Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found

Target

Select target project
  • Villetaneuse/lambda-rust
  • iris/lambda-rust
  • maximedenes/LambdaRust-coq
  • msammler/lambda-rust
  • daniel.louwrink/lambda-rust
  • simonspies/lambda-rust
  • xldenis/lambda-rust
  • lgaeher/lambda-rust
  • JasonHuZS/lambda-rust
  • snyke7/lambda-rust
  • ivanbakel/lambda-rust
11 results
Show changes
Showing
with 282 additions and 1680 deletions
From lrust.lifetime Require Export primitive.
From lrust.lifetime Require Import faking.
From iris.algebra Require Import csum auth frac gmap dec_agree gset.
From iris.base_logic Require Import big_op.
From lrust.lifetime Require Import borrow accessors.
From iris.algebra Require Import csum auth frac gmap agree gset numbers.
From iris.base_logic.lib Require Import boxes.
From iris.proofmode Require Import tactics.
From iris.proofmode Require Import proofmode.
From iris.prelude Require Import options.
Section rebor.
Context `{invG Σ, lftG Σ}.
Section reborrow.
Context `{!invGS Σ, !lftGS Σ userE}.
Implicit Types κ : lft.
(* Notice that taking lft_inv for both κ and κ' already implies
κ ≠ κ'. Still, it is probably more instructing to require
κ ⊂ κ' in this lemma (as opposed to just κ ⊆ κ'), and it
should not increase the burden on the user. *)
Lemma raw_bor_unnest E q A I Pb Pi P κ i κ' :
Lemma raw_bor_unnest E A I Pb Pi P κ i κ' :
borN E
let Iinv := (own_ilft_auth I ?q lft_inv A κ)%I in
let Iinv := (own_ilft_auth I lft_inv A κ)%I in
κ κ'
lft_alive_in A κ'
Iinv -∗ idx_bor_own 1 (κ, i) -∗ slice borN i P -∗ ?q lft_bor_alive κ' Pb -∗
?q lft_vs κ' (idx_bor_own 1 (κ, i) Pb) Pi ={E}=∗ Pb',
Iinv raw_bor κ' P ?q lft_bor_alive κ' Pb' ?q lft_vs κ' Pb' Pi.
Iinv -∗ idx_bor_own 1 (κ, i) -∗ slice borN i P -∗ lft_bor_alive κ' Pb -∗
lft_vs κ' (idx_bor_own 1 (κ, i) Pb) Pi ={E}=∗ Pb',
Iinv raw_bor κ' P lft_bor_alive κ' Pb' lft_vs κ' Pb' Pi.
Proof.
iIntros (? Iinv Hκκ' Haliveκ') "(HI & Hκ) Hi #Hislice Hκalive' Hvs".
rewrite lft_vs_unfold. iDestruct "Hvs" as (n) "[>Hn● Hvs]".
iMod (own_cnt_update with "Hn●") as "[Hn● H◯]".
{ apply auth_update_alloc, (nat_local_update _ 0 (S n) 1); omega. }
{ apply auth_update_alloc, (nat_local_update _ 0 (S n) 1); lia. }
rewrite {1}/raw_bor /idx_bor_own /=.
iDestruct (own_bor_auth with "HI Hi") as %?.
assert (κ κ') by (by apply strict_include).
......@@ -35,14 +34,14 @@ Proof.
iDestruct "Hκ" as (Pb' Pi') "(Hκalive&Hvs'&Hinh')".
rewrite {2}/lft_bor_alive; iDestruct "Hκalive" as (B) "(Hbox & >HB● & HB)".
iDestruct (own_bor_valid_2 with "HB● Hi")
as %[HB%to_borUR_included _]%auth_valid_discrete_2.
iMod (slice_empty with "Hislice Hbox") as "[HP Hbox]"; first done.
as %[HB%to_borUR_included _]%auth_both_valid_discrete.
iMod (slice_empty _ _ true with "Hislice Hbox") as "[HP Hbox]"; first done.
{ by rewrite lookup_fmap HB. }
iMod (own_bor_update_2 with "HB● Hi") as "[HB● Hi]".
{ eapply auth_update, singleton_local_update,
(exclusive_local_update _ (1%Qp, DecAgree (Bor_rebor κ'))); last done.
{ eapply auth_update, singleton_local_update; last eapply
(exclusive_local_update _ (1%Qp, to_agree (Bor_rebor κ'))); last done.
rewrite /to_borUR lookup_fmap. by rewrite HB. }
iAssert (?q lft_inv A κ)%I with "[H◯ HB● HB Hvs' Hinh' Hbox]" as "Hκ".
iAssert ( lft_inv A κ)%I with "[H◯ HB● HB Hvs' Hinh' Hbox]" as "Hκ".
{ iNext. rewrite /lft_inv. iLeft.
iSplit; last by eauto using lft_alive_in_subseteq.
rewrite lft_inv_alive_unfold. iExists Pb', Pi'. iFrame "Hvs' Hinh'".
......@@ -50,19 +49,18 @@ Proof.
rewrite /to_borUR !fmap_insert. iFrame "Hbox HB●".
iDestruct (@big_sepM_delete with "HB") as "[_ HB]"; first done.
rewrite (big_sepM_delete _ (<[_:=_]>_) i); last by rewrite lookup_insert.
rewrite -insert_delete delete_insert ?lookup_delete //=. iFrame; auto. }
rewrite -insert_delete_insert delete_insert ?lookup_delete //=. iFrame; auto. }
clear B HB Pb' Pi'.
rewrite {1}/lft_bor_alive. iDestruct "Hκalive'" as (B) "(Hbox & >HB● & HB)".
iMod (slice_insert_full with "HP Hbox")
iMod (slice_insert_full _ _ true with "HP Hbox")
as (j) "(HBj & #Hjslice & Hbox)"; first done.
iDestruct "HBj" as %HBj; move: HBj; rewrite lookup_fmap fmap_None=> HBj.
iMod (own_bor_update with "HB●") as "[HB● Hj]".
{ apply auth_update_alloc,
(alloc_singleton_local_update _ j (1%Qp, DecAgree Bor_in)); last done.
(alloc_singleton_local_update _ j (1%Qp, to_agree Bor_in)); last done.
rewrite /to_borUR lookup_fmap. by rewrite HBj. }
iModIntro. iExists (P Pb)%I. rewrite /Iinv. iFrame "HI". iFrame.
iSplitL "Hj".
{ rewrite /raw_bor /idx_bor_own. iExists j. by iFrame. }
iModIntro. iExists (P Pb)%I. rewrite /Iinv. iFrame "HI Hκ". iSplitL "Hj".
{ iExists j. iFrame. iExists P. rewrite -(bi.iff_refl emp). auto. }
iSplitL "Hbox HB● HB".
{ rewrite /lft_bor_alive. iNext. iExists (<[j:=Bor_in]> B).
rewrite /to_borUR !fmap_insert big_sepM_insert //. iFrame.
......@@ -70,124 +68,117 @@ Proof.
clear dependent Iinv I.
iNext. rewrite lft_vs_unfold. iExists (S n). iFrame "Hn●".
iIntros (I) "Hinv [HP HPb] #Hκ†".
rewrite {1}lft_vs_inv_unfold; iDestruct "Hinv" as "(Hκdead' & HI & Hinv)".
iDestruct (own_bor_auth with "HI Hi") as %?%elem_of_dom.
rewrite {1}lft_vs_inv_unfold; iDestruct "Hinv" as "(HI & Hinv)".
iDestruct (own_bor_auth with "HI Hi") as %?%(elem_of_dom (D:=gset lft)).
iDestruct (@big_sepS_delete with "Hinv") as "[Hκalive Hinv]"; first done.
rewrite lft_inv_alive_unfold.
iDestruct ("Hκalive" with "[%]") as (Pb' Pi') "(Hκalive&Hvs'&Hinh)"; first done.
iDestruct ("Hκalive" with "[//]") as (Pb' Pi') "(Hκalive&Hvs'&Hinh)".
rewrite /lft_bor_alive; iDestruct "Hκalive" as (B') "(Hbox & HB● & HB)".
iDestruct (own_bor_valid_2 with "HB● Hi")
as %[HB%to_borUR_included _]%auth_valid_discrete_2.
iDestruct (own_bor_valid_2 with "HB● Hi")
as %[HB%to_borUR_included _]%auth_both_valid_discrete.
iMod (own_bor_update_2 with "HB● Hi") as "[HB● Hi]".
{ eapply auth_update, singleton_local_update,
(exclusive_local_update _ (1%Qp, DecAgree Bor_in)); last done.
(exclusive_local_update _ (1%Qp, to_agree Bor_in)); last done.
rewrite /to_borUR lookup_fmap. by rewrite HB. }
iMod (slice_fill _ _ false with "Hislice HP Hbox")
as "Hbox"; first by solve_ndisj.
as "Hbox".
{ set_solver+. }
{ by rewrite lookup_fmap HB. }
iDestruct (@big_sepM_delete with "HB") as "[Hcnt HB]"; first done.
rewrite /=; iDestruct "Hcnt" as "[% H1◯]".
iMod ("Hvs" $! I with "[Hκdead' HI Hinv Hvs' Hinh HB● Hbox HB]
[$HPb Hi] Hκ†") as "($ & $ & Hcnt')".
{ rewrite lft_vs_inv_unfold. iFrame "Hκdead' HI".
iApply (big_sepS_delete _ (dom (gset lft) I) with "[- $Hinv]"); first done.
rewrite /=. iDestruct "Hcnt" as "[% H1◯]".
iMod ("Hvs" $! I with "[HI Hinv Hvs' Hinh HB● Hbox HB]
[$HPb $Hi] Hκ†") as "($ & $ & Hcnt')".
{ rewrite lft_vs_inv_unfold. iFrame "HI".
iApply (big_sepS_delete _ (dom I) with "[- $Hinv]"); first done.
iIntros (_). rewrite lft_inv_alive_unfold.
iExists Pb', Pi'. iFrame "Hvs' Hinh". rewrite /lft_bor_alive.
iExists (<[i:=Bor_in]>B'). rewrite /to_borUR !fmap_insert. iFrame.
rewrite -insert_delete big_sepM_insert ?lookup_delete //=. by iFrame. }
{ rewrite /raw_bor /idx_bor_own /=. auto. }
iModIntro. rewrite -[S n]Nat.add_1_l -nat_op_plus auth_frag_op own_cnt_op.
rewrite -insert_delete_insert big_sepM_insert ?lookup_delete //=. by iFrame. }
iModIntro. rewrite -[S n]Nat.add_1_l -nat_op auth_frag_op own_cnt_op.
by iFrame.
Qed.
Lemma raw_bor_unnest' E q A I Pb Pi P κ κ' :
borN E
let Iinv := (
own_ilft_auth I
?q [ set] κ dom _ I {[κ']}, lft_inv A κ)%I in
κ κ'
lft_alive_in A κ'
Iinv -∗ raw_bor κ P -∗ ?q lft_bor_alive κ' Pb -∗
?q lft_vs κ' (raw_bor κ P Pb) Pi ={E}=∗ Pb',
Iinv raw_bor κ' P ?q lft_bor_alive κ' Pb' ?q lft_vs κ' Pb' Pi.
Lemma raw_idx_bor_unnest E κ κ' i P :
lftN E κ κ'
lft_ctx -∗ slice borN i P -∗ raw_bor κ' (idx_bor_own 1 (κ, i))
={E}=∗ raw_bor κ' P.
Proof.
iIntros (? Iinv Hκκ' Haliveκ') "(HI & Hinv) Hraw Hκalive' Hvs".
destruct (decide (κ = κ')) as [<-|Hκneq].
{ iModIntro. iExists Pb. rewrite /Iinv. iFrame "HI Hinv Hκalive' Hraw".
iApply (lft_vs_cons with "[]"); last done.
iIntros "(Hdead & HPb)".
iMod (raw_bor_fake _ false _ P with "Hdead") as "[Hdead Hraw]"; first solve_ndisj.
by iFrame. }
assert (κ κ') by (by apply strict_spec_alt).
iDestruct (raw_bor_inI with "HI Hraw") as %HI.
iDestruct (big_sepS_elem_of_acc _ _ κ with "Hinv") as "[Hinv Hclose]".
{ rewrite elem_of_difference elem_of_dom not_elem_of_singleton. done. }
rewrite {1}/raw_bor. iDestruct "Hraw" as (i) "[Hi #Hislice]".
iMod (raw_bor_unnest with "[$HI $Hinv] Hi Hislice Hκalive' [Hvs]") as (Pb') "([HI Hκ] & ? & ? & ?)"; [done..| |].
{ iApply (lft_vs_cons with "[]"); last done.
iIntros "[$ [>? $]]". iModIntro. iNext. rewrite /raw_bor.
iExists i. by iFrame. }
iExists Pb'. iModIntro. iFrame. iNext. by iApply "Hclose".
iIntros (? Hκκ') "#LFT #Hs Hraw".
iInv mgmtN as (A I) "(>HA & >HI & Hinv)" "Hclose".
iDestruct (raw_bor_inI with "HI Hraw") as %HI'.
rewrite (big_sepS_delete _ _ κ') ?elem_of_dom // [_ A κ']/lft_inv.
iDestruct "Hinv" as "[[[Hinvκ >%]|[Hinvκ >%]] Hinv]"; last first.
{ rewrite /lft_inv_dead. iDestruct "Hinvκ" as (Pi) "[Hbordead H]".
iMod (raw_bor_fake with "Hbordead") as "[Hbordead $]"; first solve_ndisj.
iApply "Hclose". iExists _, _. iFrame.
rewrite (big_opS_delete _ (dom _) κ') ?elem_of_dom // /lft_inv /lft_inv_dead.
auto 10 with iFrame. }
rewrite {1}/raw_bor. iDestruct "Hraw" as (i') "[Hbor H]".
iDestruct "H" as (P') "[#HP' #Hs']".
rewrite lft_inv_alive_unfold /lft_bor_alive [in _ _ (κ', i')]/idx_bor_own.
iDestruct "Hinvκ" as (Pb Pi) "(Halive & Hvs & Hinh)".
iDestruct "Halive" as (B) "(Hbox & >H● & HB)".
iDestruct (own_bor_valid_2 with "H● Hbor")
as %[EQB%to_borUR_included _]%auth_both_valid_discrete.
iMod (slice_empty _ _ true with "Hs' Hbox") as "[Hidx Hbox]";
first solve_ndisj.
{ by rewrite lookup_fmap EQB. }
iAssert ( idx_bor_own 1 (κ, i))%I with "[Hidx]" as ">Hidx"; [by iApply "HP'"|].
iDestruct (own_bor_auth with "HI [Hidx]") as %HI; [by rewrite /idx_bor_own|].
iDestruct (big_sepS_elem_of_acc _ _ κ with "Hinv") as "[Hinvκ Hclose']";
first by rewrite elem_of_difference elem_of_dom not_elem_of_singleton;
eauto using strict_ne.
iMod (slice_delete_empty with "Hs' Hbox") as (Pb') "[#HeqPb' Hbox]";
[solve_ndisj|by apply lookup_insert|].
iMod (own_bor_update_2 with "H● Hbor") as "H●".
{ apply auth_update_dealloc, delete_singleton_local_update. apply _. }
iMod (raw_bor_unnest with "[$HI $Hinvκ] Hidx Hs [Hbox H● HB] [Hvs]")
as (Pb'') "HH"; [solve_ndisj|done|done| | |].
