Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found

Target

Select target project
  • Villetaneuse/lambda-rust
  • iris/lambda-rust
  • maximedenes/LambdaRust-coq
  • msammler/lambda-rust
  • daniel.louwrink/lambda-rust
  • simonspies/lambda-rust
  • xldenis/lambda-rust
  • lgaeher/lambda-rust
  • JasonHuZS/lambda-rust
  • snyke7/lambda-rust
  • ivanbakel/lambda-rust
11 results
Show changes
From lrust.typing Require Import typing.
Set Default Proof Using "Type".
Section lazy_lft.
Context `{typeG Σ}.
Definition lazy_lft : val :=
funrec: <> [] :=
Newlft;;
let: "t" := new [ #2] in let: "f" := new [ #1] in let: "g" := new [ #1] in
let: "42" := #42 in "f" <- "42";;
"t" + #0 <- "f";; "t" + #1 <- "f";;
let: "t0'" := !("t" + #0) in "t0'";;
let: "23" := #23 in "g" <- "23";;
"t" + #1 <- "g";;
let: "r" := new [ #0] in
Endlft;; delete [ #2; "t"];; delete [ #1; "f"];; delete [ #1; "g"];; "return" ["r"].
Lemma lazy_lft_type :
typed_instruction_ty [] [] [] lazy_lft
(fn (λ _, [])%EL (λ _, [#]) (λ _:(), box unit)).
Proof.
apply type_fn; try apply _. move=> /= [] ret p. inv_vec p. simpl_subst.
eapply (type_newlft []); [solve_typing|]=>α.
eapply (type_new_subtype (Π[uninit 1;uninit 1])); [solve_typing..|].
intros t. simpl_subst.
eapply type_new; [solve_typing..|]=>f. simpl_subst.
eapply type_new; [solve_typing..|]=>g. simpl_subst.
eapply type_int; [solve_typing|]=>v42. simpl_subst.
eapply type_assign; [solve_typing..|by eapply write_own|].
eapply (type_assign _ (&shr{α}_)); [solve_typing..|by eapply write_own|].
eapply type_assign; [solve_typing..|by eapply write_own|].
eapply type_deref; [solve_typing..|apply: read_own_copy|done|]=>t0'. simpl_subst.
eapply type_letpath; [solve_typing..|]=>dummy. simpl_subst.
eapply type_int; [solve_typing|]=>v23. simpl_subst.
eapply type_assign; [solve_typing..|by eapply write_own|].
eapply (type_assign _ (&shr{α}int)); [solve_typing..|by eapply write_own|].
eapply type_new; [solve_typing..|] =>r. simpl_subst.
eapply type_endlft; [solve_typing..|].
eapply (type_delete (Π[&shr{_}_;&shr{_}_])%T); [solve_typing..|].
eapply type_delete; [solve_typing..|].
eapply type_delete; [solve_typing..|].
eapply (type_jump [_]); solve_typing.
Qed.
End lazy_lft.
From lrust.typing Require Import typing.
Set Default Proof Using "Type".
Section option_as_mut.
Context `{typeG Σ}.
Definition option_as_mut : val :=
funrec: <> ["o"] :=
let: "o'" := !"o" in case: !"o'" of
[ let: "r" := new [ #2 ] in "r" <-{0} ;; "k" ["r"];
let: "r" := new [ #2 ] in "r" <-{1} "o'" + #1;; "k" ["r"] ]
cont: "k" ["r"] :=
delete [ #1; "o"];; "return" ["r"].
Lemma option_as_mut_type τ :
typed_instruction_ty [] [] [] option_as_mut
(fn (λ α, [α])%EL (λ α, [# box (&uniq{α}Σ[unit; τ])]) (λ α, box (Σ[unit; &uniq{α}τ]))).
Proof.
apply type_fn; try apply _. move=> /= α ret p. inv_vec p=>o. simpl_subst.
eapply (type_cont [_] [] (λ r, [o _; r!!!0 _])%TC) ; [solve_typing..| |].
- intros k. simpl_subst.
eapply type_deref; [solve_typing..|apply read_own_move|done|]=>o'. simpl_subst.
eapply type_case_uniq; [solve_typing..|]. constructor; last constructor; last constructor.
+ left. eapply type_new; [solve_typing..|]. intros r. simpl_subst.
eapply (type_sum_assign_unit [unit; &uniq{α}τ]%T); [solve_typing..|by apply write_own|done|].
eapply (type_jump [_]); solve_typing.
+ left. eapply type_new; [solve_typing..|]. intros r. simpl_subst.
eapply (type_sum_assign [unit; &uniq{α}τ]%T); [solve_typing..|by apply write_own|done|].
eapply (type_jump [_]); solve_typing.
- move=>/= k r. inv_vec r=>r. simpl_subst.
eapply type_delete; [solve_typing..|].
eapply (type_jump [_]); solve_typing.
Qed.
End option_as_mut.
From lrust.typing Require Import typing.
Set Default Proof Using "Type".
Section rebor.
Context `{typeG Σ}.
Definition rebor : val :=
funrec: <> ["t1"; "t2"] :=
Newlft;;
letalloc: "x" <- "t1" in
let: "x'" := !"x" in let: "y" := "x'" + #0 in
"x" <- "t2";;
let: "y'" := !"y" in
letalloc: "r" <- "y'" in
Endlft ;; delete [ #2; "t1"] ;; delete [ #2; "t2"] ;;
delete [ #1; "x"] ;; "return" ["r"].
Lemma rebor_type :
typed_instruction_ty [] [] [] rebor
(fn (λ _, []) (λ _, [# box (Π[int; int]); box (Π[int; int])])
(λ (_ : ()), box int)).
Proof.
apply type_fn; try apply _. move=> /= [] ret p. inv_vec p=>t1 t2. simpl_subst.
eapply (type_newlft []). apply _. move=> α.
eapply (type_letalloc_1 (&uniq{α}Π[int; int])); [solve_typing..|]=>x. simpl_subst.
eapply type_deref; [solve_typing..|apply read_own_move|done|]=>x'. simpl_subst.
eapply (type_letpath (&uniq{α}int)); [solve_typing..|]=>y. simpl_subst.
eapply (type_assign _ (&uniq{α}Π [int; int])); [solve_typing..|by apply write_own|].
eapply type_deref; [solve_typing..|apply: read_uniq; solve_typing|done|]=>y'. simpl_subst.
eapply type_letalloc_1; [solve_typing..|]=>r. simpl_subst.
eapply type_endlft; [solve_typing..|].
eapply type_delete; [solve_typing..|].
eapply type_delete; [solve_typing..|].
eapply type_delete; [solve_typing..|].
eapply (type_jump [_]); solve_typing.
Qed.
End rebor.
From lrust.typing Require Import typing.
