diff --git a/opam b/opam index 421efdf5e1da0f99249b156aefb16bf9abc22663..4d3fe01d5998ae338b7e9c4c3fc16c8aa5a44a43 100644 --- a/opam +++ b/opam @@ -9,6 +9,6 @@ build: [make "-j%{jobs}%"] install: [make "install"] remove: ["rm" "-rf" "%{lib}%/coq/user-contrib/reloc"] depends: [ - "coq-iris" { (= "dev.2019-06-01.2.88c7fc6d") | (= "dev") } + "coq-iris" { (= "dev.2019-06-03.2.b368c861") | (= "dev") } "coq-autosubst" { = "dev.coq86" } ] diff --git a/theories/examples/coinflip.v b/theories/examples/coinflip.v index 2e9c2fdaa52d5b82828e60d1ea3b8ba8aa6e33b6..5a42d2f84ff4682dcf5a21a4147c31550a544162 100644 --- a/theories/examples/coinflip.v +++ b/theories/examples/coinflip.v @@ -59,8 +59,8 @@ Section proofs. (** Lazy coin (with prophecies) refines eager coin *) Definition I (cl ce : loc) (p : proph_id) := - (∃ vs : list val, proph p vs ∗ - (cl ↦ NONEV ∗ ce ↦ₛ #(val_to_bool vs) + (∃ vs : list (val*val), proph p vs ∗ + (cl ↦ NONEV ∗ ce ↦ₛ #(extract_bool vs) ∨ ∃ (b:bool), cl ↦ SOMEV #b ∗ ce ↦ₛ #b))%I. Lemma coin_lazy'_eager_refinement : @@ -105,12 +105,12 @@ Section proofs. iDestruct 1 as (vs) "[Hp H]". repeat rel_pure_l. iDestruct "H" as "[[Hcl Hce]|H]"; last iDestruct "H" as (x) "[Hcl Hce]"; rel_store_l; repeat rel_pure_l. - + rel_apply_r (refines_rand_r (val_to_bool vs)). + + rel_apply_r (refines_rand_r (extract_bool vs)). rel_store_r. rel_apply_l (refines_release_l with "Hlk Hlocked [-]"). { iExists vs. iFrame. iLeft. iFrame. } iNext. rel_values. - + rel_apply_r (refines_rand_r (val_to_bool vs)). + + rel_apply_r (refines_rand_r (extract_bool vs)). rel_store_r. rel_apply_l (refines_release_l with "Hlk Hlocked [-]"). { iExists vs. iFrame. iLeft. iFrame. } diff --git a/theories/examples/lateearlychoice.v b/theories/examples/lateearlychoice.v index 029080aa263aa1227e226f882ffda1daa71c16ef..226a584806da4ecff473b138b6178e6ab27b4204 100644 --- a/theories/examples/lateearlychoice.v +++ b/theories/examples/lateearlychoice.v @@ -62,9 +62,9 @@ Section proof. iMod ("Hcl" with "[Hy]") as "_"; eauto with iFrame. Qed. - Definition val_to_bool (vs : list val) : bool := + Definition extract_bool (vs : list (val*val)) : bool := match vs with - | LitV (LitBool b)::_ => b + | (_,LitV (LitBool b))::_ => b | _ => true end. @@ -77,7 +77,7 @@ Section proof. rel_rec_l. rel_rec_r. rel_newproph_l vs p as "Hp". repeat rel_pure_l. - rel_apply_r (refines_rand_r (val_to_bool vs)). + rel_apply_r (refines_rand_r (extract_bool vs)). repeat rel_pure_r. iApply (refines_seq lrel_unit). { iApply refines_store. diff --git a/theories/examples/or.v b/theories/examples/or.v index a0562e26d7393deb9e5c862bd02e483ac4ae3417..080b9ff173f33e56d3b8d6ba338cc99428f0378e 100644 --- a/theories/examples/or.v +++ b/theories/examples/or.v @@ -1,6 +1,6 @@ (* ReLoC -- Relational logic for fine-grained concurrency *) (** (In)equational theory of erratic choice operator (`or`). *) -From reloc Require Export reloc lib.Y (* for bot *). +From reloc Require Export reloc lib.Y. (* for bot *) Set Default Proof Using "Type". (** (Binary) non-determinism can be simluated with concurrency. In @@ -221,9 +221,9 @@ Section rules. (** To prove the refinement in the other direction, we instrument our program with prophecies and resolve them when we actually make the choice on the LHS *) - Definition to_choice (vs : list val) : bool := + Definition to_choice (vs : list (val*val)) : bool := match vs with - | LitV (LitInt 