{ rewrite /lft_bor_alive (big_sepM_delete _ B i') //. iDestruct "HB" as "[_ HB]".
iExists (delete i' B). rewrite -fmap_delete. iFrame.
rewrite fmap_delete -insert_delete_insert delete_insert ?lookup_delete //=. }
{ iNext. iApply (lft_vs_cons with "[] Hvs"). iIntros "[??] _ !>". iNext.
iRewrite "HeqPb'". iFrame. by iApply "HP'". }
iDestruct "HH" as "([HI Hinvκ] & $ & Halive & Hvs)".
iApply "Hclose". iExists _, _. iFrame.
rewrite (big_opS_delete _ (dom _) κ') ?elem_of_dom //.
iDestruct ("Hclose'" with "Hinvκ") as "$".
rewrite /lft_inv lft_inv_alive_unfold. auto 10 with iFrame.
Qed.
Lemma raw_rebor E κ κ' P :
Lemma raw_bor_shorten E κ κ' P :
lftN E κ κ'
lft_ctx -∗ raw_bor κ P ={E}=∗
raw_bor κ' P ([κ'] ={E}=∗ raw_bor κ P).
lft_ctx -∗ raw_bor κ P ={E}=∗ raw_bor κ' P.
Proof.
rewrite /lft_ctx. iIntros (??) "#LFT Hκ".
destruct (decide (κ = κ')) as [<-|Hκneq].
{ iFrame. iIntros "!> #Hκ†". by iApply (raw_bor_fake' with "LFT Hκ†"). }
iIntros (? Hκκ') "#LFT Hbor".
destruct (decide (κ = κ')) as [<-|Hκneq]; [by iFrame|].
assert (κ κ') by (by apply strict_spec_alt).
iInv mgmtN as (A I) "(>HA & >HI & Hinv)" "Hclose".
iMod (ilft_create _ _ κ' with "HA HI Hinv") as (A' I') "(% & HA & HI & Hinv)".
clear A I; rename A' into A; rename I' into I.
iDestruct (big_sepS_delete _ _ κ' with "Hinv") as "[Hκinv' Hinv]";
first by apply elem_of_dom.
rewrite {1}/lft_inv; iDestruct "Hκinv'" as "[[? >%]|[Hdead >%]]"; last first.
{ rewrite /lft_inv_dead; iDestruct "Hdead" as (Pi) "(Hdead & >H● & Hinh)".
iMod (raw_bor_fake _ true _ P with "Hdead") as "[Hdead $]"; first solve_ndisj.
iMod ("Hclose" with "[-Hκ]") as "_"; last auto.
iNext. rewrite {2}/lfts_inv. iExists A, I. iFrame "HA HI".
iApply (big_sepS_delete _ _ κ'); first by apply elem_of_dom.
iFrame "Hinv". rewrite /lft_inv /lft_inv_dead. iRight.
iSplit; last done. iExists Pi. by iFrame. }
rewrite lft_inv_alive_unfold; iDestruct "Hκinv'" as (Pb Pi) "(Hbor & Hvs & Hinh)".
rewrite {1}/raw_bor. iDestruct "Hκ" as (i) "[Hi #Hislice]".
iMod (lft_inh_extend _ _ (idx_bor_own 1 (κ, i)) with "Hinh")
as "(Hinh & HIlookup & Hinh_close)"; first solve_ndisj.
iDestruct (own_bor_auth with "HI [Hi]") as %?.
{ by rewrite /idx_bor_own. }
iDestruct (big_sepS_elem_of_acc _ _ κ with "Hinv") as "[Hκ Hκclose]".
{ by rewrite elem_of_difference elem_of_dom not_elem_of_singleton. }
iMod (raw_bor_unnest _ true _ _ _ (idx_bor_own 1 (κ, i) Pi)%I
with "[$HI $Hκ] Hi Hislice Hbor [Hvs]")
as (Pb') "([HI Hκ] & $ & Halive & Hvs)"; [solve_ndisj|done|done|..].
{ iNext. by iApply lft_vs_frame. }
iDestruct ("Hκclose" with "Hκ") as "Hinv".
iMod ("Hclose" with "[HA HI Hinv Halive Hinh Hvs]") as "_".
{ iNext. rewrite {2}/lfts_inv. iExists A, I. iFrame "HA HI".
iApply (big_sepS_delete _ _ κ'); first by apply elem_of_dom. iFrame "Hinv".
rewrite /lft_inv. iLeft. iSplit; last done.
rewrite lft_inv_alive_unfold. iExists Pb', (idx_bor_own 1 (κ, i) Pi)%I.
iFrame. }
clear dependent A I Pb Pb' Pi. iModIntro. iIntros "H†".
iInv mgmtN as (A I) "(>HA & >HI & Hinv)" "Hclose".
iDestruct ("HIlookup" with "* HI") as %Hκ'.
iDestruct (big_sepS_delete _ _ κ' with "Hinv") as "[Hκinv' Hinv]";
first by apply elem_of_dom.
rewrite {1}/lft_inv; iDestruct "Hκinv'" as "[[Halive >%]|[Hdead >%]]".
- (* the same proof is in bor_fake and bor_create *)
rewrite /lft_dead; iDestruct "H†" as (Λ) "[% #H†]".
iDestruct (own_alft_auth_agree A Λ false with "HA H†") as %EQAΛ.
unfold lft_alive_in in *. naive_solver.
- rewrite /lft_inv_dead; iDestruct "Hdead" as (Pi) "(Hdead & Hcnt & Hinh)".
iMod ("Hinh_close" $! Pi with "Hinh") as (Pi') "(Heq & >Hbor & Hinh)".
iMod ("Hclose" with "[HA HI Hinv Hdead Hinh Hcnt]") as "_".
{ iNext. rewrite /lfts_inv. iExists A, I. iFrame "HA HI".
iApply (big_sepS_delete _ _ κ'); first by apply elem_of_dom. iFrame "Hinv".
rewrite /lft_inv /lft_inv_dead. iRight. iSplit; last done.
iExists Pi'. iFrame. }
iModIntro. rewrite /raw_bor. iExists i. by iFrame.
rewrite [_ κ P]/raw_bor. iDestruct "Hbor" as (s) "[Hbor Hs]".
iDestruct "Hs" as (P') "[#HP'P #Hs]".
iMod (raw_bor_create _ κ' with "LFT Hbor") as "[Hbor _]"; [done|].
iApply (raw_bor_iff with "HP'P"). by iApply raw_idx_bor_unnest.
Qed.
Lemma idx_bor_unnest E κ κ' i P :
lftN E
lft_ctx -∗ &{κ,i} P -∗ &{κ'}(idx_bor_own 1 i) ={E}=∗ &{κ κ'} P.
Proof.
iIntros (?) "#LFT #HP Hbor".
rewrite [(&{κ'}_)%I]/bor. iDestruct "Hbor" as (κ'0) "[#Hκ'κ'0 Hbor]".
destruct (decide (κ'0 = static)) as [->|Hκ'0].
{ iMod (bor_acc_strong with "LFT [Hbor] []") as (?) "(_ & Hbor & _)";
[done| |iApply (lft_tok_static 1)|].
- rewrite /bor. iExists static. iFrame. iApply lft_incl_refl.
- iDestruct "Hbor" as ">Hbor".
iApply bor_shorten; [|by rewrite bor_unfold_idx; auto].
iApply lft_intersect_incl_l. }
rewrite /idx_bor /bor. destruct i as [κ0 i].
iDestruct "HP" as "[Hκκ0 HP]". iDestruct "HP" as (P') "[HPP' HP']".
iMod (raw_bor_shorten _ _ (κ0 κ'0) with "LFT Hbor") as "Hbor";
[done|by apply gmultiset_disj_union_subseteq_r|].
iMod (raw_idx_bor_unnest with "LFT HP' Hbor") as "Hbor";
[done|by apply gmultiset_disj_union_subset_l|].
iExists _. iDestruct (raw_bor_iff with "HPP' Hbor") as "$".
by iApply lft_intersect_mono.
Qed.
End rebor.
End reborrow.
From lrust.lifetime Require Export derived.
From lrust.lifetime Require Export lifetime.
From iris.base_logic.lib Require Export na_invariants.
From iris.proofmode Require Import tactics.
From iris.proofmode Require Import proofmode.
From iris.prelude Require Import options.
Definition na_bor `{invG Σ, lftG Σ, na_invG Σ}
Definition na_bor `{!invGS Σ, !lftGS Σ userE, !na_invG Σ}
(κ : lft) (tid : na_inv_pool_name) (N : namespace) (P : iProp Σ) :=
( i, &{κ,i}P na_inv tid N (idx_bor_own 1 i))%I.
Notation "&na{ κ , tid , N } P" := (na_bor κ tid N P)
(format "&na{ κ , tid , N } P", at level 20, right associativity) : uPred_scope.
Notation "&na{ κ , tid , N }" := (na_bor κ tid N)
(format "&na{ κ , tid , N }") : bi_scope.
Section na_bor.
Context `{invG Σ, lftG Σ, na_invG Σ}
Context `{!invGS Σ, !lftGS Σ userE, !na_invG Σ}
(tid : na_inv_pool_name) (N : namespace) (P : iProp Σ).
Global Instance na_bor_persistent κ : PersistentP (&na{κ,tid,N} P) := _.
Global Instance na_bor_proper κ :
Proper ((⊣⊢) ==> (⊣⊢)) (na_bor κ tid N).
Global Instance na_bor_ne κ n : Proper (dist n ==> dist n) (na_bor κ tid N).
Proof. solve_proper. Qed.
Global Instance na_bor_contractive κ : Contractive (na_bor κ tid N).
Proof. solve_contractive. Qed.
Global Instance na_bor_proper κ : Proper ((⊣⊢) ==> (⊣⊢)) (na_bor κ tid N).
Proof. solve_proper. Qed.
Lemma na_bor_iff κ P' :
(P P') -∗ &na{κ, tid, N} P -∗ &na{κ, tid, N} P'.
Proof.
intros P1 P2 EQ. apply uPred.exist_proper. intros i. by rewrite EQ.
iIntros "HPP' H". iDestruct "H" as (i) "[HP ?]". iExists i. iFrame.
iApply (idx_bor_iff with "HPP' HP").
Qed.
Global Instance na_bor_persistent κ : Persistent (&na{κ,tid,N} P) := _.
Lemma bor_na κ E : lftN E &{κ}P ={E}=∗ &na{κ,tid,N}P.
Proof.
iIntros (?) "HP". rewrite bor_unfold_idx. iDestruct "HP" as (i) "[#? Hown]".
iExists i. iFrame "#". iApply (na_inv_alloc tid E N with "[Hown]"). auto.
Qed.
Lemma na_bor_acc q κ E :
lftN E N E
lft_ctx -∗ &na{κ,tid,N}P -∗ q.[κ] -∗ na_own tid E ={E}=∗
P na_own tid (E N)
(P -∗ na_own tid (E N) ={E}=∗ q.[κ] na_own tid E).
Lemma na_bor_acc q κ E F :
lftN E N E N F
lft_ctx -∗ &na{κ,tid,N}P -∗ q.[κ] -∗ na_own tid F ={E}=∗
P na_own tid (F N)
(P -∗ na_own tid (F N) ={E}=∗ q.[κ] na_own tid F).
Proof.
iIntros (??) "#LFT#HP Hκ Hnaown".
iIntros (???) "#LFT#HP Hκ Hnaown".
iDestruct "HP" as (i) "(#Hpers&#Hinv)".
iMod (na_inv_open with "Hinv Hnaown") as "(>Hown&Hnaown&Hclose)"; try done.
iMod (idx_bor_acc with "LFT Hpers Hown Hκ") as "[HP Hclose']". done.
iIntros "{$HP $Hnaown}!>HP Hnaown".
iMod (na_inv_acc with "Hinv Hnaown") as "(>Hown&Hnaown&Hclose)"; try done.
iMod (idx_bor_acc with "LFT Hpers Hown Hκ") as "[HP Hclose']"; first done.
iIntros "{$HP $Hnaown} !> HP Hnaown".
iMod ("Hclose'" with "HP") as "[Hown $]". iApply "Hclose". by iFrame.
Qed.
Lemma na_bor_shorten κ κ': κ κ' -∗ &na{κ',tid,N}P -∗ &na{κ,tid,N}P.
Proof.
iIntros "Hκκ' H". iDestruct "H" as (i) "[??]". iExists i. iFrame.
iIntros "Hκκ' H". iDestruct "H" as (i) "[H ?]". iExists i. iFrame.
iApply (idx_bor_shorten with "Hκκ' H").
Qed.
Lemma na_bor_fake E κ: lftN E lft_ctx -∗ [κ] ={E}=∗ &na{κ,tid,N}P.
Proof.
iIntros (?) "#LFT#H†". iApply (bor_na with "[>]"); first done.
by iApply (bor_fake with "LFT H†").
Qed.
End na_bor.
Typeclasses Opaque na_bor.
Global Typeclasses Opaque na_bor.
#!/bin/bash
set -e
# Helper script to build and/or install just one package out of this repository.
# Assumes that all the other packages it depends on have been installed already!
PROJECT="$1"
shift
COQFILE="_CoqProject.$PROJECT"
MAKEFILE="Makefile.package.$PROJECT"
if ! grep -E -q "^$PROJECT/" _CoqProject; then
echo "No files in $PROJECT/ found in _CoqProject; this does not seem to be a valid project name."
exit 1
fi
# Generate _CoqProject file and Makefile
rm -f "$COQFILE"
# Get the right "-Q" line.
grep -E "^-Q $PROJECT[ /]" _CoqProject >> "$COQFILE"
# Get everything until the first empty line except for the "-Q" lines.
sed -n '/./!q;p' _CoqProject | grep -E -v "^-Q " >> "$COQFILE"
# Get the files.
grep -E "^$PROJECT/" _CoqProject >> "$COQFILE"
# Now we can run coq_makefile.
"${COQBIN}coq_makefile" -f "$COQFILE" -o "$MAKEFILE"
# Run build
make -f "$MAKEFILE" "$@"
# Cleanup
rm -f ".$MAKEFILE.d" "$MAKEFILE"*
opam-version: "1.2"
name: "coq-lambda-rust"
version: "dev"
maintainer: "Ralf Jung <jung@mpi-sws.org>"
authors: "The RustBelt Team"
homepage: "http://plv.mpi-sws.org/rustbelt/"
bug-reports: "https://gitlab.mpi-sws.org/FP/lambdaRust-coq/issues"
license: "BSD"
dev-repo: "https://gitlab.mpi-sws.org/FP/lambdaRust-coq.git"
build: [
[make "-j%{jobs}%"]
]
install: [make "install"]
remove: [ "sh" "-c" "rm -rf '%{lib}%/coq/user-contrib/lrust'" ]
depends: [
"coq-iris"
]
coq-iris https://gitlab.mpi-sws.org/FP/iris-coq b72a3301d7ff957cfbb06d06bba85fb4ee9a2c39
From lrust.lang Require Export lifting.
From iris.proofmode Require Import tactics.
Import uPred.
(** Define some derived forms, and derived lemmas about them. *)
Notation Lam xl e := (Rec BAnon xl e).
Notation Let x e1 e2 := (App (Lam [x] e2) [e1]).