Set Default Proof Using "Type".
Section unbox.
Context `{typeG Σ}.
Definition unbox : val :=
funrec: <> ["b"] :=
let: "b'" := !"b" in let: "bx" := !"b'" in
letalloc: "r" <- "bx" + #0 in
delete [ #1; "b"] ;; "return" ["r"].
Lemma ubox_type :
typed_instruction_ty [] [] [] unbox
(fn (λ α, [α])%EL (λ α, [# box (&uniq{α}box (Π[int; int]))]) (λ α, box (&uniq{α} int))).
Proof.
apply type_fn; try apply _. move=> /= α ret b. inv_vec b=>b. simpl_subst.
eapply type_deref; [solve_typing..|by apply read_own_move|done|].
intros b'; simpl_subst.
eapply type_deref_uniq_own; [solve_typing..|]=>bx; simpl_subst.
eapply type_letalloc_1; [solve_typing..|]=>r. simpl_subst.
eapply type_delete; [solve_typing..|].
eapply (type_jump [_]); solve_typing.
Qed.
End unbox.
From lrust.typing Require Import typing.
Set Default Proof Using "Type".
Section unwrap_or.
Context `{typeG Σ}.
Definition unwrap_or τ : val :=
funrec: <> ["o"; "def"] :=
case: !"o" of
[ delete [ #(S τ.(ty_size)); "o"];; "return" ["def"];
letalloc: "r" <⋯ !{τ.(ty_size)}("o" + #1) in
delete [ #(S τ.(ty_size)); "o"];; delete [ #τ.(ty_size); "def"];; "return" ["r"]].
Lemma unwrap_or_type τ :
typed_instruction_ty [] [] [] (unwrap_or τ)
(fn (λ _, [])%EL (λ _, [# box (Σ[unit; τ]); box τ]) (λ _:(), box τ)).
Proof.
apply type_fn; try apply _. move=> /= [] ret p. inv_vec p=>o def. simpl_subst.
eapply type_case_own; [solve_typing..|]. constructor; last constructor; last constructor.
+ right. eapply type_delete; [solve_typing..|].
eapply (type_jump [_]); solve_typing.
+ left. eapply type_letalloc_n; [solve_typing..|by apply read_own_move|solve_typing|]=>r.
simpl_subst.
eapply (type_delete (Π[uninit _;uninit _;uninit _])); [solve_typing..|].
eapply type_delete; [solve_typing..|].
eapply (type_jump [_]); solve_typing.
Qed.
End unwrap_or.
From iris.base_logic.lib Require Export na_invariants.
From iris.base_logic Require Import big_op.
From lrust.lang Require Export proofmode notation.
From lrust.lifetime Require Export frac_borrow.
From lrust.typing Require Import lft_contexts.
Set Default Proof Using "Type".
Class typeG Σ := TypeG {
type_heapG :> heapG Σ;
type_lftG :> lftG Σ;
type_na_invG :> na_invG Σ;
type_frac_borrowG :> frac_borG Σ
}.
Definition lftE := lftN.
Definition lrustN := nroot .@ "lrust".
Definition shrN := lrustN .@ "shr".
Section type.
Context `{typeG Σ}.
Definition thread_id := na_inv_pool_name.
Record type :=
{ ty_size : nat;
ty_own : thread_id list val iProp Σ;
ty_shr : lft thread_id loc iProp Σ;
ty_shr_persistent κ tid l : PersistentP (ty_shr κ tid l);
ty_size_eq tid vl : ty_own tid vl -∗ length vl = ty_size;
(* The mask for starting the sharing does /not/ include the
namespace N, for allowing more flexibility for the user of
this type (typically for the [own] type). AFAIK, there is no
fundamental reason for this.
This should not be harmful, since sharing typically creates
invariants, which does not need the mask. Moreover, it is
more consistent with thread-local tokens, which we do not
give any.
The lifetime token is needed (a) to make the definition of simple types
nicer (they would otherwise require a "∨ □|=>[†κ]"), and (b) so that
we can have emp == sum [].
*)
ty_share E κ l tid q : lftE E
lft_ctx -∗ &{κ} (l ↦∗: ty_own tid) -∗ q.[κ] ={E}=∗
ty_shr κ tid l q.[κ];
ty_shr_mono κ κ' tid l :
lft_ctx -∗ κ' κ -∗ ty_shr κ tid l -∗ ty_shr κ' tid l
}.
Global Existing Instances ty_shr_persistent.
(** Copy types *)
Fixpoint shr_locsE (l : loc) (n : nat) : coPset :=
match n with
| 0%nat =>
| S n => shrN.@l shr_locsE (shift_loc l 1%nat) n
end.
Lemma shr_locsE_shift l n m :
shr_locsE l (n + m) = shr_locsE l n shr_locsE (shift_loc l n) m.
Proof.
revert l; induction n; intros l.
- rewrite shift_loc_0. set_solver+.
- rewrite -Nat.add_1_l Nat2Z.inj_add /= IHn shift_loc_assoc.
set_solver+.
Qed.
Lemma shr_locsE_disj l n m :
shr_locsE l n shr_locsE (shift_loc l n) m.
Proof.
revert l; induction n; intros l.
- simpl. set_solver+.
- rewrite -Nat.add_1_l Nat2Z.inj_add /=.
apply disjoint_union_l. split; last (rewrite -shift_loc_assoc; exact: IHn).
clear IHn. revert n; induction m; intros n; simpl; first set_solver+.
rewrite shift_loc_assoc. apply disjoint_union_r. split.
+ apply ndot_ne_disjoint. destruct l. intros [=]. omega.
+ rewrite -Z.add_assoc. move:(IHm (n + 1)%nat). rewrite Nat2Z.inj_add //.
Qed.
Lemma shr_locsE_shrN l n :
shr_locsE l n shrN.
Proof.
revert l; induction n=>l /=; first by set_solver+.
apply union_least; last by auto. solve_ndisj.
Qed.
Lemma shr_locsE_subseteq l n m :
(n m)%nat shr_locsE l n shr_locsE l m.
Proof.
induction 1; first done. etrans; first done.
rewrite -Nat.add_1_l [(_ + _)%nat]comm_L shr_locsE_shift. set_solver+.
Qed.
Lemma shr_locsE_split_tok l n m tid :
na_own tid (shr_locsE l (n + m)) ⊣⊢
na_own tid (shr_locsE l n) na_own tid (shr_locsE (shift_loc l n) m).
Proof.
rewrite shr_locsE_shift na_own_union //. apply shr_locsE_disj.
Qed.