0)::_ => true + | (_,LitV (LitInt 0))::_ => true | _ => false end. diff --git a/theories/logic/proofmode/tactics.v b/theories/logic/proofmode/tactics.v index 19869906250e7fb4e99166a28e58cca9366b1b71..683799bf5b9494f866abe0939ed32371351f6782 100644 --- a/theories/logic/proofmode/tactics.v +++ b/theories/logic/proofmode/tactics.v @@ -521,7 +521,7 @@ Tactic Notation "rel_newproph_l_atomic" := rel_apply_l refines_newproph_l. Lemma tac_rel_newproph_l_simpl `{relocG Σ} K ℶ1 ℶ2 e t A : e = fill K NewProph → MaybeIntoLaterNEnvs 1 ℶ1 ℶ2 → - (envs_entails ℶ2 (∀ (vs : list val) (p : proph_id), + (envs_entails ℶ2 (∀ (vs : list (val*val)) (p : proph_id), (proph p vs -∗ refines ⊤ (fill K (of_val #p)) t A))) → envs_entails ℶ1 (refines ⊤ e t A). Proof. diff --git a/theories/logic/rules.v b/theories/logic/rules.v index e77ff8c641fbfdc875aefb08102ab68dd0cb1ab5..e8f213f6bf655884979f96fb12650e09baf44255 100644 --- a/theories/logic/rules.v +++ b/theories/logic/rules.v @@ -335,7 +335,7 @@ Section rules. Qed. Lemma refines_newproph_l K E t A : - (|={⊤,E}=> ▷ (∀ (vs : list val) (p : proph_id), + (|={⊤,E}=> ▷ (∀ (vs : list (val*val)) (p : proph_id), proph p vs -∗ REL fill K (of_val #p) << t @ E : A))%I -∗ REL fill K NewProph << t : A. @@ -349,7 +349,7 @@ Section rules. Lemma refines_resolveproph_l K E (p : proph_id) w t A : (|={⊤,E}=> ∃ vs, ▷ (proph p vs) ∗ - ▷ (∀ (vs' : list val), ⌜vs = w::vs'⌠-∗ + ▷ (∀ (vs' : list (val*val)), ⌜vs = (LitV LitUnit,w)::vs'⌠-∗ proph p vs' -∗ REL fill K (of_val #()) << t @ E : A))%I -∗ REL fill K (ResolveProph #p w) << t : A. diff --git a/theories/logic/spec_rules.v b/theories/logic/spec_rules.v index 78b0437a69de4265b8ca66e9a7926ac6266a13ac..08e4a315bc108e196407dcc60026e02cc328ecbc 100644 --- a/theories/logic/spec_rules.v +++ b/theories/logic/spec_rules.v @@ -134,6 +134,7 @@ Section rules. iExists (<[j:=fill K #()]> tp), σ. rewrite to_tpool_insert'; last eauto. iFrame. iPureIntro. eapply rtc_r, step_insert_no_fork; eauto. econstructor; eauto. + econstructor; eauto. Qed. (** Alloc, load, and store *) @@ -320,4 +321,3 @@ Section rules. Qed. End rules. - diff --git a/theories/prelude/ctx_subst.v b/theories/prelude/ctx_subst.v index 8b633b66defe8cf1503973dbd2d0916b4a69e70e..a69e74e4ae3ed483cd24cfd39543ab17d56d2139 100644 --- a/theories/prelude/ctx_subst.v +++ b/theories/prelude/ctx_subst.v @@ -29,8 +29,9 @@ Fixpoint subst_map_ctx_item (es : stringmap val) (K : ectx_item) | CasRCtx e0 e1 => CasRCtx (subst_map es e0) (subst_map es e1) | FaaLCtx v2 => FaaLCtx v2 | FaaRCtx e1 => FaaRCtx (subst_map es e1) - | ProphLCtx v2 => ProphLCtx v2 - | ProphRCtx e1 => ProphRCtx (subst_map es e1) + | ResolveLCtx Ki v1 v2 => ResolveLCtx (subst_map_ctx_item es Ki) v1 v2 + | ResolveMCtx e0 v2 => ResolveMCtx (subst_map es e0) v2 + | ResolveRCtx e0 e1 => ResolveRCtx (subst_map es e0) (subst_map es e1) end. Definition subst_map_ctx (es : stringmap val) (K : list ectx_item) := @@ -39,7 +40,7 @@ Definition subst_map_ctx (es : stringmap val) (K : list ectx_item) := Lemma subst_map_fill_item (vs : stringmap val) (Ki : ectx_item) (e : expr) : subst_map vs (fill_item Ki e) = fill_item (subst_map_ctx_item vs Ki) (subst_map vs e). -Proof. induction Ki; simpl; eauto. Qed. +Proof. induction Ki; simpl; eauto with f_equal. Qed. Lemma subst_map_fill (vs : stringmap val) (K : list ectx_item) (e : expr) : subst_map vs (fill K e) = fill (subst_map_ctx vs K) (subst_map vs e).