Notation Seq e1 e2 := (Let BAnon e1 e2).
Notation LamV xl e := (RecV BAnon xl e).
Notation LetCtx x e2 := (AppRCtx (LamV [x] e2) [] []).
Notation SeqCtx e2 := (LetCtx BAnon e2).
Notation Skip := (Seq (Lit LitUnit) (Lit LitUnit)).
Coercion lit_of_bool : bool >-> base_lit.
Notation If e0 e1 e2 := (Case e0 [e2;e1]).
Definition Newlft := Lit LitUnit.
Definition Endlft := Skip.
Section derived.
Context `{ownPG lrust_lang Σ}.
Implicit Types P Q : iProp Σ.
Implicit Types Φ : val iProp Σ.
(** Proof rules for the sugar *)
Lemma wp_lam E xl e e' el Φ :
Forall (λ ei, is_Some (to_val ei)) el
Closed (xl +b+ []) e
subst_l xl el e = Some e'
WP e' @ E {{ Φ }} -∗ WP App (Lam xl e) el @ E {{ Φ }}.
Proof. iIntros (???) "?". by iApply (wp_rec _ _ BAnon). Qed.
Lemma wp_let E x e1 e2 v Φ :
to_val e1 = Some v
Closed (x :b: []) e2
WP subst' x e1 e2 @ E {{ Φ }} -∗ WP Let x e1 e2 @ E {{ Φ }}.
Proof. eauto using wp_lam. Qed.
Lemma wp_seq E e1 e2 v Φ :
to_val e1 = Some v
Closed [] e2
WP e2 @ E {{ Φ }} -∗ WP Seq e1 e2 @ E {{ Φ }}.
Proof. iIntros (??) "?". by iApply (wp_let _ BAnon). Qed.
Lemma wp_skip E Φ : Φ (LitV LitUnit) -∗ WP Skip @ E {{ Φ }}.
Proof. iIntros. iApply wp_seq. done. iNext. by iApply wp_value. Qed.
Lemma wp_le E (n1 n2 : Z) P Φ :
(n1 n2 P -∗ |={E}=> Φ (LitV true))
(n2 < n1 P -∗ |={E}=> Φ (LitV false))
P -∗ WP BinOp LeOp (Lit (LitInt n1)) (Lit (LitInt n2)) @ E {{ Φ }}.
Proof.
iIntros (Hl Hg) "HP". iApply wp_fupd.
destruct (bool_decide_reflect (n1 n2)); [rewrite Hl //|rewrite Hg; last omega];
clear Hl Hg; (iApply wp_bin_op_pure; first by econstructor); iNext; iIntros (?? Heval);
inversion_clear Heval; [rewrite bool_decide_true //|rewrite bool_decide_false //].
Qed.
Lemma wp_offset E l z Φ :
(|={E}=> Φ (LitV $ LitLoc $ shift_loc l z)) -∗
WP BinOp OffsetOp (Lit $ LitLoc l) (Lit $ LitInt z) @ E {{ Φ }}.
Proof.
iIntros "HP". iApply wp_fupd. iApply wp_bin_op_pure; first by econstructor.
iNext. iIntros (?? Heval). inversion_clear Heval. done.
Qed.
Lemma wp_plus E z1 z2 Φ :
(|={E}=> Φ (LitV $ LitInt $ z1 + z2)) -∗
WP BinOp PlusOp (Lit $ LitInt z1) (Lit $ LitInt z2) @ E {{ Φ }}.
Proof.
iIntros "HP". iApply wp_fupd. iApply wp_bin_op_pure; first by econstructor.
iNext. iIntros (?? Heval). inversion_clear Heval. done.
Qed.
Lemma wp_minus E z1 z2 Φ :
(|={E}=> Φ (LitV $ LitInt $ z1 - z2)) -∗
WP BinOp MinusOp (Lit $ LitInt z1) (Lit $ LitInt z2) @ E {{ Φ }}.
Proof.
iIntros "HP". iApply wp_fupd. iApply wp_bin_op_pure; first by econstructor.
iNext. iIntros (?? Heval). inversion_clear Heval. done.
Qed.
(* TODO: Add lemmas for equality test. *)
Lemma wp_if E (b : bool) e1 e2 Φ :
(if b then WP e1 @ E {{ Φ }} else WP e2 @ E {{ Φ }})%I -∗
WP If (Lit b) e1 e2 @ E {{ Φ }}.
Proof. iIntros "?". by destruct b; iApply wp_case. Qed.
End derived.
From iris.program_logic Require Export weakestpre ownp.
From iris.program_logic Require Import ectx_lifting.
From lrust.lang Require Export lang.
From lrust.lang Require Import tactics.
From iris.proofmode Require Import tactics.
Import uPred.
Local Hint Extern 0 (head_reducible _ _) => do_head_step eauto 2.
(* TODO : as for heap_lang, directly use a global heap invariant. *)
Section lifting.
Context `{ownPG lrust_lang Σ}.
Implicit Types P Q : iProp Σ.
Implicit Types ef : option expr.
(** Bind. This bundles some arguments that wp_ectx_bind leaves as indices. *)
Lemma wp_bind {E e} K Φ :
WP e @ E {{ v, WP fill K (of_val v) @ E {{ Φ }} }} -∗ WP fill K e @ E {{ Φ }}.
Proof. exact: wp_ectx_bind. Qed.
Lemma wp_bindi {E e} Ki Φ :
WP e @ E {{ v, WP fill_item Ki (of_val v) @ E {{ Φ }} }} -∗
WP fill_item Ki e @ E {{ Φ }}.
Proof. exact: weakestpre.wp_bind. Qed.
(** Base axioms for core primitives of the language: Stateful reductions. *)
Lemma wp_alloc_pst E σ n:
0 < n
{{{ ownP σ }}} Alloc (Lit $ LitInt n) @ E
{{{ l σ', RET LitV $ LitLoc l;
⌜∀ m, σ !! (shift_loc l m) = None
⌜∃ vl, n = length vl init_mem l vl σ = σ'
ownP σ' }}}.
Proof.
iIntros (? Φ) "HP HΦ". iApply (ownP_lift_atomic_head_step _ σ); eauto.
iFrame "HP". iNext. iIntros (v2 σ2 ef) "% HP". inv_head_step.
rewrite big_sepL_nil right_id. by iApply "HΦ"; iFrame; eauto.
Qed.
Lemma wp_free_pst E σ l n :
0 < n
( m, is_Some (σ !! (shift_loc l m)) (0 m < n))
{{{ ownP σ }}} Free (Lit $ LitInt n) (Lit $ LitLoc l) @ E
{{{ RET LitV $ LitUnit; ownP (free_mem l (Z.to_nat n) σ) }}}.
Proof.
iIntros (???) "HP HΦ". iApply (ownP_lift_atomic_head_step _ σ); eauto.
iFrame "HP". iNext. iIntros (v2 σ2 ef) "% HP". inv_head_step.
rewrite big_sepL_nil right_id. by iApply "HΦ".
Qed.
Lemma wp_read_sc_pst E σ l n v :
σ !! l = Some (RSt n, v)
{{{ ownP σ }}} Read ScOrd (Lit $ LitLoc l) @ E {{{ RET v; ownP σ }}}.
Proof.
iIntros (??) "?HΦ". iApply ownP_lift_atomic_det_head_step; eauto.
by intros; inv_head_step; eauto using to_of_val.
rewrite big_sepL_nil right_id; iFrame.
Qed.
Lemma wp_read_na2_pst E σ l n v :
σ !! l = Some(RSt $ S n, v)
{{{ ownP σ }}} Read Na2Ord (Lit $ LitLoc l) @ E
{{{ RET v; ownP (<[l:=(RSt n, v)]>σ) }}}.
Proof.
iIntros (??) "?HΦ". iApply ownP_lift_atomic_det_head_step; eauto.
by intros; inv_head_step; eauto using to_of_val.
rewrite big_sepL_nil right_id; iFrame.
Qed.
Lemma wp_read_na1_pst E l Φ :
(|={E,}=> σ n v, σ !! l = Some(RSt $ n, v)
ownP σ
(ownP (<[l:=(RSt $ S n, v)]>σ) ={,E}=∗
WP Read Na2Ord (Lit $ LitLoc l) @ E {{ Φ }})) -∗
WP Read Na1Ord (Lit $ LitLoc l) @ E {{ Φ }}.
Proof.
iIntros "HΦP". iApply (ownP_lift_head_step E); auto.
iMod "HΦP" as (σ n v) "(%&HΦ&HP)". iModIntro. iExists σ. iSplit. done. iFrame.
iNext. iIntros (e2 σ2 ef) "% HΦ". inv_head_step.
rewrite big_sepL_nil right_id. iApply ("HP" with "HΦ").
Qed.
Lemma wp_write_sc_pst E σ l v v' :
σ !! l = Some (RSt 0, v')
{{{ ownP σ }}} Write ScOrd (Lit $ LitLoc l) (of_val v) @ E
{{{ RET LitV LitUnit; ownP (<[l:=(RSt 0, v)]>σ) }}}.
Proof.
iIntros (??) "?HΦ". iApply ownP_lift_atomic_det_head_step; eauto.
by intros; inv_head_step; eauto. rewrite big_sepL_nil right_id; iFrame.
Qed.
Lemma wp_write_na2_pst E σ l v v' :
σ !! l = Some(WSt, v')
{{{ ownP σ }}} Write Na2Ord (Lit $ LitLoc l) (of_val v) @ E
{{{ RET LitV LitUnit; ownP (<[l:=(RSt 0, v)]>σ) }}}.
Proof.
iIntros (??) "?HΦ". iApply ownP_lift_atomic_det_head_step; eauto.
by intros; inv_head_step; eauto. rewrite big_sepL_nil right_id; iFrame.
Qed.
Lemma wp_write_na1_pst E l v Φ :
(|={E,}=> σ v', σ !! l = Some(RSt 0, v')
ownP σ
(ownP (<[l:=(WSt, v')]>σ) ={,E}=∗
WP Write Na2Ord (Lit $ LitLoc l) (of_val v) @ E {{ Φ }})) -∗
WP Write Na1Ord (Lit $ LitLoc l) (of_val v) @ E {{ Φ }}.
Proof.
iIntros "HΦP". iApply (ownP_lift_head_step E); auto.
iMod "HΦP" as (σ v') "(%&HΦ&HP)". iModIntro. iExists σ. iSplit. done. iFrame.
iNext. iIntros (e2 σ2 ef) "% HΦ". inv_head_step.
rewrite big_sepL_nil right_id. iApply ("HP" with "HΦ").
Qed.
Lemma wp_cas_pst E n σ l e1 lit1 lit2 litl :
to_val e1 = Some $ LitV lit1
σ !! l = Some (RSt n, LitV litl)
(lit_eq σ lit1 litl lit_neq σ lit1 litl)
(lit_eq σ lit1 litl n = 0%nat)
{{{ ownP σ }}} CAS (Lit $ LitLoc l) e1 (Lit lit2) @ E
{{{ b, RET LitV $ lit_of_bool b;
if b is true then lit_eq σ lit1 litl ownP (<[l:=(RSt 0, LitV lit2)]>σ)
else lit_neq σ lit1 litl ownP σ }}}.
Proof.
iIntros (?%of_to_val ? Hdec Hn ?) "HP HΦ". subst.
iApply ownP_lift_atomic_head_step; eauto.
{ destruct Hdec as [Heq|Hneq].
- specialize (Hn Heq). subst. do 3 eexists. by eapply CasSucS.
- do 3 eexists. by eapply CasFailS. }
iFrame. iNext. iIntros (e2 σ2 efs Hs) "Ho".
inv_head_step; rewrite big_sepL_nil right_id.
- iApply ("HΦ" $! false). eauto.
- iApply ("HΦ" $! true). eauto.
- exfalso. refine (_ (Hn _)); last done. intros. omega.
Qed.
(** Base axioms for core primitives of the language: Stateless reductions *)
Lemma wp_fork E e :
{{{ WP e {{ _, True }} }}} Fork e @ E {{{ RET LitV LitUnit; True }}}.
Proof.
iIntros (?) "?HΦ". iApply ownP_lift_pure_det_head_step; eauto.
by intros; inv_head_step; eauto. iNext.
rewrite big_sepL_singleton. iFrame. iApply wp_value. done. by iApply "HΦ".
Qed.
Lemma wp_rec E e f xl erec erec' el Φ :
e = Rec f xl erec (* to avoids recursive calls being unfolded *)
Forall (λ ei, is_Some (to_val ei)) el
Closed (f :b: xl +b+ []) erec
subst_l xl el erec = Some erec'
WP subst' f e erec' @ E {{ Φ }} -∗
WP App e el @ E {{ Φ }}.
Proof.
iIntros (-> ???) "?". iApply ownP_lift_pure_det_head_step; subst; eauto.
by intros; inv_head_step; eauto. iNext. rewrite big_sepL_nil. by iFrame.
Qed.
Lemma wp_bin_op_heap E σ op l1 l2 l' :
bin_op_eval σ op l1 l2 l'
{{{ ownP σ }}} BinOp op (Lit l1) (Lit l2) @ E
{{{ l'', RET LitV l''; bin_op_eval σ op l1 l2 l'' ownP σ }}}.
Proof.
iIntros (? Φ) "HP HΦ". iApply ownP_lift_atomic_head_step; eauto.
iFrame "HP". iNext. iIntros (e2 σ2 efs Hs) "Ho".
inv_head_step; rewrite big_sepL_nil right_id.
iApply "HΦ". eauto.
Qed.
Lemma wp_bin_op_pure E op l1 l2 l' :
( σ, bin_op_eval σ op l1 l2 l')
{{{ True }}} BinOp op (Lit l1) (Lit l2) @ E
{{{ l'' σ, RET LitV l''; bin_op_eval σ op l1 l2 l'' }}}.
Proof.
iIntros (? Φ) "HΦ". iApply ownP_lift_pure_head_step; eauto.
{ intros. inv_head_step. done. }
iNext. iIntros (e2 efs σ Hs).
inv_head_step; rewrite big_sepL_nil right_id.
rewrite -wp_value //. iApply "HΦ". eauto.
Qed.
Lemma wp_case E i e el Φ :
0 i
nth_error el (Z.to_nat i) = Some e
WP e @ E {{ Φ }} -∗ WP Case (Lit $ LitInt i) el @ E {{ Φ }}.
Proof.
iIntros (??) "?". iApply ownP_lift_pure_det_head_step; eauto.
by intros; inv_head_step; eauto. iNext. rewrite big_sepL_nil. by iFrame.
Qed.
End lifting.
From iris.base_logic.lib Require Import namespaces.
From lrust.lang Require Export notation.
From lrust.lang Require Import heap proofmode.
Definition new : val :=
λ: ["n"],
if: "n" #0 then #((42%positive, 1337):loc)
else Alloc "n".
Opaque new.
Definition delete : val :=
λ: ["n"; "loc"],
if: "n" #0 then #()
else Free "n" "loc".
Opaque delete.
Section specs.
Context `{heapG Σ}.
Lemma wp_new E n:
heapN E 0 n
{{{ heap_ctx }}} new [ #n ] @ E
{{{ l vl, RET LitV $ LitLoc l;
n = length vl (l(Z.to_nat n) n = 0) l ↦∗ vl }}}.
Proof.
iIntros (? ? Φ) "#Hinv HΦ". wp_lam. wp_op; intros ?.
