Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found

Target

Select target project
  • Villetaneuse/lambda-rust
  • iris/lambda-rust
  • maximedenes/LambdaRust-coq
  • msammler/lambda-rust
  • daniel.louwrink/lambda-rust
  • simonspies/lambda-rust
  • xldenis/lambda-rust
  • lgaeher/lambda-rust
  • JasonHuZS/lambda-rust
  • snyke7/lambda-rust
  • ivanbakel/lambda-rust
11 results
Show changes
Showing
with 483 additions and 2228 deletions
From lrust.lifetime.model Require Export definitions. From lrust.lifetime.model Require Export definitions.
From iris.algebra Require Import csum auth frac gmap agree gset. From iris.algebra Require Import csum auth frac gmap agree gset proofmode_classes.
From iris.base_logic Require Import big_op. From iris.base_logic.lib Require Import boxes.
From iris.base_logic.lib Require Import boxes fractional. From iris.bi Require Import fractional.
From iris.proofmode Require Import tactics. From iris.proofmode Require Import proofmode.
Set Default Proof Using "Type". From iris.prelude Require Import options.
Import uPred. Import uPred.
Lemma lft_init `{!invGS Σ, !lftGpreS Σ} E userE :
lftN E lftN ## userE |={E}=> _ : lftGS Σ userE, lft_ctx.
Proof.
iIntros (? HuserE). rewrite /lft_ctx.
iMod (own_alloc ( : authR alftUR)) as (γa) "Ha"; first by apply auth_auth_valid.
iMod (own_alloc ( : authR ilftUR)) as (γi) "Hi"; first by apply auth_auth_valid.
set (HlftGS := LftG _ _ _ _ γa _ γi _ _ _ HuserE). iExists HlftGS.
iMod (inv_alloc _ _ lfts_inv with "[Ha Hi]") as "$"; last done.
iModIntro. rewrite /lfts_inv /own_alft_auth /own_ilft_auth. iExists , ∅.
rewrite /to_alftUR /to_ilftUR !fmap_empty. iFrame.
rewrite dom_empty_L big_sepS_empty. done.
Qed.
Section primitive. Section primitive.
Context `{invG Σ, lftG Σ}. Context `{!invGS Σ, !lftGS Σ userE}.
Implicit Types κ : lft. Implicit Types κ : lft.
Lemma to_borUR_included (B : gmap slice_name bor_state) i s q : Lemma to_borUR_included (B : gmap slice_name bor_state) i s q :
{[i := (q%Qp, to_agree s)]} to_borUR B B !! i = Some s. {[i := (q%Qp, to_agree s)]} to_borUR B B !! i = Some s.
Proof. Proof.
rewrite singleton_included=> -[qs []]. unfold_leibniz. rewrite singleton_included_l=> -[qs []]. unfold_leibniz.
rewrite lookup_fmap fmap_Some_equiv=> -[s' [-> ->]]. rewrite lookup_fmap fmap_Some_equiv=> -[s' [-> ->]].
by move=> /Some_pair_included [_] /Some_included_total /to_agree_included=>->. by move=> /Some_pair_included [_] /Some_included_total /to_agree_included=>->.
Qed. Qed.
Lemma lft_init `{!lftPreG Σ} E :
lftN E (|={E}=> _ : lftG Σ, lft_ctx)%I.
Proof.
iIntros (?). rewrite /lft_ctx.
iMod (own_alloc ( : authR alftUR)) as (γa) "Ha"; first done.
iMod (own_alloc ( : authR ilftUR)) as (γi) "Hi"; first done.
set (HlftG := LftG _ _ _ γa _ γi _ _ _). iExists HlftG.
iMod (inv_alloc _ _ lfts_inv with "[Ha Hi]") as "$"; last done.
iModIntro. rewrite /lfts_inv /own_alft_auth /own_ilft_auth. iExists , ∅.
rewrite /to_alftUR /to_ilftUR !fmap_empty. iFrame.
rewrite dom_empty_L big_sepS_empty. done.
Qed.