Class Copy (t : type) := {
copy_persistent tid vl : PersistentP (t.(ty_own) tid vl);
copy_shr_acc κ tid E F l q :
lftE shrN E shr_locsE l (t.(ty_size) + 1) F
lft_ctx -∗ t.(ty_shr) κ tid l -∗ na_own tid F -∗ q.[κ] ={E}=∗
q', na_own tid (F shr_locsE l t.(ty_size))
(l ↦∗{q'}: t.(ty_own) tid)
(na_own tid (F shr_locsE l t.(ty_size)) -∗ l ↦∗{q'}: t.(ty_own) tid
={E}=∗ na_own tid F q.[κ])
}.
Global Existing Instances copy_persistent.
Class LstCopy (tys : list type) := lst_copy : Forall Copy tys.
Global Instance lst_copy_nil : LstCopy [] := List.Forall_nil _.
Global Instance lst_copy_cons ty tys :
Copy ty LstCopy tys LstCopy (ty::tys) := List.Forall_cons _ _ _.
(** Send and Sync types *)
Class Send (t : type) :=
send_change_tid tid1 tid2 vl : t.(ty_own) tid1 vl -∗ t.(ty_own) tid2 vl.
Class LstSend (tys : list type) := lst_send : Forall Send tys.
Global Instance lst_send_nil : LstSend [] := List.Forall_nil _.
Global Instance lst_send_cons ty tys :
Send ty LstSend tys LstSend (ty::tys) := List.Forall_cons _ _ _.
Class Sync (t : type) :=
sync_change_tid κ tid1 tid2 l : t.(ty_shr) κ tid1 l -∗ t.(ty_shr) κ tid2 l.
Class LstSync (tys : list type) := lst_sync : Forall Sync tys.
Global Instance lst_sync_nil : LstSync [] := List.Forall_nil _.
Global Instance lst_sync_cons ty tys :
Sync ty LstSync tys LstSync (ty::tys) := List.Forall_cons _ _ _.
(** Simple types *)
(* We are repeating the typeclass parameter here just to make sure
that simple_type does depend on it. Otherwise, the coercion defined
bellow will not be acceptable by Coq. *)
Record simple_type `{typeG Σ} :=
{ st_own : thread_id list val iProp Σ;
st_size_eq tid vl : st_own tid vl -∗ length vl = 1%nat;
st_own_persistent tid vl : PersistentP (st_own tid vl) }.
Global Existing Instance st_own_persistent.
Program Definition ty_of_st (st : simple_type) : type :=
{| ty_size := 1; ty_own := st.(st_own);
(* [st.(st_own) tid vl] needs to be outside of the fractured
borrow, otherwise I do not know how to prove the shr part of
[subtype_shr_mono]. *)
ty_shr := λ κ tid l,
( vl, (&frac{κ} λ q, l ↦∗{q} vl)
st.(st_own) tid vl)%I
|}.
Next Obligation. intros. apply st_size_eq. Qed.
Next Obligation.
iIntros (st E κ l tid ??) "#LFT Hmt Hκ".
iMod (bor_exists with "LFT Hmt") as (vl) "Hmt". set_solver.
iMod (bor_sep with "LFT Hmt") as "[Hmt Hown]". set_solver.
iMod (bor_persistent with "LFT Hown") as "[Hown|#H†]". set_solver.
- iFrame "Hκ". iMod (bor_fracture with "LFT [Hmt]") as "Hfrac"; last first.
{ iExists vl. iFrame. auto. }
done. set_solver.
- iExFalso. iApply (lft_tok_dead with "Hκ"). done.
Qed.
Next Obligation.
intros st κ κ' tid l. iIntros "#LFT #Hord H".
iDestruct "H" as (vl) "[#Hf #Hown]".
iExists vl. iFrame "Hown". by iApply (frac_bor_shorten with "Hord").
Qed.
Global Program Instance ty_of_st_copy st : Copy (ty_of_st st).
Next Obligation.
intros st κ tid E ? l q ? HF. iIntros "#LFT #Hshr Htok Hlft".
iDestruct (na_own_acc with "Htok") as "[$ Htok]"; first set_solver+.
iDestruct "Hshr" as (vl) "[Hf Hown]".
iMod (frac_bor_acc with "LFT Hf Hlft") as (q') "[Hmt Hclose]"; first set_solver.
iModIntro. iExists _. iDestruct "Hmt" as "[Hmt1 Hmt2]". iSplitL "Hmt1".
- iNext. iExists _. by iFrame.
- iIntros "Htok2 Hmt1". iDestruct "Hmt1" as (vl') "[Hmt1 #Hown']".
iDestruct ("Htok" with "Htok2") as "$".
iAssert ( length vl = length vl')%I as ">%".
{ iNext. iDestruct (st_size_eq with "Hown") as %->.
iDestruct (st_size_eq with "Hown'") as %->. done. }
iCombine "Hmt1" "Hmt2" as "Hmt". rewrite heap_mapsto_vec_op // Qp_div_2.
iDestruct "Hmt" as "[>% Hmt]". subst. by iApply "Hclose".
Qed.
Global Instance ty_of_st_sync st :
Send (ty_of_st st) Sync (ty_of_st st).
Proof.
iIntros (Hsend κ tid1 tid2 l) "H". iDestruct "H" as (vl) "[Hm Hown]".
iExists vl. iFrame "Hm". iNext. by iApply Hsend.
Qed.
End type.
Coercion ty_of_st : simple_type >-> type.
Delimit Scope lrust_type_scope with T.
Bind Scope lrust_type_scope with type.
(* OFE and COFE structures on types and simple types. *)
Section ofe.
Context `{typeG Σ}.
Section def.
Definition tuple_of_type (ty : type) : prodC (prodC _ _) _ :=
(ty.(ty_size),
Next (ty.(ty_own) : _ -c> _ -c> _),
ty.(ty_shr) : _ -c> _ -c> _ -c> _).
Instance type_equiv : Equiv type := λ ty1 ty2,
tuple_of_type ty1 tuple_of_type ty2.
Instance type_dist : Dist type := λ n ty1 ty2,
tuple_of_type ty1 {n} tuple_of_type ty2.
Definition type_ofe_mixin : OfeMixin type.
Proof.
split; [|split|]; unfold equiv, dist, type_equiv, type_dist.
- intros. apply equiv_dist.
- by intros ?.
- by intros ???.
- by intros ???->.
- by intros ????; apply dist_S.
Qed.
Canonical Structure typeC : ofeT := OfeT type type_ofe_mixin.
Instance st_equiv : Equiv simple_type := λ st1 st2,
@Next (_ -c> _ -c> _) st1.(st_own) @Next (_ -c> _ -c> _) st2.(st_own).
Instance st_dist : Dist simple_type := λ n st1 st2,
@Next (_ -c> _ -c> _) st1.(st_own) {n} @Next (_ -c> _ -c> _) st2.(st_own).
Definition st_ofe_mixin : OfeMixin simple_type.
Proof.
split; [|split|]; unfold equiv, dist, st_equiv, st_dist.