- wp_if. assert (n = 0) as -> by lia. iApply ("HΦ" $! _ []).
rewrite heap_mapsto_vec_nil. auto.
- wp_if. wp_alloc l vl as "H↦" "H†". iApply "HΦ". iFrame. auto.
Qed.
Lemma wp_delete E (n:Z) l vl :
heapN E n = length vl
{{{ heap_ctx l ↦∗ vl (l(length vl) n = 0) }}}
delete [ #n; #l] @ E
{{{ RET LitV LitUnit; True }}}.
Proof.
iIntros (? ? Φ) "(#Hinv & H↦ & [H†|%]) HΦ";
wp_lam; wp_op; intros ?; try lia; wp_if; try wp_free; by iApply "HΦ".
Qed.
End specs.
\ No newline at end of file
From lrust.lang Require Export derived.
Coercion LitInt : Z >-> base_lit.
Coercion LitLoc : loc >-> base_lit.
Coercion App : expr >-> Funclass.
Coercion of_val : val >-> expr.
Coercion Var : string >-> expr.
Coercion BNamed : string >-> binder.
Notation "<>" := BAnon : lrust_binder_scope.
(* No scope for the values, does not conflict and scope is often not inferred
properly. *)
Notation "# l" := (LitV l%Z%V) (at level 8, format "# l").
Notation "# l" := (Lit l%Z%V) (at level 8, format "# l") : expr_scope.
(** Syntax inspired by Coq/Ocaml. Constructions with higher precedence come
first. *)
Notation "'case:' e0 'of' [ e1 , .. , en ]" :=
(Case e0%E (cons e1%E .. (cons en%E nil) ..))
(e0, e1, en at level 200) : expr_scope.
Notation "'if:' e1 'then' e2 'else' e3" := (If e1%E e2%E e3%E)
(at level 200, e1, e2, e3 at level 200) : expr_scope.
Notation "()" := LitUnit : val_scope.
Notation "! e" := (Read Na1Ord e%E)
(at level 9, right associativity) : expr_scope.
Notation "!ˢᶜ e" := (Read ScOrd e%E)
(at level 9, right associativity) : expr_scope.
Notation "e1 + e2" := (BinOp PlusOp e1%E e2%E)
(at level 50, left associativity) : expr_scope.
Notation "e1 - e2" := (BinOp MinusOp e1%E e2%E)
(at level 50, left associativity) : expr_scope.
Notation "e1 ≤ e2" := (BinOp LeOp e1%E e2%E)
(at level 70) : expr_scope.
(* The unicode ← is already part of the notation "_ ← _; _" for bind. *)
Notation "e1 <-ˢᶜ e2" := (Write ScOrd e1%E e2%E)
(at level 80) : expr_scope.
Notation "e1 <- e2" := (Write Na1Ord e1%E e2%E)
(at level 80) : expr_scope.
Notation "'rec:' f [ x1 ; .. ; xn ] := e" :=
(Rec f%RustB ( @cons binder x1%RustB ( .. (@cons binder xn%RustB nil) ..)) e%E)
(at level 102, f at level 1, x1 at level 1, xn at level 1, e at level 200) : expr_scope.
Notation "'rec:' f [ x1 ; .. ; xn ] := e" :=
(RecV f%RustB ( @cons binder x1%RustB ( .. (@cons binder xn%RustB nil) ..)) e%E)
(at level 102, f at level 1, x1 at level 1, xn at level 1, e at level 200) : val_scope.
Notation "'rec:' f [ ] := e" := (Rec f%RustB nil e%E)
(at level 102, f at level 1, e at level 200) : expr_scope.
Notation "'rec:' f [ ] := e" := (RecV f%RustB nil e%E)
(at level 102, f at level 1, e at level 200) : val_scope.
Notation "e1 +ₗ e2" := (BinOp OffsetOp e1%E e2%E)
(at level 50, left associativity) : expr_scope.
(** Derived notions, in order of declaration. The notations for let and seq
are stated explicitly instead of relying on the Notations Let and Seq as
defined above. This is needed because App is now a coercion, and these
notations are otherwise not pretty printed back accordingly. *)
Notation "λ: [ x1 ; .. ; xn ] , e" :=
(Lam ( @cons binder x1%RustB ( .. (@cons binder xn%RustB nil) ..)) e%E)
(at level 102, x1 at level 1, xn at level 1, e at level 200) : expr_scope.
Notation "λ: [ x1 ; .. ; xn ] , e" :=
(LamV ( @cons binder x1%RustB ( .. (@cons binder xn%RustB nil) ..)) e%E)
(at level 102, x1 at level 1, xn at level 1, e at level 200) : val_scope.
Notation "λ: [ ] , e" := (Lam nil e%E)
(at level 102, e at level 200) : expr_scope.
Notation "λ: [ ] , e" := (LamV nil e%E)
(at level 102, e at level 200) : val_scope.
Notation "'let:' x := e1 'in' e2" := (Lam [x%RustB] e2%E [e1%E])
(at level 102, x at level 1, e1, e2 at level 200) : expr_scope.
Notation "e1 ;; e2" := (Lam [BAnon] e2%E [e1%E])
(at level 100, e2 at level 200, format "e1 ;; e2") : expr_scope.
(* These are not actually values, but we want them to be pretty-printed. *)
Notation "'let:' x := e1 'in' e2" := (LamV [x%RustB] e2%E [e1%E])
(at level 102, x at level 1, e1, e2 at level 200) : val_scope.
Notation "e1 ;; e2" := (LamV [BAnon] e2%E [e1%E])
(at level 100, e2 at level 200, format "e1 ;; e2") : val_scope.
Notation "e1 <-[ i ] '☇'" := (e1 <- #i)%E
(only parsing, at level 80) : expr_scope.
Notation "e1 <-[ i ] e2" := (e1<-[i] ;; e1+#1 <- e2)%E
(at level 80) : expr_scope.
From iris.proofmode Require Import coq_tactics.
From iris.proofmode Require Export tactics.
From iris.base_logic Require Import namespaces.
From lrust.lang Require Export wp_tactics heap.
Import uPred.
Ltac wp_strip_later ::= iNext.
Section heap.
Context `{heapG Σ}.
Implicit Types P Q : iProp Σ.
Implicit Types Φ : val iProp Σ.
Implicit Types Δ : envs (iResUR Σ).
Lemma tac_wp_alloc Δ Δ' E j1 j2 n Φ :
(Δ heap_ctx) heapN E 0 < n
IntoLaterNEnvs 1 Δ Δ'
( l vl, n = length vl Δ'',
envs_app false (Esnoc (Esnoc Enil j1 (l ↦∗ vl)) j2 (l(Z.to_nat n))) Δ'
= Some Δ''
(Δ'' |={E}=> Φ (LitV $ LitLoc l)))
Δ WP Alloc (Lit $ LitInt n) @ E {{ Φ }}.
Proof.
intros ???? . rewrite -wp_fupd. eapply wand_apply; first exact:wp_alloc.
rewrite -always_and_sep_l. apply and_intro; first done.
rewrite into_laterN_env_sound; apply later_mono, forall_intro=> l;
apply forall_intro=> vl. apply wand_intro_l. rewrite -assoc.
apply pure_elim_sep_l=> Hn. apply wand_elim_r'.
destruct ( l vl) as (Δ''&?&HΔ'). done.
rewrite envs_app_sound //; simpl. by rewrite right_id HΔ'.
Qed.
Lemma tac_wp_free Δ Δ' Δ'' Δ''' E i1 i2 vl (n : Z) (n' : nat) l Φ :
(Δ heap_ctx) heapN E n = length vl
IntoLaterNEnvs 1 Δ Δ'
envs_lookup i1 Δ' = Some (false, l ↦∗ vl)%I
envs_delete i1 false Δ' = Δ''
envs_lookup i2 Δ'' = Some (false, ln')%I
envs_delete i2 false Δ'' = Δ'''
n' = length vl
(Δ''' |={E}=> Φ (LitV LitUnit))
Δ WP Free (Lit $ LitInt n) (Lit $ LitLoc l) @ E {{ Φ }}.
Proof.
intros ?? -> ?? <- ? <- -> . rewrite -wp_fupd.
eapply wand_apply; first exact:wp_free. rewrite -!assoc -always_and_sep_l.
apply and_intro; first done.
rewrite into_laterN_env_sound -!later_sep; apply later_mono.
do 2 (rewrite envs_lookup_sound' //). by rewrite wand_True.
Qed.
Lemma tac_wp_read Δ Δ' E i l q v o Φ :
(Δ heap_ctx) heapN E o = Na1Ord o = ScOrd
IntoLaterNEnvs 1 Δ Δ'
envs_lookup i Δ' = Some (false, l {q} v)%I
(Δ' |={E}=> Φ v)
Δ WP Read o (Lit $ LitLoc l) @ E {{ Φ }}.
Proof.
intros ??[->| ->]???.
- rewrite -wp_fupd. eapply wand_apply; first exact:wp_read_na.
rewrite -!assoc -always_and_sep_l. apply and_intro; first done.
rewrite into_laterN_env_sound -later_sep envs_lookup_split //; simpl.
by apply later_mono, sep_mono_r, wand_mono.
- rewrite -wp_fupd. eapply wand_apply; first exact:wp_read_sc.
rewrite -!assoc -always_and_sep_l. apply and_intro; first done.
rewrite into_laterN_env_sound -later_sep envs_lookup_split //; simpl.
by apply later_mono, sep_mono_r, wand_mono.
Qed.
Lemma tac_wp_write Δ Δ' Δ'' E i l v e v' o Φ :
to_val e = Some v'
(Δ heap_ctx) heapN E o = Na1Ord o = ScOrd
IntoLaterNEnvs 1 Δ Δ'
envs_lookup i Δ' = Some (false, l v)%I
envs_simple_replace i false (Esnoc Enil i (l v')) Δ' = Some Δ''
(Δ'' |={E}=> Φ (LitV LitUnit))
Δ WP Write o (Lit $ LitLoc l) e @ E {{ Φ }}.
Proof.
intros ???[->| ->]????.
- rewrite -wp_fupd. eapply wand_apply; first by apply wp_write_na.
rewrite -!assoc -always_and_sep_l. apply and_intro; first done.
rewrite into_laterN_env_sound -later_sep envs_simple_replace_sound //; simpl.
rewrite right_id. by apply later_mono, sep_mono_r, wand_mono.
- rewrite -wp_fupd. eapply wand_apply; first by apply wp_write_sc.
rewrite -!assoc -always_and_sep_l. apply and_intro; first done.
rewrite into_laterN_env_sound -later_sep envs_simple_replace_sound //; simpl.
rewrite right_id. by apply later_mono, sep_mono_r, wand_mono.
Qed.
End heap.
Tactic Notation "wp_apply" open_constr(lem) :=
lazymatch goal with
| |- _ wp ?E ?e ?Q => reshape_expr e ltac:(fun K e' =>
wp_bind_core K; iApply lem; try iNext)
| _ => fail "wp_apply: not a 'wp'"
end.
Tactic Notation "wp_alloc" ident(l) ident(vl) "as" constr(H) constr(Hf) :=
lazymatch goal with
| |- _ wp ?E ?e ?Q =>
first
[reshape_expr e ltac:(fun K e' =>
match eval hnf in e' with Alloc _ => wp_bind_core K end)
|fail 1 "wp_alloc: cannot find 'Alloc' in" e];
eapply tac_wp_alloc with _ H Hf;
[iAssumption || fail "wp_alloc: cannot find heap_ctx"
|solve_ndisj
|try fast_done
|apply _
|first [intros l vl ? | fail 1 "wp_alloc:" l "or" vl "not fresh"];
eexists; split;
[env_cbv; reflexivity || fail "wp_alloc:" H "or" Hf "not fresh"
|wp_finish]]
| _ => fail "wp_alloc: not a 'wp'"
end.
Tactic Notation "wp_alloc" ident(l) ident(vl) :=
let H := iFresh in let Hf := iFresh in wp_alloc l vl as H Hf.
Tactic Notation "wp_free" :=
lazymatch goal with
| |- _ wp ?E ?e ?Q =>
first
[reshape_expr e ltac:(fun K e' =>
match eval hnf in e' with Free _ _ => wp_bind_core K end)
|fail 1 "wp_free: cannot find 'Free' in" e];
eapply tac_wp_free;
[iAssumption || fail "wp_free: cannot find heap_ctx"
|solve_ndisj
|try fast_done
|apply _
|let l := match goal with |- _ = Some (_, (?l ↦∗ _)%I) => l end in
iAssumptionCore || fail "wp_free: cannot find" l "↦∗ ?"
|env_cbv; reflexivity
|let l := match goal with |- _ = Some (_, ( ?l _)%I) => l end in
iAssumptionCore || fail "wp_free: cannot find †" l "… ?"
|env_cbv; reflexivity
|try fast_done
|wp_finish]
| _ => fail "wp_free: not a 'wp'"
end.
Tactic Notation "wp_read" :=
lazymatch goal with
| |- _ wp ?E ?e ?Q =>
first
[reshape_expr e ltac:(fun K e' =>
match eval hnf in e' with Read _ _ => wp_bind_core K end)
|fail 1 "wp_read: cannot find 'Read' in" e];
eapply tac_wp_read;
[iAssumption || fail "wp_read: cannot find heap_ctx"
|solve_ndisj
|(right; fast_done) || (left; fast_done) ||
fail "wp_read: order is neither Na2Ord nor ScOrd"
|apply _
|let l := match goal with |- _ = Some (_, (?l {_} _)%I) => l end in
iAssumptionCore || fail "wp_read: cannot find" l "↦ ?"
|wp_finish]
| _ => fail "wp_read: not a 'wp'"
end.
Tactic Notation "wp_write" :=
lazymatch goal with
| |- _ wp ?E ?e ?Q =>
first
[reshape_expr e ltac:(fun K e' =>
match eval hnf in e' with Write _ _ _ => wp_bind_core K end)
|fail 1 "wp_write: cannot find 'Write' in" e];
eapply tac_wp_write;
[let e' := match goal with |- to_val ?e' = _ => e' end in
wp_done || fail "wp_write:" e' "not a value"
|iAssumption || fail "wp_write: cannot find heap_ctx"
|solve_ndisj
|(right; fast_done) || (left; fast_done) ||
fail "wp_write: order is neither Na2Ord nor ScOrd"
|apply _
|let l := match goal with |- _ = Some (_, (?l {_} _)%I) => l end in
iAssumptionCore || fail "wp_write: cannot find" l "↦ ?"
|env_cbv; reflexivity
|wp_finish]
| _ => fail "wp_write: not a 'wp'"
end.
From lrust.lang Require Export tactics derived.
Import uPred.
(** wp-specific helper tactics *)
Ltac wp_bind_core K :=
lazymatch eval hnf in K with
| [] => idtac
| _ => etrans; [|fast_by apply (wp_bind K)]; simpl
end.
(* FIXME : the [reflexivity] tactic is not able to solve trivial
reflexivity proofs, while [exact (reflexivity _)] does. *)
Ltac wp_done :=
rewrite /= ?to_of_val;
match goal with
| |- _ = _ => exact (reflexivity _)
| |- Forall _ [] => fast_by apply List.Forall_nil
| |- Forall _ (_ :: _) => apply List.Forall_cons; wp_done
| |- is_Some (Some ?v) => exists v; reflexivity
| |- _ => fast_done
end.
