diff --git a/theories/logic/spec_rules.v b/theories/logic/spec_rules.v index 2d79d34446bba0d49c76bf3305e536c88b3b2ee4..e8d0dbf9fea0b2b26a15886de9eec3bd48207fab 100644 --- a/theories/logic/spec_rules.v +++ b/theories/logic/spec_rules.v @@ -39,18 +39,6 @@ Section rules. erased_step (tp, σ) (<[j:=fill K e']> tp, σ'). Proof. rewrite -(right_id_L [] (++) (<[_:=_]>_)). by apply step_insert. Qed. - Lemma nsteps_inv_r {A} n (R : A → A → Prop) x y : - relations.nsteps R (S n) x y → ∃ z, relations.nsteps R n x z ∧ R z y. - Proof. - revert x y; induction n; intros x y. - - inversion 1; subst. - match goal with H : relations.nsteps _ 0 _ _ |- _ => inversion H end; subst. - eexists; repeat econstructor; eauto. - - inversion 1; subst. - edestruct IHn as [z [? ?]]; eauto. - exists z; split; eauto using relations.nsteps_l. - Qed. - (** * Main rules *) (** Pure reductions *) Lemma step_pure E j K e e' (P : Prop) n :