- intros. apply equiv_dist.
- by intros ?.
- by intros ???.
- by intros ???->.
- by intros ????; apply dist_S.
Qed.
Canonical Structure simple_typeC : ofeT := OfeT simple_type st_ofe_mixin.
End def.
Lemma st_dist_unfold n (x y : simple_type) :
x {n} y
@Next (_ -c> _ -c> _) x.(st_own) {n} @Next (_ -c> _ -c> _) y.(st_own).
Proof. done. Qed.
Global Instance ty_size_proper_d n:
Proper (dist n ==> eq) ty_size.
Proof. intros ?? EQ. apply EQ. Qed.
Global Instance ty_size_proper_e :
Proper (() ==> eq) ty_size.
Proof. intros ?? EQ. apply EQ. Qed.
Global Instance ty_own_ne n:
Proper (dist (S n) ==> eq ==> eq ==> dist n) ty_own.
Proof. intros ?? EQ ??-> ??->. apply EQ. Qed.
Global Instance ty_own_proper_e:
Proper (() ==> eq ==> eq ==> ()) ty_own.
Proof. intros ?? EQ ??-> ??->. apply EQ. Qed.
Global Instance ty_shr_ne n:
Proper (dist n ==> eq ==> eq ==> eq ==> dist n) ty_shr.
Proof. intros ?? EQ ??-> ??-> ??->. apply EQ. Qed.
Global Instance ty_shr_proper_e :
Proper (() ==> eq ==> eq ==> eq ==> ()) ty_shr.
Proof. intros ?? EQ ??-> ??-> ??->. apply EQ. Qed.
Global Instance st_own_ne n:
Proper (dist (S n) ==> eq ==> eq ==> dist n) st_own.
Proof. intros ?? EQ ??-> ??->. apply EQ. Qed.
Global Instance st_own_proper_e :
Proper (() ==> eq ==> eq ==> ()) st_own.
Proof. intros ?? EQ ??-> ??->. apply EQ. Qed.
Global Program Instance type_cofe : Cofe typeC :=
{| compl c :=
let '(ty_size, Next ty_own, ty_shr) :=
compl {| chain_car := tuple_of_type c |}
in
{| ty_size := ty_size; ty_own := ty_own; ty_shr := ty_shr |}
|}.
Next Obligation. intros [c Hc]. apply Hc. Qed.
Next Obligation.
simpl. intros c _ _ shr [=_ _ ->] κ tid l.
apply uPred.equiv_entails, equiv_dist=>n.
by rewrite (λ c, conv_compl (A:=_ -c> _ -c> _ -c> _) n c κ tid l) /=
uPred.always_always.
Qed.
Next Obligation.
simpl. intros c sz own _ [=-> -> _] tid vl.
apply uPred.entails_equiv_and, equiv_dist=>n.
rewrite (λ c, conv_compl (A:=_ -c> _ -c> _) n c tid vl) /= conv_compl /=.
apply equiv_dist, uPred.entails_equiv_and, ty_size_eq.
Qed.
Next Obligation.
simpl. intros c _ own shr [=_ -> ->] E κ l tid q ?.
apply uPred.entails_equiv_and, equiv_dist=>n.
rewrite (λ c, conv_compl (A:=_ -c> _ -c> _ -c> _) n c κ tid l) /=.
setoid_rewrite (λ c vl, conv_compl (A:=_ -c> _ -c> _) n c tid vl). simpl.
etrans. { by apply equiv_dist, uPred.entails_equiv_and, (c n).(ty_share). }
simpl. destruct n; repeat (simpl; (f_contractive || f_equiv)).
rewrite (c.(chain_cauchy) (S n) (S (S n))) //. lia.
Qed.
Next Obligation.
simpl. intros c _ _ shr [=_ _ ->] κ κ' tid l.
apply uPred.entails_equiv_and, equiv_dist=>n.
rewrite !(λ c, conv_compl (A:=_ -c> _ -c> _ -c> _) n c _ tid l) /=.
apply equiv_dist, uPred.entails_equiv_and. apply ty_shr_mono.
Qed.
Next Obligation.
intros n c. split; [split|]; simpl; try by rewrite conv_compl.
set (c n). f_contractive. rewrite conv_compl //.
Qed.
Global Instance ty_of_st_ne n : Proper (dist n ==> dist n) ty_of_st.
Proof.
intros [][]EQ. split;[split|]=>//= κ tid l.
repeat (f_contractive || f_equiv). apply EQ.
Qed.
End ofe.
Section subtyping.
Context `{typeG Σ}.
Definition type_incl (ty1 ty2 : type) : iProp Σ :=
(ty1.(ty_size) = ty2.(ty_size)
( tid vl, ty1.(ty_own) tid vl -∗ ty2.(ty_own) tid vl)
( κ tid l, ty1.(ty_shr) κ tid l -∗ ty2.(ty_shr) κ tid l))%I.
Global Instance type_incl_persistent ty1 ty2 : PersistentP (type_incl ty1 ty2) := _.
(* Typeclasses Opaque type_incl. *)
Lemma type_incl_refl ty : type_incl ty ty.
Proof. iSplit; first done. iSplit; iAlways; iIntros; done. Qed.
Lemma type_incl_trans ty1 ty2 ty3 :
type_incl ty1 ty2 -∗ type_incl ty2 ty3 -∗ type_incl ty1 ty3.
Proof.
(* TODO: this iIntros takes suspiciously long. *)
iIntros "(% & #Ho12 & #Hs12) (% & #Ho23 & #Hs23)".
iSplit; first (iPureIntro; etrans; done).
iSplit; iAlways; iIntros.
- iApply "Ho23". iApply "Ho12". done.
- iApply "Hs23". iApply "Hs12". done.
Qed.
Context (E : elctx) (L : llctx).
Definition subtype (ty1 ty2 : type) : Prop :=
lft_ctx -∗ elctx_interp_0 E -∗ llctx_interp_0 L -∗
type_incl ty1 ty2.
Lemma subtype_refl ty : subtype ty ty.
Proof. iIntros. iApply type_incl_refl. Qed.
Lemma equiv_subtype ty1 ty2 : ty1 ty2 subtype ty1 ty2.
Proof. unfold subtype, type_incl=>EQ. setoid_rewrite EQ. apply subtype_refl. Qed.
Global Instance subtype_preorder : PreOrder subtype.
Proof.
split; first by intros ?; apply subtype_refl.
intros ty1 ty2 ty3 H12 H23. iIntros.
iApply (type_incl_trans with "[] []").
- iApply (H12 with "[] []"); done.
- iApply (H23 with "[] []"); done.
Qed.
(* TODO: The prelude should have a symmetric closure. *)
Definition eqtype (ty1 ty2 : type) : Prop :=
subtype ty1 ty2 subtype ty2 ty1.