(* sometimes, we will have to do a final view shift, so only apply
pvs_intro if we obtain a consecutive wp *)
Ltac wp_strip_pvs :=
lazymatch goal with
| |- _ |={?E}=> _ =>
etrans; [|apply fupd_intro];
match goal with |- _ wp E _ _ => simpl | _ => fail end
end.
Ltac wp_value_head := etrans; [|eapply wp_value_fupd; wp_done]; lazy beta.
Ltac wp_strip_later := idtac. (* a hook to be redefined later *)
Ltac wp_seq_head :=
lazymatch goal with
| |- _ wp ?E (Seq _ _) ?Q =>
etrans; [|eapply wp_seq; wp_done]; wp_strip_later
end.
Ltac wp_finish := intros_revert ltac:(
rewrite /= ?to_of_val;
try wp_strip_later;
repeat lazymatch goal with
| |- _ wp ?E (Seq _ _) ?Q =>
etrans; [|eapply wp_seq; wp_done]; wp_strip_later
| |- _ wp ?E _ ?Q => wp_value_head
| |- _ |={_}=> _ => wp_strip_pvs
end).
Tactic Notation "wp_value" :=
lazymatch goal with
| |- _ wp ?E ?e ?Q => reshape_expr e ltac:(fun K e' =>
wp_bind_core K; wp_value_head) || fail "wp_value: cannot find value in" e
| _ => fail "wp_value: not a wp"
end.
Tactic Notation "wp_rec" :=
lazymatch goal with
| |- _ wp ?E ?e ?Q => reshape_expr e ltac:(fun K e' =>
match eval hnf in e' with App ?e1 _ =>
(* hnf does not reduce through an of_val *)
(* match eval hnf in e1 with Rec _ _ _ => *)
wp_bind_core K; etrans; [|eapply wp_rec; wp_done]; simpl_subst; wp_finish
(* end *) end) || fail "wp_rec: cannot find 'Rec' in" e
| _ => fail "wp_rec: not a 'wp'"
end.
Tactic Notation "wp_lam" :=
lazymatch goal with
| |- _ wp ?E ?e ?Q => reshape_expr e ltac:(fun K e' =>
match eval hnf in e' with App ?e1 _ =>
(* match eval hnf in e1 with Rec BAnon _ _ => *)
wp_bind_core K; etrans; [|eapply wp_lam; wp_done]; simpl_subst; wp_finish
(* end *) end) || fail "wp_lam: cannot find 'Lam' in" e
| _ => fail "wp_lam: not a 'wp'"
end.
Tactic Notation "wp_let" := wp_lam.
Tactic Notation "wp_seq" := wp_let.
Tactic Notation "wp_op" :=
lazymatch goal with
| |- _ wp ?E ?e ?Q => reshape_expr e ltac:(fun K e' =>
match eval hnf in e' with
| BinOp LeOp _ _ => wp_bind_core K; apply wp_le; wp_finish
| BinOp OffsetOp _ _ =>
wp_bind_core K; etrans; [|eapply wp_offset; try fast_done]; wp_finish
| BinOp PlusOp _ _ =>
wp_bind_core K; etrans; [|eapply wp_plus; try fast_done]; wp_finish
| BinOp MinusOp _ _ =>
wp_bind_core K; etrans; [|eapply wp_minus; try fast_done]; wp_finish
end) || fail "wp_op: cannot find 'BinOp' in" e
| _ => fail "wp_op: not a 'wp'"
end.
Tactic Notation "wp_if" :=
lazymatch goal with
| |- _ wp ?E ?e ?Q => reshape_expr e ltac:(fun K e' =>
match eval hnf in e' with
| If _ _ _ =>
wp_bind_core K;
etrans; [|eapply wp_if]; wp_finish
end) || fail "wp_if: cannot find 'If' in" e
| _ => fail "wp_if: not a 'wp'"
end.
Tactic Notation "wp_case" :=
lazymatch goal with
| |- _ wp ?E ?e ?Q => reshape_expr e ltac:(fun K e' =>
match eval hnf in e' with
| Case _ _ _ =>
wp_bind_core K;
etrans; [|eapply wp_case; wp_done];
simpl_subst; wp_finish
end) || fail "wp_case: cannot find 'Case' in" e
| _ => fail "wp_case: not a 'wp'"
end.
Tactic Notation "wp_bind" open_constr(efoc) :=
lazymatch goal with
| |- _ wp ?E ?e ?Q => reshape_expr e ltac:(fun K e' =>
match e' with
| efoc => unify e' efoc; wp_bind_core K
end) || fail "wp_bind: cannot find" efoc "in" e
| _ => fail "wp_bind: not a 'wp'"
end.
From lrust.lifetime Require Export primitive accessors faking.
From lrust.lifetime Require Export raw_reborrow.
From iris.proofmode Require Import tactics.
(* TODO: the name derived makes no sense: reborrow/bor_unnest, which is proven
in the model, depends on this file. *)
Section derived.
Context `{invG Σ, lftG Σ}.
Implicit Types κ : lft.
Lemma bor_exists {A} (Φ : A iProp Σ) `{!Inhabited A} E κ :
lftN E
lft_ctx -∗ &{κ}( x, Φ x) ={E}=∗ x, &{κ}Φ x.
Proof.
iIntros (?) "#LFT Hb".
iMod (bor_acc_atomic_cons with "LFT Hb") as "[H|[H† >_]]"; first done.
- iDestruct "H" as "[HΦ Hclose]". iDestruct "HΦ" as (x) "HΦ".
iExists x. iApply ("Hclose" with "HΦ"). iIntros "!> ?"; eauto.
- iExists inhabitant. by iApply (bor_fake with "LFT").
Qed.
Lemma bor_or E κ P Q :
lftN E
lft_ctx -∗ &{κ}(P Q) ={E}=∗ (&{κ}P &{κ}Q).
Proof.
iIntros (?) "#LFT H". rewrite uPred.or_alt.
iMod (bor_exists with "LFT H") as ([]) "H"; auto.
Qed.
Lemma bor_later E κ P :
lftN E
lft_ctx -∗ &{κ}( P) ={E,E∖↑lftN}▷=∗ &{κ}P.
Proof.
iIntros (?) "#LFT Hb".
iMod (bor_acc_atomic_cons with "LFT Hb") as "[H|[H† Hclose]]"; first done.
- iDestruct "H" as "[HP Hclose]". iModIntro. iNext.
iApply ("Hclose" with "* HP"). by iIntros "!> $".
- iIntros "!> !>". iMod "Hclose" as "_". by iApply (bor_fake with "LFT").
Qed.
Lemma bor_later_tok E q κ P :
lftN E
lft_ctx -∗ &{κ}( P) -∗ q.[κ] ={E}▷=∗ &{κ}P q.[κ].
Proof.
iIntros (?) "#LFT Hb Htok".
iMod (bor_acc_cons with "LFT Hb Htok") as "[HP Hclose]"; first done.
iModIntro. iNext. iApply ("Hclose" with "* HP []"). by iIntros "!> $".
Qed.
Lemma bor_iff (P Q : iProp Σ) E κ :
lftN E
lft_ctx -∗ (P Q) -∗ &{κ}P ={E}=∗ &{κ}Q.
Proof.
iIntros (?) "#LFT #Heq Hb".
iMod (bor_acc_atomic_cons with "LFT Hb") as "[[HP Hclose]|[H† Hclose]]". done.
- iApply ("Hclose" with "[HP] []").
by iApply "Heq". by iIntros "!>HQ!>"; iApply "Heq".
- iMod "Hclose". by iApply (bor_fake with "LFT").
Qed.
Lemma bor_persistent P `{!PersistentP P} E κ q :
lftN E
lft_ctx -∗ &{κ}P -∗ q.[κ] ={E}=∗ P q.[κ].
Proof.
iIntros (?) "#LFT Hb Htok".
iMod (bor_acc with "LFT Hb Htok") as "[#HP Hob]"; first done.
by iMod ("Hob" with "HP") as "[_ $]".
Qed.
Lemma lft_incl_static κ : (κ static)%I.
Proof.
iIntros "!#". iSplitR.
- iIntros (q) "?". iExists 1%Qp. iSplitR. by iApply lft_tok_static. auto.
- iIntros "Hst". by iDestruct (lft_dead_static with "Hst") as "[]".
Qed.
End derived.
From Coq Require Import Qcanon.
From iris.proofmode Require Import tactics.
From iris.base_logic Require Import lib.fractional.
From iris.algebra Require Import frac.
From lrust.lifetime Require Export shr_borrow .
Class frac_borG Σ := frac_borG_inG :> inG Σ fracR.
Definition frac_bor `{invG Σ, lftG Σ, frac_borG Σ} κ (Φ : Qp iProp Σ) :=
( γ κ', κ κ' &shr{κ'} q, Φ q own γ q
(q = 1%Qp q', (q + q' = 1)%Qp q'.[κ']))%I.
Notation "&frac{ κ } P" := (frac_bor κ P)
(format "&frac{ κ } P", at level 20, right associativity) : uPred_scope.
Section frac_bor.
Context `{invG Σ, lftG Σ, frac_borG Σ}.
Implicit Types E : coPset.
Global Instance frac_bor_proper :
Proper (pointwise_relation _ (⊣⊢) ==> (⊣⊢)) (frac_bor κ).
Proof. solve_proper. Qed.
Global Instance frac_bor_persistent : PersistentP (&frac{κ}Φ) := _.
Lemma bor_fracture φ E κ :
lftN E lft_ctx -∗ &{κ}(φ 1%Qp) ={E}=∗ &frac{κ}φ.
Proof.
iIntros (?) "#LFT Hφ". iMod (own_alloc 1%Qp) as (γ) "?". done.
iMod (bor_acc_atomic_strong with "LFT Hφ") as "[H|[H† Hclose]]". done.
- iDestruct "H" as (κ') "(#Hκκ' & Hφ & Hclose)".
iMod ("Hclose" with "*[-] []") as "Hφ"; last first.
{ iExists γ, κ'. iFrame "#". iApply (bor_share with "Hφ"). done. }
{ iIntros "!>HΦ H†!>". iNext. iDestruct "HΦ" as (q') "(HΦ & _ & [%|Hκ])". by subst.
iDestruct "Hκ" as (q'') "[_ Hκ]".
iDestruct (lft_tok_dead with "Hκ H†") as "[]". }
iExists 1%Qp. iFrame. eauto.
- iMod ("Hclose" with "*") as "_"; last first.
iExists γ, κ. iSplitR. by iApply lft_incl_refl.
iMod (bor_fake with "LFT H†"). done. by iApply bor_share.
Qed.
Lemma frac_bor_atomic_acc E κ φ :
lftN E
lft_ctx -∗ &frac{κ}φ ={E,E∖↑lftN}=∗ ( q, φ q ( φ q ={E∖↑lftN,E}=∗ True))
[κ] |={E∖↑lftN,E}=> True.
Proof.
iIntros (?) "#LFT #Hφ". iDestruct "Hφ" as (γ κ') "[Hκκ' Hshr]".
iMod (shr_bor_acc with "LFT Hshr") as "[[Hφ Hclose]|[H† Hclose]]". done.
- iLeft. iDestruct "Hφ" as (q) "(Hφ & Hγ & H)". iExists q. iFrame.
iIntros "!>Hφ". iApply "Hclose". iExists q. iFrame.
- iRight. iMod "Hclose" as "_". iMod (lft_incl_dead with "Hκκ' H†") as "$". done.
iApply fupd_intro_mask. set_solver. done.
Qed.
Lemma frac_bor_acc' E q κ Φ:
lftN E
lft_ctx -∗ ( q1 q2, Φ (q1+q2)%Qp Φ q1 Φ q2) -∗
&frac{κ}Φ -∗ q.[κ] ={E}=∗ q', Φ q' ( Φ q' ={E}=∗ q.[κ]).
Proof.
iIntros (?) "#LFT #HΦ Hfrac Hκ". unfold frac_bor.
iDestruct "Hfrac" as (γ κ') "#[#Hκκ' Hshr]".
iMod (lft_incl_acc with "Hκκ' Hκ") as (qκ') "[[Hκ1 Hκ2] Hclose]". done.
iMod (shr_bor_acc_tok with "LFT Hshr Hκ1") as "[H Hclose']". done.
iDestruct "H" as () "(HΦqΦ & >Hown & Hq)".
destruct (Qp_lower_bound (qκ'/2) (/2)) as (qq & qκ'0 & qΦ0 & Hqκ' & HqΦ).
iExists qq.
iAssert ( Φ qq Φ (qΦ0 + / 2))%Qp%I with "[HΦqΦ]" as "[$ HqΦ]".
{ iNext. rewrite -{1}(Qp_div_2 ) {1}HqΦ. iApply "HΦ". by rewrite assoc. }
rewrite -{1}(Qp_div_2 ) {1}HqΦ -assoc {1}Hqκ'.
iDestruct "Hκ2" as "[Hκq Hκqκ0]". iDestruct "Hown" as "[Hownq Hown]".
iMod ("Hclose'" with "[HqΦ Hq Hown Hκq]") as "Hκ1".
{ iNext. iExists _. iFrame. iRight. iDestruct "Hq" as "[%|Hq]".
- subst. iExists qq. iIntros "{$Hκq}!%".
by rewrite (comm _ qΦ0) -assoc (comm _ qΦ0) -HqΦ Qp_div_2.
- iDestruct "Hq" as (q') "[% Hq'κ]". iExists (qq + q')%Qp.
iIntros "{$Hκq $Hq'κ}!%". by rewrite assoc (comm _ _ qq) assoc -HqΦ Qp_div_2. }
clear HqΦ qΦ0. iIntros "!>HqΦ".
iMod (shr_bor_acc_tok with "LFT Hshr Hκ1") as "[H Hclose']". done.
iDestruct "H" as () "(HΦqΦ & >Hown & >[%|Hq])".
{ subst. iCombine "Hown" "Hownq" as "Hown".
by iDestruct (own_valid with "Hown") as %Hval%Qp_not_plus_q_ge_1. }
iDestruct "Hq" as (q') "[HqΦq' Hq'κ]". iCombine "Hown" "Hownq" as "Hown".
iDestruct (own_valid with "Hown") as %Hval. iDestruct "HqΦq'" as %HqΦq'.
assert (0 < q'-qq qq = q')%Qc as [Hq'q|<-].
{ change ( + qq 1)%Qc in Hval. apply Qp_eq in HqΦq'. simpl in Hval, HqΦq'.
rewrite <-HqΦq', <-Qcplus_le_mono_l in Hval. apply Qcle_lt_or_eq in Hval.
destruct Hval as [Hval|Hval].
by left; apply ->Qclt_minus_iff. right; apply Qp_eq, Qc_is_canon. by rewrite Hval. }
- assert (q' = mk_Qp _ Hq'q + qq)%Qp as ->. { apply Qp_eq. simpl. ring. }
iDestruct "Hq'κ" as "[Hq'qκ Hqκ]".
iMod ("Hclose'" with "[HqΦ HΦqΦ Hown Hq'qκ]") as "Hqκ2".
{ iNext. iExists ( + qq)%Qp. iFrame. iSplitR "Hq'qκ". by iApply "HΦ"; iFrame.
iRight. iExists _. iIntros "{$Hq'qκ}!%".
revert HqΦq'. rewrite !Qp_eq. move=>/=<-. ring. }
iApply "Hclose". iFrame. rewrite Hqκ'. by iFrame.
