  Lemma NoDup_remove_dups l : NoDup (remove_dups l).
727 728 729 730
  Proof.
    induction l; simpl; repeat case_decide; try constructor; auto.
    by rewrite elem_of_remove_dups.
  Qed.
731
End no_dup_dec.
732

733 734 735 736 737 738 739 740 741 742 743
(** ** Set operations on lists *)
Section list_set.
  Context {dec :  x y, Decision (x = y)}.
  Lemma elem_of_list_difference l k x : x  list_difference l k  x  l  x  k.
  Proof.
    split; induction l; simpl; try case_decide;
      rewrite ?elem_of_nil, ?elem_of_cons; intuition congruence.
  Qed.
  Lemma NoDup_list_difference l k : NoDup l  NoDup (list_difference l k).
  Proof.
    induction 1; simpl; try case_decide.
744 745 746
    - constructor.
    - done.
    - constructor. rewrite elem_of_list_difference; intuition. done.
747 748 749 750 751 752 753 754 755
  Qed.
  Lemma elem_of_list_union l k x : x  list_union l k  x  l  x  k.
  Proof.
    unfold list_union. rewrite elem_of_app, elem_of_list_difference.
    intuition. case (decide (x  k)); intuition.
  Qed.
  Lemma NoDup_list_union l k : NoDup l  NoDup k  NoDup (list_union l k).
  Proof.
    intros. apply NoDup_app. repeat split.
756