Lemma eqtype_unfold ty1 ty2 :
eqtype ty1 ty2
(lft_ctx -∗ elctx_interp_0 E -∗ llctx_interp_0 L -∗
(ty1.(ty_size) = ty2.(ty_size)
( tid vl, ty1.(ty_own) tid vl ty2.(ty_own) tid vl)
( κ tid l, ty1.(ty_shr) κ tid l ty2.(ty_shr) κ tid l))%I).
Proof.
split.
- iIntros ([EQ1 EQ2]) "#LFT #HE #HL".
iDestruct (EQ1 with "LFT HE HL") as "[#Hsz [#H1own #H1shr]]".
iDestruct (EQ2 with "LFT HE HL") as "[_ [#H2own #H2shr]]".
iSplit; last iSplit.
+ done.
+ by iIntros "!#*"; iSplit; iIntros "H"; [iApply "H1own"|iApply "H2own"].
+ by iIntros "!#*"; iSplit; iIntros "H"; [iApply "H1shr"|iApply "H2shr"].
- intros EQ. split; iIntros "#LFT #HE #HL"; (iSplit; last iSplit);
iDestruct (EQ with "LFT HE HL") as "[% [#Hown #Hshr]]".
+ done.
+ iIntros "!#* H". by iApply "Hown".
+ iIntros "!#* H". by iApply "Hshr".
+ done.
+ iIntros "!#* H". by iApply "Hown".
+ iIntros "!#* H". by iApply "Hshr".
Qed.
Lemma eqtype_refl ty : eqtype ty ty.
Proof. by split. Qed.
Lemma equiv_eqtype ty1 ty2 : ty1 ty2 eqtype ty1 ty2.
Proof. by split; apply equiv_subtype. Qed.
Global Instance subtype_proper :
Proper (eqtype ==> eqtype ==> iff) subtype.
Proof. intros ??[] ??[]. split; intros; by etrans; [|etrans]. Qed.
Global Instance eqtype_equivalence : Equivalence eqtype.
Proof.
split.
- by split.
- intros ?? Heq; split; apply Heq.
- intros ??? H1 H2. split; etrans; (apply H1 || apply H2).
Qed.
Lemma subtype_simple_type (st1 st2 : simple_type) :
( tid vl, lft_ctx -∗ elctx_interp_0 E -∗ llctx_interp_0 L -∗
st1.(st_own) tid vl -∗ st2.(st_own) tid vl)
subtype st1 st2.
Proof.
intros Hst. iIntros. iSplit; first done. iSplit; iAlways.
- iIntros. iApply (Hst with "* [] [] []"); done.
- iIntros (???) "H".
iDestruct "H" as (vl) "[Hf Hown]". iExists vl. iFrame "Hf".
by iApply (Hst with "* [] [] []").
Qed.
End subtyping.
Section weakening.
Context `{typeG Σ}.
Lemma subtype_weaken E1 E2 L1 L2 ty1 ty2 :
E1 ⊆+ E2 L1 ⊆+ L2
subtype E1 L1 ty1 ty2 subtype E2 L2 ty1 ty2.
Proof.
(* TODO: There's no lemma relating `contains` to membership (∈)...?? *)
iIntros (HE12 [L' HL12]%submseteq_Permutation Hsub) "#LFT HE HL".
iApply (Hsub with "LFT [HE] [HL]").
- rewrite /elctx_interp_0. by iApply big_sepL_submseteq.
- iDestruct "HL" as %HL. iPureIntro. intros ??. apply HL.
rewrite HL12. set_solver.
Qed.
End weakening.
Hint Resolve subtype_refl eqtype_refl : lrust_typing.
Hint Opaque subtype eqtype : lrust_typing.
\ No newline at end of file
From iris.proofmode Require Import tactics.
From iris.base_logic Require Import big_op.
From lrust.lang Require Import heap.
From lrust.typing Require Export type.
From lrust.typing Require Import lft_contexts type_context shr_bor programs.
Set Default Proof Using "Type".
Section uniq_bor.
Context `{typeG Σ}.
Local Hint Extern 1000 (_ _) => set_solver : ndisj.
Program Definition uniq_bor (κ:lft) (ty:type) :=
{| ty_size := 1;
(* We quantify over [P]s so that the Proper lemma
(wrt. subtyping) works without an update.
An obvious alternative definition would be to allow
an update in the ownership here, i.e. `|={lftE}=> &{κ} P`.
The trouble with this definition is that bor_unnest as proven is too
weak. The original unnesting with open borrows was strong enough. *)
ty_own tid vl :=
( (l:loc) P, (vl = [ #l ] (P l ↦∗: ty.(ty_own) tid)) &{κ} P)%I;
ty_shr κ' tid l :=
( l':loc, &frac{κ'}(λ q', l {q'} #l')
F q, ⌜↑shrN lftE F -∗ q.[κκ']
={F, F∖↑shrN∖↑lftN}▷=∗ ty.(ty_shr) (κκ') tid l' q.[κκ'])%I
|}.
Next Obligation.
iIntros (q ty tid vl) "H". iDestruct "H" as (l P) "[[% _] _]". by subst.
Qed.
Next Obligation.
move=> κ ty N κ' l tid ??/=. iIntros "#LFT Hshr Htok".
iMod (bor_exists with "LFT Hshr") as (vl) "Hb". set_solver.
iMod (bor_sep with "LFT Hb") as "[Hb1 Hb2]". set_solver.
iMod (bor_exists with "LFT Hb2") as (l') "Hb2". set_solver.
iMod (bor_exists with "LFT Hb2") as (P) "Hb2". set_solver.
iMod (bor_sep with "LFT Hb2") as "[H Hb2]". set_solver.
iMod (bor_persistent_tok with "LFT H Htok") as "[[>% #HPiff] Htok]". set_solver.
iFrame "Htok". iExists l'.
subst. rewrite heap_mapsto_vec_singleton.
iMod (bor_fracture (λ q, l {q} #l')%I with "LFT Hb1") as "$". set_solver.
rewrite {1}bor_unfold_idx. iDestruct "Hb2" as (i) "[#Hpb Hpbown]".
iMod (inv_alloc shrN _ (idx_bor_own 1 i ty_shr ty (κκ') tid l')%I
with "[Hpbown]") as "#Hinv"; first by eauto.
iIntros "!> !# * % Htok". iMod (inv_open with "Hinv") as "[INV Hclose]". set_solver.
iDestruct "INV" as "[>Hbtok|#Hshr]".
- iMod (bor_unnest _ _ _ P with "LFT [Hbtok]") as "Hb". solve_ndisj.
{ iApply bor_unfold_idx. eauto. }
iModIntro. iNext. iMod "Hb".
iMod (bor_iff with "LFT [] Hb") as "Hb". solve_ndisj.