- iMod ("Hclose'" with "[HqΦ HΦqΦ Hown]") as "Hqκ2".
{ iNext. iExists ( qq)%Qp. iFrame. iSplitL. by iApply "HΦ"; iFrame. auto. }
iApply "Hclose". iFrame. rewrite Hqκ'. by iFrame.
Qed.
Lemma frac_bor_acc E q κ `{Fractional _ Φ} :
lftN E
lft_ctx -∗ &frac{κ}Φ -∗ q.[κ] ={E}=∗ q', Φ q' ( Φ q' ={E}=∗ q.[κ]).
Proof.
iIntros (?) "LFT". iApply (frac_bor_acc' with "LFT"). done.
iIntros "!#*". rewrite fractional. iSplit; auto.
Qed.
Lemma frac_bor_shorten κ κ' Φ: κ κ' -∗ &frac{κ'}Φ -∗ &frac{κ}Φ.
Proof.
iIntros "Hκκ' H". iDestruct "H" as (γ κ0) "[#H⊑ ?]". iExists γ, κ0. iFrame.
iApply (lft_incl_trans with "Hκκ' []"). auto.
Qed.
Lemma frac_bor_incl κ κ' q:
lft_ctx -∗ &frac{κ}(λ q', (q * q').[κ']) -∗ κ κ'.
Proof.
iIntros "#LFT#Hbor!#". iSplitR.
- iIntros (q') "Hκ'".
iMod (frac_bor_acc with "LFT Hbor Hκ'") as (q'') "[>? Hclose]". done.
iExists _. iFrame. iIntros "!>Hκ'". iApply "Hclose". auto.
- iIntros "H†'".
iMod (frac_bor_atomic_acc with "LFT Hbor") as "[H|[$ $]]". done.
iDestruct "H" as (q') "[>Hκ' _]".
iDestruct (lft_tok_dead with "Hκ' H†'") as "[]".
Qed.
End frac_bor.
Typeclasses Opaque frac_bor.
From lrust.lifetime Require Export borrow derived.
From lrust.lifetime Require Import raw_reborrow accessors.
From iris.algebra Require Import csum auth frac gmap dec_agree gset.
From iris.base_logic Require Import big_op.
From iris.base_logic.lib Require Import boxes.
From iris.proofmode Require Import tactics.
Section reborrow.
Context `{invG Σ, lftG Σ}.
Implicit Types κ : lft.
Lemma rebor E κ κ' P :
lftN E
lft_ctx -∗ κ' κ -∗ &{κ}P ={E}=∗ &{κ'}P ([κ'] ={E}=∗ &{κ}P).
Proof.
iIntros (?) "#LFT #H⊑". rewrite {1}/bor; iDestruct 1 as (κ'') "[#H⊑' Hκ'']".
iMod (raw_rebor _ _ (κ' κ'') with "LFT Hκ''") as "[Hκ'' Hclose]"; first done.
{ apply gmultiset_union_subseteq_r. }
iModIntro. iSplitL "Hκ''".
- rewrite /bor. iExists (κ' κ''). iFrame "Hκ''".
iApply (lft_incl_glb with "[]"); first iApply lft_incl_refl.
by iApply (lft_incl_trans with "H⊑").
- iIntros "Hκ†". iMod ("Hclose" with "[Hκ†]") as "Hκ''".
{ iApply lft_dead_or; auto. }
iModIntro. rewrite /bor. eauto.
Qed.
Lemma bor_unnest E κ κ' P :
lftN E
lft_ctx -∗ &{κ'} &{κ} P ={E, E∖↑lftN}▷=∗ &{κ κ'} P.
Proof.
iIntros (?) "#LFT Hκ". rewrite {2}/bor.
iMod (bor_exists with "LFT Hκ") as (κ0) "Hκ"; first done.
iMod (bor_sep with "LFT Hκ") as "[Hκ⊑ Hκ]"; first done.
rewrite {2}/bor; iDestruct "Hκ" as (κ0') "[#Hκ'⊑ Hκ]".
iMod (bor_acc_atomic with "LFT Hκ⊑") as "[[#Hκ⊑ Hclose]|[#H† Hclose]]"; first done; last first.
{ iModIntro. iNext. iMod "Hclose" as "_". iApply (bor_fake with "LFT"); first done.
iApply lft_dead_or. iRight. done. }
iMod ("Hclose" with "Hκ⊑") as "_".
set (κ'' := κ0 κ0').
iMod (raw_rebor _ _ κ'' with "LFT Hκ") as "[Hκ _]"; first done.
{ apply gmultiset_union_subseteq_r. }
iInv mgmtN as (A I) "(>HA & >HI & Hinv)" "Hclose".
iMod (ilft_create _ _ κ'' with "HA HI Hinv") as (A' I') "(% & HA & HI & Hinv)".
clear A I; rename A' into A; rename I' into I.
iDestruct (big_sepS_delete _ _ κ'' with "Hinv") as "[Hκ'' Hinv]";
first by apply elem_of_dom.
rewrite {1}/lft_inv; iDestruct "Hκ''" as "[[Hinv' >%]|[Hdead >Hdeadin]]"; last first.
{ iDestruct "Hdeadin" as %Hdeadin. iMod (lft_dead_in_tok with "HA") as "[HA #H†]"; first done.
iMod ("Hclose" with "[-]") as "_".
{ rewrite /lfts_inv. iExists A, I. iFrame "HA HI".
iApply (big_sepS_delete _ _ κ''); first by apply elem_of_dom.
iNext; iFrame "Hinv". rewrite /lft_inv. iRight. iSplit; auto. }
iMod (fupd_intro_mask') as "Hclose"; last iModIntro; first solve_ndisj.
iNext. iMod "Hclose" as "_".
iApply (bor_fake with "LFT >"); first done.
iApply (lft_incl_dead with "[] H†"); first done.
by iApply (lft_incl_mono with "Hκ⊑"). }
rewrite {1}/raw_bor /idx_bor_own /=; iDestruct "Hκ" as (i) "[Hi #Hislice]".
rewrite lft_inv_alive_unfold;
iDestruct "Hinv'" as (Pb Pi) "(Halive & Hvs & Hinh)".
rewrite /lft_bor_alive; iDestruct "Halive" as (B) "(Hbox & >HB● & HB)".
iDestruct (own_bor_valid_2 with "HB● Hi")
as %[HB%to_borUR_included _]%auth_valid_discrete_2.
iMod (slice_delete_full _ _ true with "Hislice Hbox") as (Pb') "(HP & #EQ & Hbox)"; first solve_ndisj.
{ by rewrite lookup_fmap HB. }
iMod (own_bor_update_2 with "HB● Hi") as "HB●".
{ apply auth_update_dealloc, delete_singleton_local_update. apply _. }
iMod (fupd_intro_mask') as "Hclose'"; last iModIntro; first solve_ndisj.
iNext. iMod "Hclose'" as "_".
iAssert (lft_bor_alive κ'' Pb') with "[Hbox HB● HB]" as "Halive".
{ rewrite /lft_bor_alive. iExists (delete i B).
rewrite fmap_delete. iFrame "Hbox". iSplitL "HB●".
- rewrite /to_borUR fmap_delete. done.
- rewrite big_sepM_delete; last done. iDestruct "HB" as "[_ $]". }
iMod (raw_bor_unnest' _ false with "[$HI $Hinv] HP Halive [Hvs]") as (Pb'') "([HI Hinv] & HP & Halive & Hvs)";
[solve_ndisj|exact: gmultiset_union_subseteq_l|done| |].
{ (* TODO: Use iRewrite supporting cotnractive rewriting. *)
iApply (lft_vs_cons with "[]"); last done.
iIntros "[$ Hbor]". iModIntro. iNext. by iRewrite "EQ". }
iMod ("Hclose" with "[-HP]") as "_".
{ iNext. simpl. rewrite /lfts_inv. iExists A, I. iFrame.
rewrite (big_sepS_delete _ (dom _ I) κ''); last by apply elem_of_dom.
iFrame. rewrite /lft_inv lft_inv_alive_unfold. iLeft.
iFrame "%". iExists Pb'', Pi. iFrame. }
iModIntro. rewrite /bor. iExists κ''. iFrame. subst κ''.
by iApply (lft_incl_mono with "Hκ⊑").
Qed.
End reborrow.
From iris.algebra Require Import gmap auth frac.
From iris.proofmode Require Import tactics.
From lrust.lifetime Require Export derived.
(** Shared bors *)
Definition shr_bor `{invG Σ, lftG Σ} κ (P : iProp Σ) :=
( i, &{κ,i}P inv lftN ( q, idx_bor_own q i))%I.
Notation "&shr{ κ } P" := (shr_bor κ P)
(format "&shr{ κ } P", at level 20, right associativity) : uPred_scope.
Section shared_bors.
Context `{invG Σ, lftG Σ} (P : iProp Σ).
Global Instance shr_bor_proper :
Proper ((⊣⊢) ==> (⊣⊢)) (shr_bor κ).
Proof. solve_proper. Qed.
Global Instance shr_bor_persistent : PersistentP (&shr{κ} P) := _.
Lemma bor_share E κ : lftN E &{κ}P ={E}=∗ &shr{κ}P.
Proof.
iIntros (?) "HP". rewrite bor_unfold_idx. iDestruct "HP" as (i) "(#?&Hown)".
iExists i. iFrame "#". iApply inv_alloc. auto.
Qed.
Lemma shr_bor_acc E κ :
lftN E
lft_ctx -∗ &shr{κ}P ={E,E∖↑lftN}=∗ P (P ={E∖↑lftN,E}=∗ True)
[κ] |={E∖↑lftN,E}=> True.
Proof.
iIntros (?) "#LFT #HP". iDestruct "HP" as (i) "(#Hidx&#Hinv)".
iInv lftN as (q') ">[Hq'0 Hq'1]" "Hclose".
iMod ("Hclose" with "[Hq'1]") as "_". by eauto.
iMod (idx_bor_atomic_acc with "LFT Hidx Hq'0") as "[[HP Hclose]|[H† Hclose]]". done.
- iLeft. iFrame. iIntros "!>HP". by iMod ("Hclose" with "HP").
- iRight. iFrame. iIntros "!>". by iMod "Hclose".
Qed.
Lemma shr_bor_acc_tok E q κ :
lftN E
lft_ctx -∗ &shr{κ}P -∗ q.[κ] ={E,E∖↑lftN}=∗ P (P ={E∖↑lftN,E}=∗ q.[κ]).
Proof.
iIntros (?) "#LFT #Hshr Hκ".
iMod (shr_bor_acc with "LFT Hshr") as "[[$ Hclose]|[H† _]]". done.
- iIntros "!>HP". by iMod ("Hclose" with "HP").
- iDestruct (lft_tok_dead with "Hκ H†") as "[]".
Qed.
Lemma shr_bor_shorten κ κ': κ κ' -∗ &shr{κ'}P -∗ &shr{κ}P.
Proof.
iIntros "#H⊑ H". iDestruct "H" as (i) "[??]". iExists i. iFrame.
by iApply (idx_bor_shorten with "H⊑").
Qed.
End shared_bors.
Typeclasses Opaque shr_bor.
From iris.proofmode Require Import tactics.
From lrust.typing Require Export type.
From lrust.typing Require Import typing perm.
Section bool.
Context `{typeG Σ}.
Program Definition bool : type :=
{| st_size := 1; st_own tid vl := ( z:bool, vl = [ #z ])%I |}.
Next Obligation. iIntros (tid vl) "H". iDestruct "H" as (z) "%". by subst. Qed.
Lemma typed_bool ρ (b:Datatypes.bool): typed_step_ty ρ #b bool.
Proof. iIntros (tid) "!#(_&_&_&$)". wp_value. by iExists _. Qed.
Lemma typed_if ρ e1 e2 ν:
typed_program ρ e1 typed_program ρ e2
typed_program (ρ ν bool) (if: ν then e1 else e2).
Proof.
iIntros (He1 He2 tid) "!#(#HEAP & #LFT & [Hρ H◁] & Htl)".
wp_bind ν. iApply (has_type_wp with "H◁"). iIntros (v) "% H◁!>".
rewrite has_type_value. iDestruct "H◁" as (b) "Heq". iDestruct "Heq" as %[= ->].
wp_if. destruct b; iNext. iApply He1; iFrame "∗#". iApply He2; iFrame "∗#".
Qed.
End bool.
\ No newline at end of file
From iris.proofmode Require Import tactics.
From iris.program_logic Require Import hoare.
From lrust.lifetime Require Import borrow.
From lrust.typing Require Export type.
From lrust.typing Require Import type_incl typing.
Section fn.
Context `{typeG Σ}.
Program Definition cont {n : nat} (ρ : vec val n @perm Σ) :=
{| ty_size := 1;
ty_own tid vl := ( f, vl = [f]
vl, ρ vl tid -∗ na_own tid
-∗ WP f (map of_val vl) {{λ _, False}})%I;
ty_shr κ tid N l := True%I |}.
Next Obligation.
iIntros (n ρ tid vl) "H". iDestruct "H" as (f) "[% _]". by subst.
Qed.
Next Obligation. intros. by iIntros "_ _ $". Qed.
Next Obligation. intros. by iIntros "_ _ _". Qed.
(* TODO : For now, functions are not Send. This means they cannot be
called in another thread than the one that created it. We will
need Send functions when dealing with multithreading ([fork]
needs a Send closure). *)
Program Definition fn {A n} (ρ : A -> vec val n @perm Σ) : type :=
{| st_size := 1;
st_own tid vl := ( f, vl = [f] x vl,
{{ ρ x vl tid na_own tid }} f (map of_val vl) {{λ _, False}})%I |}.
Next Obligation.
iIntros (x n ρ tid vl) "H". iDestruct "H" as (f) "[% _]". by subst.
Qed.
Lemma ty_incl_cont {n} ρ ρ1 ρ2 :
Duplicable ρ ( vl : vec val n, ρ ρ2 vl ρ1 vl)
ty_incl ρ (cont ρ1) (cont ρ2).
Proof.
iIntros (? Hρ1ρ2 tid) "#LFT #Hρ!>". iSplit; iIntros "!#*H"; last by auto.
iDestruct "H" as (f) "[% Hwp]". subst. iExists _. iSplit. done.
iIntros (vl) "Hρ2 Htl". iApply ("Hwp" with ">[-Htl] Htl").
iApply (Hρ1ρ2 with "LFT"). by iFrame.
Qed.
Lemma ty_incl_fn {A n} ρ ρ1 ρ2 :
Duplicable ρ ( (x : A) (vl : vec val n), ρ ρ2 x vl ρ1 x vl)
ty_incl ρ (fn ρ1) (fn ρ2).
Proof.
iIntros (? Hρ1ρ2 tid) "#LFT #Hρ!>". iSplit; iIntros "!#*#H".
- iDestruct "H" as (f) "[% Hwp]". subst. iExists _. iSplit. done.
iIntros (x vl) "!#[Hρ2 Htl]". iApply ("Hwp" with ">").
iFrame. iApply (Hρ1ρ2 with "LFT"). by iFrame.
