diff --git a/theories/experimental/hocap/counter.v b/theories/experimental/hocap/counter.v index 665d75f6815930825abda502255cfb59b77e25cc..97404a83ccc16f058307f8aa4dfcc8ab494097c9 100644 --- a/theories/experimental/hocap/counter.v +++ b/theories/experimental/hocap/counter.v @@ -1,9 +1,13 @@ +(* ReLoC -- Relational logic for fine-grained concurrency *) +(** HOCAP-style specifications for the concurrent counter *) From reloc Require Export reloc. From reloc.lib Require Export counter. From iris.algebra Require Export auth frac excl. From iris.bi.lib Require Export fractional. From iris.base_logic.lib Require Export auth. +Definition wk_incr : val := λ: "c", "c" <- !"c" + #1. + Class cnt_hocapG Σ := CntG { cnt_hocapG_inG :> authG Σ (optionUR (prodR fracR (agreeR natO))); }. @@ -103,6 +107,35 @@ Section cnt_spec. iModIntro. iExists _; iFrame. iExists _; iSplit; eauto with iFrame. Qed. + Lemma wk_incr_l E c γ K e A q n : + E ## ↑ N → + Cnt c γ -∗ + cnt γ q n -∗ + (cnt_auth γ n ∗ cnt γ q n ={⊤∖↑N, ⊤∖↑N∖E}=∗ + cnt_auth γ (n+1) ∗ cnt γ q (n+1) ∗ REL fill K (of_val #()) << e @ (⊤∖E): A) -∗ + REL fill K (wk_incr c) << e : A. + Proof. + iIntros (?). + iDestruct 1 as (l ->) "#Hcnt". iIntros "Hc Hvs". + rel_rec_l. rel_load_l_atomic. + iInv N as (m) ">[Hl Ha]" "Hcl". iModIntro. + iDestruct (cnt_agree_2 with "Ha Hc") as %->. + iExists #n. iFrame "Hl"; iIntros "!> Hl". + iMod ("Hcl" with "[Hl Ha]") as "_". + { iNext. iExists _; by iFrame. } + rel_pures_l. rel_store_l_atomic. + iMod (inv_acc_strong with "Hcnt") as "[>Hcnt' Hcl]"; first by solve_ndisj. + iDestruct "Hcnt'" as (m) "[Hl Ha]". + iDestruct (cnt_agree_2 with "Ha Hc") as %->. + iModIntro. iExists _. iFrame "Hl". iIntros "!> Hl". + iMod ("Hvs" with "[$Ha $Hc]") as "(Ha & Hc & Href)". + iMod ("Hcl" with "[Ha Hl]") as "_". + { iNext. assert ((Z.of_nat n + 1)%Z = Z.of_nat (n + 1)) as -> by lia. + iExists _. by iFrame. } + assert (⊤ ∖ ↑N ∖ E = ⊤ ∖ E ∖ ↑N) as -> by set_solver. + rewrite -union_difference_L; last set_solver. + done. + Qed. (** This specification for the increment function allows us to 1) derive the "standard" lifting of unary HOCAP specification @@ -148,11 +181,11 @@ Section cnt_spec. Cnt c γ -∗ (∀ n : nat, cnt_auth γ n ={⊤∖↑N, ⊤∖↑N∖E}=∗ cnt_auth γ n ∗ REL fill K (of_val #n) << e @ (⊤∖E): A) -∗ - REL fill K (counter_read c) << e : A. + REL fill K (! c) << e : A. Proof. iIntros (?). iDestruct 1 as (l ->) "#Hcnt". iIntros "Hvs". - rel_rec_l. rel_load_l_atomic. + rel_load_l_atomic. iMod (inv_acc_strong with "Hcnt") as "[>H Hcl]"; first by solve_ndisj. iDestruct "H" as (n) "[Hl Ha]". iModIntro. iExists #n. iFrame "Hl"; iIntros "!> Hl". @@ -211,6 +244,7 @@ Section refinement. REL counter_read c << counter_read #l : interp TNat []. Proof. iIntros "#HCnt #HI". + rel_rec_l. rel_apply_l (cnt_read_l _ (↑N2) with "HCnt"); first by solve_ndisj. iIntros (n) "Ha". iMod (inv_open_cow _ ⊤ with "HI") as "[H Hcl]"; try solve_ndisj.