{ by eauto. }
iMod (ty.(ty_share) with "LFT Hb Htok") as "[#Hshr $]". solve_ndisj.
iMod ("Hclose" with "[]") as "_"; auto.
- iMod ("Hclose" with "[]") as "_". by eauto.
iApply step_fupd_intro. set_solver. auto.
Qed.
Next Obligation.
intros κ0 ty κ κ' tid l. iIntros "#LFT #Hκ #H".
iDestruct "H" as (l') "[Hfb Hvs]". iAssert (κ0κ' κ0κ)%I as "#Hκ0".
{ iApply (lft_incl_glb with "[] []").
- iApply lft_le_incl. apply gmultiset_union_subseteq_l.
- iApply (lft_incl_trans with "[] Hκ").
iApply lft_le_incl. apply gmultiset_union_subseteq_r. }
iExists l'. iSplit. by iApply (frac_bor_shorten with "[]").
iIntros "!# * % Htok".
iApply (step_fupd_mask_mono F _ _ (F∖↑shrN∖↑lftN)); try set_solver.
iMod (lft_incl_acc with "Hκ0 Htok") as (q') "[Htok Hclose]"; first set_solver.
iMod ("Hvs" with "* [%] Htok") as "Hvs'". set_solver. iModIntro. iNext.
iMod "Hvs'" as "[#Hshr Htok]". iMod ("Hclose" with "Htok") as "$".
by iApply (ty_shr_mono with "LFT Hκ0").
Qed.
Global Instance uniq_mono E L :
Proper (flip (lctx_lft_incl E L) ==> eqtype E L ==> subtype E L) uniq_bor.
Proof.
intros κ1 κ2 ty1 ty2 [Hty1 Hty2]. iIntros. iSplit; first done.
iDestruct (Hty1 with "* [] [] []") as "(_ & #Ho1 & #Hs1)"; [done..|clear Hty1].
iDestruct (Hty2 with "* [] [] []") as "(_ & #Ho2 & #Hs2)"; [done..|clear Hty2].
iDestruct ( with "[] []") as "#Hκ"; [done..|].
iSplit; iAlways.
- iIntros (??) "H". iDestruct "H" as (l P) "[[% #HPiff] Hown]". subst.
iExists _, _. iSplitR; last by iApply (bor_shorten with "Hκ"). iSplit. done.
iNext. iIntros "!#". iSplit; iIntros "H".
+ iDestruct ("HPiff" with "H") as (vl) "[??]". iExists vl. iFrame.
by iApply "Ho1".
+ iDestruct "H" as (vl) "[??]". iApply "HPiff". iExists vl. iFrame.
by iApply "Ho2".
- iIntros (κ ??) "H". iAssert (κ2 κ κ1 κ)%I as "#Hincl'".
{ iApply (lft_incl_glb with "[] []").
- iApply (lft_incl_trans with "[] Hκ"). iApply lft_le_incl.
apply gmultiset_union_subseteq_l.
- iApply lft_le_incl. apply gmultiset_union_subseteq_r. }
iDestruct "H" as (l') "[Hbor #Hupd]". iExists l'. iIntros "{$Hbor}!# %%% Htok".
iMod (lft_incl_acc with "Hincl' Htok") as (q') "[Htok Hclose]"; first set_solver.
iMod ("Hupd" with "* [%] Htok") as "Hupd'"; try done. iModIntro. iNext.
iMod "Hupd'" as "[H Htok]". iMod ("Hclose" with "Htok") as "$".
iApply (ty_shr_mono with "[] Hincl'"); [done..|]. by iApply "Hs1".
Qed.
Global Instance uniq_mono_flip E L :
Proper (lctx_lft_incl E L ==> eqtype E L ==> flip (subtype E L)) uniq_bor.
Proof. intros ??????. apply uniq_mono. done. by symmetry. Qed.
Global Instance uniq_proper E L :
Proper (lctx_lft_eq E L ==> eqtype E L ==> eqtype E L) uniq_bor.
Proof. intros ??[]; split; by apply uniq_mono. Qed.
Global Instance uniq_contractive κ : Contractive (uniq_bor κ).
Proof.
intros n ?? EQ. split; [split|]; simpl.
- done.
- destruct n=>// tid vl /=. repeat (apply EQ || f_contractive || f_equiv).
- intros κ' tid l. repeat (apply EQ || f_contractive || f_equiv).
Qed.
Global Instance uniq_ne κ n : Proper (dist n ==> dist n) (uniq_bor κ).
Proof. apply contractive_ne, _. Qed.
Global Instance uniq_send κ ty :
Send ty Send (uniq_bor κ ty).
Proof.
iIntros (Hsend tid1 tid2 vl) "H". iDestruct "H" as (l P) "[[% #HPiff] H]".
iExists _, _. iFrame "H". iSplit; first done. iNext. iAlways. iSplit.
- iIntros "HP". iApply (heap_mapsto_pred_wand with "[HP]").
{ by iApply "HPiff". }
clear dependent vl. iIntros (vl) "?". by iApply Hsend.
- iIntros "HP". iApply "HPiff". iApply (heap_mapsto_pred_wand with "HP").
clear dependent vl. iIntros (vl) "?". by iApply Hsend.
Qed.
Global Instance uniq_sync κ ty :
Sync ty Sync (uniq_bor κ ty).
Proof.
iIntros (Hsync κ' tid1 tid2 l) "H". iDestruct "H" as (l') "[Hm #Hshr]".
iExists l'. iFrame "Hm". iAlways. iIntros (F q) "% Htok".
iMod ("Hshr" with "* [] Htok") as "Hfin"; first done. iClear "Hshr".
iModIntro. iNext. iMod "Hfin" as "[Hshr $]". iApply Hsync. done.
Qed.
End uniq_bor.
Notation "&uniq{ κ } ty" := (uniq_bor κ ty)
(format "&uniq{ κ } ty", at level 20, right associativity) : lrust_type_scope.
Section typing.
Context `{typeG Σ}.
Lemma uniq_mono' E L κ1 κ2 ty1 ty2 :
lctx_lft_incl E L κ2 κ1 eqtype E L ty1 ty2
subtype E L (&uniq{κ1} ty1) (&uniq{κ2} ty2).
Proof. by intros; apply uniq_mono. Qed.
Lemma uniq_proper' E L κ ty1 ty2 :
eqtype E L ty1 ty2 eqtype E L (&uniq{κ} ty1) (&uniq{κ} ty2).
Proof. by intros; apply uniq_proper. Qed.
Lemma tctx_share E L p κ ty :
lctx_lft_alive E L κ tctx_incl E L [p &uniq{κ}ty] [p &shr{κ}ty].