(** Ownership *) (** Ownership *)
Lemma own_ilft_auth_agree (I : gmap lft lft_names) κ γs : Lemma own_ilft_auth_agree (I : gmap lft lft_names) κ γs :
own_ilft_auth I -∗ own_ilft_auth I -∗
own ilft_name ( {[κ := to_agree γs]}) -∗ is_Some (I !! κ)⌝. own ilft_name ( {[κ := to_agree γs]}) -∗ is_Some (I !! κ)⌝.
Proof. Proof.
iIntros "HI Hκ". iDestruct (own_valid_2 with "HI Hκ") iIntros "HI Hκ". iDestruct (own_valid_2 with "HI Hκ")
as %[[? [Hl ?]]%singleton_included _]%auth_valid_discrete_2. as %[[? [Hl ?]]%singleton_included_l _]%auth_both_valid_discrete.
unfold to_ilftUR in *. simplify_map_eq. revert Hl. rewrite /to_ilftUR lookup_fmap.
case: (I !! _)=> [γs'|] Hl; first by eauto.
destruct (fmap_Some_equiv_1 _ _ _ Hl) as (?&?&?). eauto. destruct (fmap_Some_equiv_1 _ _ _ Hl) as (?&?&?). eauto.
Qed. Qed.
...@@ -47,8 +48,8 @@ Lemma own_alft_auth_agree (A : gmap atomic_lft bool) Λ b : ...@@ -47,8 +48,8 @@ Lemma own_alft_auth_agree (A : gmap atomic_lft bool) Λ b :
own alft_name ( {[Λ := to_lft_stateR b]}) -∗ A !! Λ = Some b⌝. own alft_name ( {[Λ := to_lft_stateR b]}) -∗ A !! Λ = Some b⌝.
Proof. Proof.
iIntros "HA HΛ". iIntros "HA HΛ".
iDestruct (own_valid_2 with "HA HΛ") as %[HA _]%auth_valid_discrete_2. iCombine "HA HΛ" gives %[HA _]%auth_both_valid_discrete.
iPureIntro. move: HA=> /singleton_included [qs [/leibniz_equiv_iff]]. iPureIntro. move: HA=> /singleton_included_l [qs [/leibniz_equiv_iff]].
rewrite lookup_fmap fmap_Some=> -[b' [? ->]] /Some_included. rewrite lookup_fmap fmap_Some=> -[b' [? ->]] /Some_included.
move=> [/leibniz_equiv_iff|/csum_included]; destruct b, b'; naive_solver. move=> [/leibniz_equiv_iff|/csum_included]; destruct b, b'; naive_solver.
Qed. Qed.
...@@ -58,25 +59,33 @@ Proof. ...@@ -58,25 +59,33 @@ Proof.
iIntros "HI"; iDestruct 1 as (γs) "[? _]". iIntros "HI"; iDestruct 1 as (γs) "[? _]".
by iApply (own_ilft_auth_agree with "HI"). by iApply (own_ilft_auth_agree with "HI").
Qed. Qed.
Lemma own_bor_op κ x y : own_bor κ (x y) ⊣⊢ own_bor κ x own_bor κ y. Lemma own_bor_op κ x y : own_bor κ (x y) ⊣⊢ own_bor κ x own_bor κ y.
Proof. Proof.
iSplit. iSplit.
{ iDestruct 1 as (γs) "[#? [Hx Hy]]"; iSplitL "Hx"; iExists γs; eauto. } { iDestruct 1 as (γs) "[#? [Hx Hy]]"; iSplitL "Hx"; iExists γs; eauto. }
iIntros "[Hx Hy]". iIntros "[Hx Hy]".
iDestruct "Hx" as (γs) "[Hγs Hx]"; iDestruct "Hy" as (γs') "[Hγs' Hy]". iDestruct "Hx" as (γs) "[Hγs Hx]"; iDestruct "Hy" as (γs') "[Hγs' Hy]".
iDestruct (own_valid_2 with "Hγs Hγs'") as %Hγs%auth_own_valid. iCombine "Hγs Hγs'" gives %Hγs. move : Hγs.
move: Hγs; rewrite /= op_singleton singleton_valid=> /agree_op_inv /(inj to_agree) <-. rewrite -auth_frag_op auth_frag_valid singleton_op singleton_valid=> /to_agree_op_inv_L <-.
iExists γs. iSplit. done. rewrite own_op; iFrame. iExists γs. iSplit; first done. rewrite own_op; iFrame.