- iSplit; last done. simpl. iDestruct "H" as (vl0) "[? Hvl]".
iExists vl0. iFrame "#". iNext. iDestruct "Hvl" as (f) "[% Hwp]".
iExists f. iSplit. done. iIntros (x vl) "!#[Hρ2 Htl]".
iApply ("Hwp" with ">"). iFrame. iApply (Hρ1ρ2 with "LFT >"). by iFrame.
Qed.
Lemma ty_incl_fn_cont {A n} ρ ρf (x : A) :
ty_incl ρ (fn ρf) (cont (n:=n) (ρf x)).
Proof.
iIntros (tid) "#LFT _!>". iSplit; iIntros "!#*H"; last by iSplit.
iDestruct "H" as (f) "[%#H]". subst. iExists _. iSplit. done.
iIntros (vl) "Hρf Htl". iApply "H". by iFrame.
Qed.
Lemma ty_incl_fn_specialize {A B n} (f : A B) ρ ρfn :
ty_incl ρ (fn (n:=n) ρfn) (fn (ρfn f)).
Proof.
iIntros (tid) "_ _!>". iSplit; iIntros "!#*H".
- iDestruct "H" as (fv) "[%#H]". subst. iExists _. iSplit. done.
iIntros (x vl). by iApply "H".
- iSplit; last done.
iDestruct "H" as (fvl) "[?Hown]". iExists _. iFrame. iNext.
iDestruct "Hown" as (fv) "[%H]". subst. iExists _. iSplit. done.
iIntros (x vl). by iApply "H".
Qed.
Lemma typed_fn {A n} `{Duplicable _ ρ, Closed (f :b: xl +b+ []) e} θ :
length xl = n
( (a : A) (vl : vec val n) (fv : val) e',
subst_l xl (map of_val vl) e = Some e'
typed_program (fv fn θ (θ a vl) ρ) (subst' f fv e'))
typed_step_ty ρ (Rec f xl e) (fn θ).
Proof.
iIntros (Hn He tid) "!#(#HEAP&#LFT&#Hρ&$)".
assert (Rec f xl e = RecV f xl e) as -> by done. iApply wp_value'.
rewrite has_type_value.
iLöb as "IH". iExists _. iSplit. done. iIntros (a vl) "!#[Hθ?]".
assert (is_Some (subst_l xl (map of_val vl) e)) as [e' He'].
{ clear -Hn. revert xl Hn e. induction vl=>-[|x xl] //=. by eauto.
intros ? e. edestruct IHvl as [e' ->]. congruence. eauto. }
iApply wp_rec; try done.
{ apply List.Forall_forall=>?. rewrite in_map_iff=>-[?[<- _]].
rewrite to_of_val. eauto. }
iNext. iApply He. done. iFrame "∗#". by rewrite has_type_value.
Qed.
Lemma typed_cont {n} `{Closed (f :b: xl +b+ []) e} ρ θ :
length xl = n
( (fv : val) (vl : vec val n) e',
subst_l xl (map of_val vl) e = Some e'
typed_program (fv cont (λ vl, ρ θ vl)%P (θ vl) ρ) (subst' f fv e'))
typed_step_ty ρ (Rec f xl e) (cont θ).
Proof.
iIntros (Hn He tid) "!#(#HEAP&#LFT&Hρ&$)". specialize (He (RecV f xl e)).
assert (Rec f xl e = RecV f xl e) as -> by done. iApply wp_value'.
rewrite has_type_value.
iLöb as "IH". iExists _. iSplit. done. iIntros (vl) "Hθ ?".
assert (is_Some (subst_l xl (map of_val vl) e)) as [e' He'].
{ clear -Hn. revert xl Hn e. induction vl=>-[|x xl] //=. by eauto.
intros ? e. edestruct IHvl as [e' ->]. congruence. eauto. }
iApply wp_rec; try done.
{ apply List.Forall_forall=>?. rewrite in_map_iff=>-[?[<- _]].
rewrite to_of_val. eauto. }
iNext. iApply He. done. iFrame "∗#". rewrite has_type_value.
iExists _. iSplit. done. iIntros (vl') "[Hρ Hθ] Htl".
iDestruct ("IH" with "Hρ") as (f') "[Hf' IH']".
iDestruct "Hf'" as %[=<-]. iApply ("IH'" with "Hθ Htl").
Qed.
End fn.
From iris.proofmode Require Import tactics.
From lrust.typing Require Export type.
From lrust.typing Require Import typing bool perm.
Section int.
Context `{typeG Σ}.
Program Definition int : type :=
{| st_size := 1; st_own tid vl := ( z:Z, vl = [ #z ])%I |}.
Next Obligation. iIntros (tid vl) "H". iDestruct "H" as (z) "%". by subst. Qed.
Lemma typed_int ρ (z:Datatypes.nat) :
typed_step_ty ρ #z int.
Proof. iIntros (tid) "!#(_&_&_&$)". wp_value. by iExists _. Qed.
Lemma typed_plus e1 e2 ρ1 ρ2:
typed_step_ty ρ1 e1 int typed_step_ty ρ2 e2 int
typed_step_ty (ρ1 ρ2) (e1 + e2) int.
Proof.
unfold typed_step_ty, typed_step. setoid_rewrite has_type_value.
iIntros (He1 He2 tid) "!#(#HEAP&#ĽFT&[H1 H2]&?)".
wp_bind e1. iApply wp_wand_r. iSplitR "H2". iApply He1; iFrame "∗#".
iIntros (v1) "[Hv1?]". iDestruct "Hv1" as (z1) "Hz1". iDestruct "Hz1" as %[=->].
wp_bind e2. iApply wp_wand_r. iSplitL. iApply He2; iFrame "∗#".
iIntros (v2) "[Hv2$]". iDestruct "Hv2" as (z2) "Hz2". iDestruct "Hz2" as %[=->].
wp_op. by iExists _.
Qed.
Lemma typed_minus e1 e2 ρ1 ρ2:
typed_step_ty ρ1 e1 int typed_step_ty ρ2 e2 int
typed_step_ty (ρ1 ρ2) (e1 - e2) int.
Proof.
unfold typed_step_ty, typed_step. setoid_rewrite has_type_value.
iIntros (He1 He2 tid) "!#(#HEAP&#LFT&[H1 H2]&?)".
wp_bind e1. iApply wp_wand_r. iSplitR "H2". iApply He1; iFrame "∗#".
iIntros (v1) "[Hv1?]". iDestruct "Hv1" as (z1) "Hz1". iDestruct "Hz1" as %[=->].
wp_bind e2. iApply wp_wand_r. iSplitL. iApply He2; iFrame "∗#".
iIntros (v2) "[Hv2$]". iDestruct "Hv2" as (z2) "Hz2". iDestruct "Hz2" as %[=->].
wp_op. by iExists _.
Qed.
Lemma typed_le e1 e2 ρ1 ρ2:
typed_step_ty ρ1 e1 int typed_step_ty ρ2 e2 int
typed_step_ty (ρ1 ρ2) (e1 e2) bool.
Proof.
unfold typed_step_ty, typed_step. setoid_rewrite has_type_value.
iIntros (He1 He2 tid) "!#(#HEAP&#LFT&[H1 H2]&?)".
wp_bind e1. iApply wp_wand_r. iSplitR "H2". iApply He1; iFrame "∗#".
iIntros (v1) "[Hv1?]". iDestruct "Hv1" as (z1) "Hz1". iDestruct "Hz1" as %[=->].
wp_bind e2. iApply wp_wand_r. iSplitL. iApply He2; iFrame "∗#".
iIntros (v2) "[Hv2$]". iDestruct "Hv2" as (z2) "Hz2". iDestruct "Hz2" as %[=->].
wp_op; intros _; by iExists _.
Qed.
End int.
\ No newline at end of file
From iris.proofmode Require Import tactics.
From iris.base_logic Require Import big_op.
From iris.base_logic.lib Require Import fractional.
From lrust.lifetime Require Export derived.
Section lft_contexts.
Context `{invG Σ, lftG Σ}.
Implicit Type (κ : lft).
(* External lifetime contexts. *)
Inductive lectx_elt : Type :=
| LECtx_Alive κ
| LECtx_Incl κ κ'.
Definition lectx := list lectx_elt.
Definition lectx_elt_interp (x : lectx_elt) (q : Qp) : iProp Σ :=
match x with
| LECtx_Alive κ => q.[κ]
| LECtx_Incl κ κ' => κ κ'
end%I.
Global Instance lectx_elt_interp_fractional x:
Fractional (lectx_elt_interp x).
Proof. destruct x; unfold lectx_elt_interp; apply _. Qed.
Typeclasses Opaque lectx_elt_interp.
Definition lectx_interp (E : lectx) (q : Qp) : iProp Σ :=
([ list] x E, lectx_elt_interp x q)%I.
Global Instance lectx_interp_fractional E:
Fractional (lectx_interp E).
Proof. intros ??. rewrite -big_sepL_sepL. by setoid_rewrite <-fractional. Qed.
Global Instance lectx_interp_as_fractional E q:
AsFractional (lectx_interp E q) (lectx_interp E) q.
Proof. done. Qed.
Global Instance lectx_interp_permut:
Proper (() ==> eq ==> (⊣⊢)) lectx_interp.
Proof. intros ????? ->. by apply big_opL_permutation. Qed.
Typeclasses Opaque lectx_interp.
(* Local lifetime contexts. *)
Definition llctx_elt : Type := lft * list lft.
Definition llctx := list llctx_elt.
Definition llctx_elt_interp (x : llctx_elt) (q : Qp) : iProp Σ :=
let κ' := foldr () static (x.2) in
( κ0, x.1 = κ' κ0 q.[κ0] (1.[x.1] ={,⊤∖↑lftN}▷=∗ [x.1]))%I.
Global Instance llctx_elt_interp_fractional x :
Fractional (llctx_elt_interp x).
Proof.
destruct x as [κ κs]. iIntros (q q'). iSplit; iIntros "H".
- iDestruct "H" as (κ0) "(% & [Hq Hq'] & #?)".
iSplitL "Hq"; iExists _; by iFrame "∗%".
- iDestruct "H" as "[Hq Hq']".
iDestruct "Hq" as (κ0) "(% & Hq & #?)".
iDestruct "Hq'" as (κ0') "(% & Hq' & #?)". simpl in *.
rewrite (inj (union (foldr () static κs)) κ0' κ0); last congruence.
iExists κ0. by iFrame "∗%".
Qed.
Typeclasses Opaque llctx_elt_interp.
Definition llctx_interp (L : llctx) (q : Qp) : iProp Σ :=
([ list] x L, llctx_elt_interp x q)%I.
Global Instance llctx_interp_fractional L:
Fractional (llctx_interp L).
Proof. intros ??. rewrite -big_sepL_sepL. by setoid_rewrite <-fractional. Qed.
Global Instance llctx_interp_as_fractional L q:
AsFractional (llctx_interp L q) (llctx_interp L) q.
Proof. done. Qed.
Global Instance llctx_interp_permut:
Proper (() ==> eq ==> (⊣⊢)) llctx_interp.
Proof. intros ????? ->. by apply big_opL_permutation. Qed.
Typeclasses Opaque llctx_interp.
Context (E : lectx) (L : llctx).
(* Lifetime inclusion *)
(* There does not seem to be a need in the type system for
"equivalence" of lifetimes. If so, TODO : add it, and the
corresponding [Proper] instances for the relevent types. *)
Definition incl κ κ' : Prop :=
qE qL, lectx_interp E qE -∗ llctx_interp L qL -∗ κ κ'.
Global Instance incl_preorder : PreOrder incl.
Proof.
split.
- iIntros (???) "_ _". iApply lft_incl_refl.
- iIntros (??? H1 H2 ??) "HE HL". iApply (lft_incl_trans with "[#] [#]").
iApply (H1 with "HE HL"). iApply (H2 with "HE HL").
Qed.
Lemma incl_static κ : incl κ static.
Proof. iIntros (??) "_ _". iApply lft_incl_static. Qed.
Lemma incl_local κ κ' κs : (κ, κs) L κ' κs incl κ κ'.
Proof.
intros ? Hκ'κs ??. rewrite /llctx_interp /llctx_elt_interp big_sepL_elem_of //.
iIntros "_ H". iDestruct "H" as (κ0) "[H _]". simpl. iDestruct "H" as %->.
iApply lft_le_incl. etrans; last by apply gmultiset_union_subseteq_l.
clear -Hκ'κs. induction Hκ'κs.
- apply gmultiset_union_subseteq_l.
- etrans. done. apply gmultiset_union_subseteq_r.
Qed.
Lemma incl_external κ κ' : LECtx_Incl κ κ' E incl κ κ'.
Proof.
intros ???. rewrite /lectx_interp /lectx_elt_interp big_sepL_elem_of //.
by iIntros "$ _".
Qed.
(* Lifetime aliveness *)
Definition alive (κ : lft) : Prop :=
F qE qL, ⌜↑lftN F -∗ lectx_interp E qE -∗ llctx_interp L qL ={F}=∗
q', q'.[κ] (q'.[κ] ={F}=∗ lectx_interp E qE llctx_interp L qL).
Lemma alive_static : alive static.
Proof.
iIntros (F qE qL) "%$$". iExists 1%Qp. iSplitL. by iApply lft_tok_static. auto.
Qed.
Lemma alive_llctx κ κs: (κ, κs) L Forall alive κs alive κ.
Proof.
iIntros ([i HL]%elem_of_list_lookup_1 Hκs F qE qL) "% HE HL".
iDestruct "HL" as "[HL1 HL2]". rewrite {2}/llctx_interp /llctx_elt_interp.
iDestruct (big_sepL_lookup_acc with "HL2") as "[Hκ Hclose]". done.
iDestruct "Hκ" as (κ0) "(EQ & Htok & #Hend)". simpl. iDestruct "EQ" as %->.
iAssert ( q', q'.[foldr union static κs]
(q'.[foldr union static κs] ={F}=∗ lectx_interp E qE llctx_interp L (qL / 2)))%I
with ">[HE HL1]" as "H".
{ move:(qL/2)%Qp=>qL'. clear HL. iClear "Hend".
iInduction Hκs as [|κ κs ?] "IH" forall (qE qL').
- iExists 1%Qp. iFrame. iSplitR; last by auto. iApply lft_tok_static.
- iDestruct "HL1" as "[HL1 HL2]". iDestruct "HE" as "[HE1 HE2]".
iMod ( with "* [%] HE1 HL1") as (q') "[Htok' Hclose]". done.
iMod ("IH" with "* HE2 HL2") as (q'') "[Htok'' Hclose']".
destruct (Qp_lower_bound q' q'') as (q0 & q'2 & q''2 & -> & ->).
iExists q0. rewrite -lft_tok_sep. iDestruct "Htok'" as "[$ Hr']".
iDestruct "Htok''" as "[$ Hr'']". iIntros "!>[Hκ Hfold]".
iMod ("Hclose" with "[$Hκ $Hr']") as "[$$]". iApply "Hclose'". iFrame. }
iDestruct "H" as (q') "[Htok' Hclose']". rewrite -{5}(Qp_div_2 qL).
destruct (Qp_lower_bound q' (qL/2)) as (q0 & q'2 & q''2 & -> & ->).
iExists q0. rewrite -(lft_tok_sep q0). iDestruct "Htok" as "[$ Htok]".
iDestruct "Htok'" as "[$ Htok']". iIntros "!>[Hfold Hκ0]".
iMod ("Hclose'" with "[$Hfold $Htok']") as "[$$]".
rewrite /llctx_interp /llctx_elt_interp. iApply "Hclose". iExists κ0. iFrame. auto.