Proof.
iIntros ( ???) "#LFT HE HL Huniq".
iMod ( with "HE HL") as (q) "[Htok Hclose]"; [try done..|].
rewrite !tctx_interp_singleton /=.
iDestruct "Huniq" as (v) "[% Huniq]".
iDestruct "Huniq" as (l P) "[[% #HPiff] HP]".
iMod (bor_iff with "LFT [] HP") as "H↦". set_solver. by eauto.
iMod (ty.(ty_share) with "LFT H↦ Htok") as "[Hown Htok]"; [solve_ndisj|].
iMod ("Hclose" with "Htok") as "[$ $]". iExists _. iFrame "%".
iIntros "!>/=". eauto.
Qed.
Lemma tctx_reborrow_uniq E L p ty κ κ' :
lctx_lft_incl E L κ' κ
tctx_incl E L [p &uniq{κ}ty] [p &uniq{κ'}ty; p {κ'} &uniq{κ}ty].
Proof.
iIntros (Hκκ' tid ??) "#LFT HE HL H".
iDestruct (elctx_interp_persist with "HE") as "#HE'".
iDestruct (llctx_interp_persist with "HL") as "#HL'". iFrame "HE HL".
iDestruct (Hκκ' with "HE' HL'") as "Hκκ'".
rewrite tctx_interp_singleton tctx_interp_cons tctx_interp_singleton.
iDestruct "H" as (v) "[% Hown]". iDestruct "Hown" as (l P) "[[EQ #Hiff] Hb]".
iDestruct "EQ" as %[=->]. iMod (bor_iff with "LFT [] Hb") as "Hb". done. by eauto.
iMod (rebor with "LFT Hκκ' Hb") as "[Hb Hext]". done. iModIntro. iSplitL "Hb".
- iExists _. iSplit. done. iExists _, _. erewrite <-uPred.iff_refl. eauto.
- iExists _. iSplit. done. iIntros "#H†". iMod ("Hext" with "H†") as "Hb".
iExists _, _. erewrite <-uPred.iff_refl. eauto.
Qed.
(* When sharing during extraction, we do the (arbitrary) choice of
sharing at the lifetime requested (κ). In some cases, we could
actually desire a longer lifetime and then use subtyping, because
then we get, in the environment, a shared borrow at this longer
lifetime.
In the case the user wants to do the sharing at a longer
lifetime, she has to manually perform the extraction herself at
the desired lifetime. *)
Lemma tctx_extract_hasty_share E L p ty ty' κ κ' T :
lctx_lft_alive E L κ lctx_lft_incl E L κ κ' subtype E L ty' ty
tctx_extract_hasty E L p (&shr{κ}ty) ((p &uniq{κ'}ty')::T)
((p &shr{κ}ty')::(p {κ} &uniq{κ'}ty')::T).
Proof.
intros. apply (tctx_incl_frame_r _ [_] [_;_;_]).
rewrite tctx_reborrow_uniq //. apply (tctx_incl_frame_r _ [_] [_;_]).
rewrite tctx_share // {1}copy_tctx_incl.
by apply (tctx_incl_frame_r _ [_] [_]), subtype_tctx_incl, shr_mono'.
Qed.
Lemma tctx_extract_hasty_share_samelft E L p ty ty' κ T :
lctx_lft_alive E L κ subtype E L ty' ty
tctx_extract_hasty E L p (&shr{κ}ty) ((p &uniq{κ}ty')::T)
((p &shr{κ}ty')::T).
Proof.
intros. apply (tctx_incl_frame_r _ [_] [_;_]).
rewrite tctx_share // {1}copy_tctx_incl.
by apply (tctx_incl_frame_r _ [_] [_]), subtype_tctx_incl, shr_mono'.
Qed.
Lemma tctx_extract_hasty_reborrow E L p ty ty' κ κ' T :
lctx_lft_incl E L κ' κ eqtype E L ty ty'
tctx_extract_hasty E L p (&uniq{κ'}ty) ((p &uniq{κ}ty')::T)
((p {κ'} &uniq{κ}ty')::T).
Proof.
intros. apply (tctx_incl_frame_r _ [_] [_;_]). rewrite tctx_reborrow_uniq //.
by apply (tctx_incl_frame_r _ [_] [_]), subtype_tctx_incl, uniq_mono'.
Qed.
Lemma read_uniq E L κ ty :
Copy ty lctx_lft_alive E L κ typed_read E L (&uniq{κ}ty) ty (&uniq{κ}ty).
Proof.
iIntros (Hcopy Halive) "!#". iIntros (v tid F qE qL ?) "#LFT Htl HE HL Hown".
iMod (Halive with "HE HL") as (q) "[Hκ Hclose]"; first set_solver.
iDestruct "Hown" as (l P) "[[EQ #HP] H↦]". iDestruct "EQ" as %[=->].
iMod (bor_iff with "LFT [] H↦") as "H↦". set_solver. by eauto.
iMod (bor_acc with "LFT H↦ Hκ") as "[H↦ Hclose']"; first set_solver.
iDestruct "H↦" as (vl) "[>H↦ #Hown]".
iDestruct (ty_size_eq with "Hown") as "#>%". iIntros "!>".
iExists _, _, _. iSplit; first done. iFrame "∗#". iIntros "H↦".
iMod ("Hclose'" with "[H↦]") as "[H↦ Htok]". by iExists _; iFrame.
iMod ("Hclose" with "Htok") as "($ & $ & $)".
iExists _, _. erewrite <-uPred.iff_refl. auto.
Qed.
Lemma write_uniq E L κ ty :
lctx_lft_alive E L κ typed_write E L (&uniq{κ}ty) ty (&uniq{κ}ty).
Proof.
iIntros (Halive) "!#". iIntros (p tid F qE qL ?) "#LFT HE HL Hown".
iMod (Halive with "HE HL") as (q) "[Htok Hclose]"; first set_solver.
iDestruct "Hown" as (l P) "[[EQ #HP] H↦]". iDestruct "EQ" as %[=->].
iMod (bor_iff with "LFT [] H↦") as "H↦". set_solver. by eauto.
iMod (bor_acc with "LFT H↦ Htok") as "[H↦ Hclose']". set_solver.
iDestruct "H↦" as (vl) "[>H↦ Hown]". rewrite ty.(ty_size_eq).
iDestruct "Hown" as ">%". iModIntro. iExists _, _. iSplit; first done.
iFrame. iIntros "Hown". iDestruct "Hown" as (vl') "[H↦ Hown]".
iMod ("Hclose'" with "[H↦ Hown]") as "[Hbor Htok]". by iExists _; iFrame.
iMod ("Hclose" with "Htok") as "($ & $ & $)".
iExists _, _. erewrite <-uPred.iff_refl. auto.
Qed.
End typing.
Hint Resolve uniq_mono' uniq_proper' : lrust_typing.
Hint Resolve tctx_extract_hasty_reborrow | 10 : lrust_typing.
Hint Resolve tctx_extract_hasty_share | 10 : lrust_typing.
Hint Resolve tctx_extract_hasty_share_samelft | 9 : lrust_typing.
From iris.proofmode Require Import tactics.
From iris.base_logic Require Import big_op.
From lrust.lang Require Import memcpy.
From lrust.lifetime Require Import na_borrow.
From lrust.typing Require Export type.
From lrust.typing Require Import typing.
Set Default Proof Using "Type".
Section cell.
Context `{typeG Σ}.
Local Hint Extern 1000 (_ _) => set_solver : ndisj.
Program Definition cell (ty : type) :=
{| ty_size := ty.(ty_size);
ty_own := ty.(ty_own);
ty_shr κ tid l := (&na{κ, tid, shrN.@l} l ↦∗: ty.(ty_own) tid)%I |}.
Next Obligation. apply ty_size_eq. Qed.
Next Obligation.
iIntros (ty E κ l tid q ?) "#LFT Hown $". by iApply bor_na.
Qed.
Next Obligation.
iIntros (ty ?? tid l) "#LFT". iApply na_bor_shorten.
Qed.
(* TODO: non-expansiveness, proper wrt. eqtype *)
Global Instance cell_type :
Copy ty Copy (cell ty).
Proof.
intros ty Hcopy. split; first by intros; simpl; apply _.
iIntros (κ tid E F l q ??) "#LFT #Hshr Htl Htok". iExists 1%Qp. simpl in *.
(* Size 0 needs a special case as we can't keep the thread-local invariant open. *)
destruct (ty_size ty) as [|sz] eqn:Hsz.
{ iMod (na_bor_acc with "LFT Hshr Htok Htl") as "(Hown & Htl & Hclose)"; [solve_ndisj..|].
iDestruct "Hown" as (vl) "[H↦ #Hown]".
simpl. assert (F = F) as -> by set_solver+.
iDestruct (ty_size_eq with "Hown") as "#>%". rewrite ->Hsz in *.
iMod ("Hclose" with "[H↦] Htl") as "[$ $]".
{ iExists vl. by iFrame. }
iModIntro. iSplitL "".
{ iNext. iExists vl. destruct vl; last done. iFrame "Hown".
by iApply heap_mapsto_vec_nil. }
by iIntros "$ _". }
(* Now we are in the non-0 case. *)
iMod (na_bor_acc with "LFT Hshr Htok Htl") as "($ & Htl & Hclose)"; [solve_ndisj..|].
iDestruct (na_own_acc with "Htl") as "($ & Hclose')"; first by set_solver.
iIntros "!> Htl Hown". iPoseProof ("Hclose'" with "Htl") as "Htl".
iMod ("Hclose" with "Hown Htl") as "[$ $]". done.
Qed.
Global Instance cell_send :
Send ty Send (cell ty).
Proof. intros. split. simpl. apply send_change_tid. Qed.
End cell.
Section typing.
Context `{typeG Σ}.
(* All of these are of course actual code in Rust, but somehow this is more fun. *)
(* Constructing a cell is a coercion. *)
Lemma tctx_mk_cell E L ty p :
tctx_incl E L [p ty] [p cell ty].
Proof.
iIntros (???) "#LFT $ $ Hty". rewrite !tctx_interp_singleton /=. done.
Qed.
(* Same for the other direction *)
Lemma tctx_unmk_cell E L ty p :
tctx_incl E L [p ty] [p cell ty].
Proof.
iIntros (???) "#LFT $ $ Hty". rewrite !tctx_interp_singleton /=. done.
Qed.
Lemma read_cell E L κ ty :
Copy ty lctx_lft_alive E L κ
typed_read E L (&shr{κ} cell ty) ty (&shr{κ} cell ty).
Proof. intros ??. exact: read_shr. Qed.
(* Writing actually needs code; typed_write can't have thread tokens. *)
Definition cell_write ty : val :=
funrec: <> ["c"; "x"] :=
let: "c'" := !"c" in
"c'" <⋯ !{ty.(ty_size)} "x";;
let: "r" := new [ #0 ] in
delete [ #1; "c"] ;; delete [ #ty.(ty_size); "x"] ;; "return" ["r"].
Lemma cell_write_type ty :
typed_instruction_ty [] [] [] (cell_write ty)
(fn (λ α, [α])%EL (λ α, [# box (&shr{α} cell ty); box ty])
(λ α, box unit)).
Proof.
apply type_fn; try apply _. move=> /= α ret arg. inv_vec arg=>c x. simpl_subst.
eapply type_deref; [solve_typing..|by apply read_own_move|done|].
intros c'. simpl_subst.
eapply type_let with (T1 := [c' _; x _]%TC)
(T2 := λ _, [c' &shr{α} cell ty;
x box (uninit ty.(ty_size))]%TC); try solve_typing; [|].
{ (* The core of the proof: Showing that the assignment is safe. *)
iAlways. iIntros (tid qE) "#HEAP #LFT Htl HE $".
rewrite tctx_interp_cons tctx_interp_singleton !tctx_hasty_val.
iIntros "[Hc' Hx]". rewrite {1}/elctx_interp big_opL_singleton /=.
iDestruct "Hc'" as (l) "[EQ #Hshr]". iDestruct "EQ" as %[=->].
iDestruct "Hx" as (l') "[EQ [Hown >H†]]". iDestruct "EQ" as %[=->].
iDestruct "Hown" as (vl') "[>H↦' Hown']".
iMod (na_bor_acc with "LFT Hshr HE Htl") as "(Hown & Htl & Hclose)"; [solve_ndisj..|].
iDestruct "Hown" as (vl) "[>H↦ Hown]".
iDestruct (ty_size_eq with "Hown") as "#>%".
iDestruct (ty_size_eq with "Hown'") as "#>%".
iApply wp_fupd. iApply (wp_memcpy with "[$HEAP $H↦ $H↦']"); [done..|].
iNext. iIntros "[H↦ H↦']". rewrite {1}/elctx_interp big_opL_singleton /=.
iMod ("Hclose" with "[H↦ Hown'] Htl") as "[$ $]".
{ iExists vl'. by iFrame. }
rewrite tctx_interp_cons tctx_interp_singleton !tctx_hasty_val' //.
iSplitR; iModIntro.
- iExists _. iSplit; done.
- iExists _. iSplit; first done. iFrame. iExists _. iFrame.
rewrite uninit_own. auto. }
intros v. simpl_subst. clear v.
eapply type_new; [solve_typing..|].
intros r. simpl_subst.
eapply type_delete; [solve_typing..|].
eapply type_delete; [solve_typing..|].
eapply (type_jump [_]); solve_typing.
Qed.
(* TODO: get_mut *)
End typing.