Qed.
Lemma alive_lectx κ: LECtx_Alive κ E alive κ.
Proof.
iIntros ([i HE]%elem_of_list_lookup_1 F qE qL) "% HE $ !>".
rewrite /lectx_interp /lectx_elt_interp.
iDestruct (big_sepL_lookup_acc with "HE") as "[Hκ Hclose]". done.
iExists qE. iFrame. iIntros "?!>". by iApply "Hclose".
Qed.
Lemma alive_incl κ κ': alive κ incl κ κ' alive κ'.
Proof.
iIntros (Hal Hinc F qE qL) "% HE HL".
iAssert (κ κ')%I with "[#]" as "#Hincl". by iApply (Hinc with "HE HL").
iMod (Hal with "[%] HE HL") as (q') "[Htok Hclose]". done.
iMod (lft_incl_acc with "Hincl Htok") as (q'') "[Htok Hclose']". done.
iExists q''. iIntros "{$Htok}!>Htok". iApply ("Hclose" with ">").
by iApply "Hclose'".
Qed.
(* External lifetime context satisfiability *)
Definition lectx_sat E' : Prop :=
qE qL F, ⌜↑lftN F -∗ lectx_interp E qE -∗ llctx_interp L qL ={F}=∗
qE', lectx_interp E' qE'
(lectx_interp E' qE' ={F}=∗ lectx_interp E qE llctx_interp L qL).
Lemma lectx_sat_nil : lectx_sat [].
Proof.
iIntros (qE qL F) "%$$". iExists 1%Qp. rewrite /lectx_interp big_sepL_nil. auto.
Qed.
Lemma lectx_sat_alive E' κ :
alive κ lectx_sat E' lectx_sat (LECtx_Alive κ :: E').
Proof.
iIntros ( HE' qE qL F) "% [HE1 HE2] [HL1 HL2]".
iMod ( with "[%] HE1 HL1") as (q) "[Htok Hclose]". done.
iMod (HE' with "[%] HE2 HL2") as (q') "[HE' Hclose']". done.
destruct (Qp_lower_bound q q') as (q0 & q2 & q'2 & -> & ->). iExists q0.
rewrite {5 6}/lectx_interp big_sepL_cons /=.
iDestruct "Htok" as "[$ Htok]". iDestruct "HE'" as "[Hf HE']".
iSplitL "Hf". by rewrite /lectx_interp.
iIntros "!>[Htok' ?]". iMod ("Hclose" with "[$Htok $Htok']") as "[$$]".
iApply "Hclose'". iFrame. by rewrite /lectx_interp.
Qed.
Lemma lectx_sat_incl E' κ κ' :
incl κ κ' lectx_sat E' lectx_sat (LECtx_Incl κ κ' :: E').
Proof.
iIntros (Hκκ' HE' qE qL F) "% HE HL".
iAssert (κ κ')%I with "[#]" as "#Hincl". by iApply (Hκκ' with "HE HL").
iMod (HE' with "[%] HE HL") as (q) "[HE' Hclose']". done.
iExists q. rewrite {1 2 4 5}/lectx_interp big_sepL_cons /=.
iIntros "{$Hincl $HE'}!>[_ ?]". by iApply "Hclose'".
Qed.
End lft_contexts.
\ No newline at end of file
From Coq Require Import Qcanon.
From iris.proofmode Require Import tactics.
From lrust.lifetime Require Import borrow frac_borrow.
From lrust.lang Require Export new_delete.
From lrust.lang Require Import heap.
From lrust.typing Require Export type.
From lrust.typing Require Import typing product perm.
Section own.
Context `{typeG Σ}.
(* Even though it does not seem too natural to put this here, it is
the only place where it is used. *)
Program Definition uninit : type :=
{| st_size := 1; st_own tid vl := length vl = 1%nat⌝%I |}.
Next Obligation. done. Qed.
Program Definition freeable_sz (n : nat) (sz : nat) (l : loc) : iProp Σ :=
match sz, n return _ with
| 0%nat, _ => True
| _, 0%nat => False
| sz, n => {mk_Qp (sz / n) _}lsz
end%I.
Next Obligation. intros _ _ _ sz0 ? n ?. by apply Qcmult_pos_pos. Qed.
Global Instance freable_sz_timeless n sz l : TimelessP (freeable_sz n sz l).
Proof. destruct sz, n; apply _. Qed.
Lemma freeable_sz_full n l : freeable_sz n n l ⊣⊢ ({1}ln Z.of_nat n = 0)%I.
Proof.
destruct n.
- iSplit; iIntros "H /="; auto.
- assert (Z.of_nat (S n) = 0 False) as -> by done. rewrite right_id.
rewrite /freeable_sz (proj2 (Qp_eq (mk_Qp _ _) 1)) //= Qcmult_inv_r //.
Qed.
Lemma freeable_sz_split n sz1 sz2 l :
freeable_sz n sz1 l freeable_sz n sz2 (shift_loc l sz1) ⊣⊢
freeable_sz n (sz1 + sz2) l.
Proof.
destruct sz1; [|destruct sz2;[|rewrite /freeable_sz plus_Sn_m; destruct n]].
- by rewrite left_id shift_loc_0.
- by rewrite right_id Nat.add_0_r.
- iSplit. by iIntros "[[]?]". by iIntros "[]".
- rewrite heap_freeable_op_eq. f_equiv. apply Qp_eq.
rewrite /= -Qcmult_plus_distr_l -Z2Qc_inj_add /Z.add. do 3 f_equal. lia.
Qed.
Program Definition own (n : nat) (ty : type) :=
{| ty_size := 1;
ty_own tid vl :=
(* We put a later in front of the †{q}, because we cannot use
[ty_size_eq] on [ty] at step index 0, which would in turn
prevent us to prove [subtype_own].
Since this assertion is timeless, this should not cause
problems. *)
( l:loc, vl = [ #l ] l ↦∗: ty.(ty_own) tid
freeable_sz n ty.(ty_size) l)%I;
ty_shr κ tid E l :=
( l':loc, &frac{κ}(λ q', l {q'} #l')
( q' F, E mgmtE F
q'.[κ] ={F,FE}▷=∗ ty.(ty_shr) κ tid E l' q'.[κ]))%I
|}.
Next Obligation.
iIntros (q ty tid vl) "H". iDestruct "H" as (l) "[% _]". by subst.
Qed.
Next Obligation.
move=> q ty E N κ l tid q' ?? /=. iIntros "#LFT Hshr Htok".
iMod (bor_exists with "LFT Hshr") as (vl) "Hb". set_solver.
iMod (bor_sep with "LFT Hb") as "[Hb1 Hb2]". set_solver.
iMod (bor_exists with "LFT Hb2") as (l') "Hb2". set_solver.
iMod (bor_sep with "LFT Hb2") as "[EQ Hb2]". set_solver.
iMod (bor_persistent with "LFT EQ Htok") as "[>% $]". set_solver. subst.
rewrite heap_mapsto_vec_singleton.
iMod (bor_sep with "LFT Hb2") as "[Hb2 _]". set_solver.
iMod (bor_fracture (λ q, l {q} #l')%I with "LFT Hb1") as "Hbf". set_solver.
rewrite bor_unfold_idx. iDestruct "Hb2" as (i) "(#Hpb&Hpbown)".
iMod (inv_alloc N _ (idx_bor_own 1 i ty_shr ty κ tid (N) l')%I
with "[Hpbown]") as "#Hinv"; first by eauto.
iExists l'. iIntros "!>{$Hbf}!#". iIntros (q'' F) "% Htok".
iMod (inv_open with "Hinv") as "[INV Hclose]". set_solver.
iDestruct "INV" as "[>Hbtok|#Hshr]".
- iMod (bor_later_tok with "LFT [Hbtok] Htok") as "H". set_solver.
{ rewrite bor_unfold_idx. eauto. }
iModIntro. iNext. iMod "H" as "[Hb Htok]".
iMod (ty.(ty_share) with "LFT Hb Htok") as "[#$ $]". done. set_solver.
iApply "Hclose". auto.
- iModIntro. iNext. iMod ("Hclose" with "[]") as "_"; by eauto.
Qed.
Next Obligation.
intros _ ty κ κ' tid E E' l ?. iIntros "#LFT #Hκ #H".
iDestruct "H" as (l') "[Hfb #Hvs]".
iExists l'. iSplit. by iApply (frac_bor_shorten with "[]"). iIntros "!#".
iIntros (q' F) "% Htok".
iApply (step_fupd_mask_mono F _ _ (FE)). set_solver. set_solver.
iMod (lft_incl_acc with "Hκ Htok") as (q'') "[Htok Hclose]". set_solver.
iMod ("Hvs" with "* [%] Htok") as "Hvs'". set_solver. iModIntro. iNext.
iMod "Hvs'" as "[Hshr Htok]". iMod ("Hclose" with "Htok") as "$".
by iApply (ty.(ty_shr_mono) with "LFT Hκ").
Qed.
Global Instance own_mono E L n :
Proper (subtype E L ==> subtype E L) (own n).
Proof.
intros ty1 ty2 Hincl. split.
- done.
- iIntros (qE qL) "#LFT HE HL *".
iDestruct (Hincl.(subtype_own _ _ _ _) with "LFT HE HL") as "#Howni".
iIntros "{HE HL} !# * H". iDestruct "H" as (l) "(%&Hmt&H†)". subst.
iExists _. iSplit. done. iDestruct "Hmt" as (vl') "[Hmt Hown]". iNext.
iDestruct (ty_size_eq with "Hown") as %<-.
iDestruct ("Howni" with "* Hown") as "Hown".
iDestruct (ty_size_eq with "Hown") as %<-. iFrame.
iExists _. by iFrame.
- iIntros (qE qL) "#LFT HE HL *".
iDestruct (Hincl.(subtype_shr _ _ _ _) with "LFT HE HL") as "#Hshri".
iIntros "{HE HL} !# * H". iDestruct "H" as (l') "[Hfb #Hvs]".
iExists l'. iFrame. iIntros "!#". iIntros (q' F') "% Hκ".
iMod ("Hvs" with "* [%] Hκ") as "Hvs'". done. iModIntro. iNext.
iMod "Hvs'" as "[Hshr $]". iApply ("Hshri" with "* Hshr").
Qed.
Global Instance own_proper E L n :
Proper (eqtype E L ==> eqtype E L) (own n).
Proof. intros ?? Heq. split; f_equiv; apply Heq. Qed.
Lemma typed_new ρ (n : nat):
0 n typed_step_ty ρ (new [ #n]%E) (own n (Π(replicate n uninit))).
Proof.
iIntros (Hn tid) "!#(#HEAP&_&_&$)". iApply (wp_new with "HEAP"); try done.
iIntros "!>*(% & H† & H↦)". iExists _. iSplit. done. iNext.
rewrite Nat2Z.id. iSplitR "H†".
- iExists vl. iFrame.
match goal with H : Z.of_nat n = Z.of_nat (length vl) |- _ => rename H into Hlen end.
clear Hn. apply (inj Z.of_nat) in Hlen. subst.
iInduction vl as [|v vl] "IH". done.
iExists [v], vl. iSplit. done. by iSplit.
- assert (ty_size (Π (replicate n uninit)) = n) as ->.
{ clear. induction n; rewrite //= IHn //. }
by rewrite freeable_sz_full.
Qed.
Lemma typed_delete ty (ν : expr):
typed_step (ν own ty.(ty_size) ty) (delete [ #ty.(ty_size); ν])%E (λ _, top).
Proof.
iIntros (tid) "!#(#HEAP&_&H◁&$)". wp_bind ν.
iApply (has_type_wp with "[$H◁]"). iIntros (v) "_ H◁ !>".
rewrite has_type_value.
iDestruct "H◁" as (l) "(Hv & H↦∗: & >H†)". iDestruct "Hv" as %[=->].
iDestruct "H↦∗:" as (vl) "[>H↦ Hown]".
rewrite ty_size_eq. iDestruct "Hown" as ">Hown". iDestruct "Hown" as %<-.
iApply (wp_delete with "[-]"); try by auto.
rewrite freeable_sz_full. by iFrame.
Qed.
Lemma update_strong ty1 ty2 n:
ty1.(ty_size) = ty2.(ty_size)
update ty1 (λ ν, ν own n ty2)%P (λ ν, ν own n ty1)%P.
Proof.
iIntros (Hsz ν tid Φ E ?) "_ H◁ HΦ". iApply (has_type_wp with "H◁").
iIntros (v) "Hνv H◁". iDestruct "Hνv" as %Hνv.
rewrite has_type_value. iDestruct "H◁" as (l) "(Heq & H↦ & >H†)".
iDestruct "Heq" as %[= ->]. iDestruct "H↦" as (vl) "[>H↦ Hown]".
rewrite ty2.(ty_size_eq) -Hsz. iDestruct "Hown" as ">%". iApply "HΦ". iFrame "∗%".
iIntros (vl') "[H↦ Hown']!>". rewrite /has_type Hνv.
iExists _. iSplit. done. iFrame. iExists _. iFrame.
Qed.
Lemma consumes_copy_own ty n:
Copy ty consumes ty (λ ν, ν own n ty)%P (λ ν, ν own n ty)%P.
Proof.
iIntros (? ν tid Φ E ?) "_ H◁ Htl HΦ". iApply (has_type_wp with "H◁").
iIntros (v) "Hνv H◁". iDestruct "Hνv" as %Hνv.
rewrite has_type_value. iDestruct "H◁" as (l) "(Heq & H↦ & >H†)".
iDestruct "Heq" as %[=->]. iDestruct "H↦" as (vl) "[>H↦ #Hown]".
iAssert ( length vl = ty_size ty)%I with "[#]" as ">%".
by rewrite ty.(ty_size_eq).
iApply "HΦ". iFrame "∗#%". iIntros "!>!>!>H↦!>".
rewrite /has_type Hνv. iExists _. iSplit. done. iFrame. iExists vl. eauto.
Qed.
Lemma consumes_move ty n:
consumes ty (λ ν, ν own n ty)%P
(λ ν, ν own n (Π(replicate ty.(ty_size) uninit)))%P.
Proof.
iIntros (ν tid Φ E ?) "_ H◁ Htl HΦ". iApply (has_type_wp with "H◁").
iIntros (v) "Hνv H◁". iDestruct "Hνv" as %Hνv.
rewrite has_type_value. iDestruct "H◁" as (l) "(Heq & H↦ & >H†)".
iDestruct "Heq" as %[=->]. iDestruct "H↦" as (vl) "[>H↦ Hown]".
iAssert ( length vl = ty_size ty)%I with "[#]" as ">Hlen".
by rewrite ty.(ty_size_eq). iDestruct "Hlen" as %Hlen.
iApply "HΦ". iFrame "∗#%". iIntros "!>!>!>H↦!>".
rewrite /has_type Hνv. iExists _. iSplit. done. iSplitR "H†".
- rewrite -Hlen. iExists vl. iIntros "{$H↦}!>". clear.
iInduction vl as [|v vl] "IH". done.
iExists [v], vl. iSplit. done. by iSplit.
- assert (ty_size (Π (replicate (ty_size ty) uninit)) = ty_size ty) as ->; last by auto.
clear. induction ty.(ty_size). done. by apply (f_equal S).
Qed.
End own.