Qed. Qed.
Global Instance own_bor_into_op κ x x1 x2 : Global Instance own_bor_into_op κ x x1 x2 :
IntoOp x x1 x2 IntoAnd false (own_bor κ x) (own_bor κ x1) (own_bor κ x2). IsOp x x1 x2 IntoSep (own_bor κ x) (own_bor κ x1) (own_bor κ x2).
Proof. Proof.
rewrite /IntoOp /IntoAnd=>->. by rewrite -own_bor_op. rewrite /IsOp /IntoSep=>-> /=. by rewrite -own_bor_op.
Qed. Qed.
Lemma own_bor_valid κ x : own_bor κ x -∗ x. Lemma own_bor_valid κ x : own_bor κ x -∗ x.
Proof. iDestruct 1 as (γs) "[#? Hx]". by iApply own_valid. Qed. Proof. iDestruct 1 as (γs) "[#? Hx]". by iApply own_valid. Qed.
Lemma own_bor_valid_2 κ x y : own_bor κ x -∗ own_bor κ y -∗ (x y). Lemma own_bor_valid_2 κ x y : own_bor κ x -∗ own_bor κ y -∗ (x y).
Proof. apply wand_intro_r. rewrite -own_bor_op. apply own_bor_valid. Qed. Proof. apply entails_wand, wand_intro_r. rewrite -own_bor_op. iApply own_bor_valid. Qed.
Global Instance own_bor_sep_gives κ x y :
CombineSepGives (own_bor κ x) (own_bor κ y) ( (x y)).
Proof.
rewrite /CombineSepGives. iIntros "[H1 H2]".
iDestruct (own_bor_valid_2 with "H1 H2") as "#?"; auto.
Qed.
Lemma own_bor_update κ x y : x ~~> y own_bor κ x ==∗ own_bor κ y. Lemma own_bor_update κ x y : x ~~> y own_bor κ x ==∗ own_bor κ y.
Proof. Proof.
iDestruct 1 as (γs) "[#Hκ Hx]"; iExists γs. iFrame "Hκ". by iApply own_update. iDestruct 1 as (γs) "[#Hκ Hx]"; iExists γs. iFrame "Hκ". by iApply own_update.
...@@ -84,7 +93,7 @@ Qed. ...@@ -84,7 +93,7 @@ Qed.
Lemma own_bor_update_2 κ x1 x2 y : Lemma own_bor_update_2 κ x1 x2 y :
x1 x2 ~~> y own_bor κ x1 own_bor κ x2 ==∗ own_bor κ y. x1 x2 ~~> y own_bor κ x1 own_bor κ x2 ==∗ own_bor κ y.
Proof. Proof.
intros. apply wand_intro_r. rewrite -own_bor_op. by apply own_bor_update. intros. apply wand_intro_r. rewrite -own_bor_op. by iApply own_bor_update.
Qed. Qed.
Lemma own_cnt_auth I κ x : own_ilft_auth I -∗ own_cnt κ x -∗ is_Some (I !! κ)⌝. Lemma own_cnt_auth I κ x : own_ilft_auth I -∗ own_cnt κ x -∗ is_Some (I !! κ)⌝.
...@@ -98,19 +107,25 @@ Proof. ...@@ -98,19 +107,25 @@ Proof.
{ iDestruct 1 as (γs) "[#? [Hx Hy]]"; iSplitL "Hx"; iExists γs; eauto. } { iDestruct 1 as (γs) "[#? [Hx Hy]]"; iSplitL "Hx"; iExists γs; eauto. }
iIntros "[Hx Hy]". iIntros "[Hx Hy]".
iDestruct "Hx" as (γs) "[Hγs Hx]"; iDestruct "Hy" as (γs') "[Hγs' Hy]". iDestruct "Hx" as (γs) "[Hγs Hx]"; iDestruct "Hy" as (γs') "[Hγs' Hy]".
iDestruct (own_valid_2 with "Hγs Hγs'") as %Hγs%auth_own_valid. iCombine "Hγs Hγs'" gives %Hγs. move: Hγs.
move: Hγs; rewrite /= op_singleton singleton_valid=> /agree_op_inv /(inj to_agree) <-. rewrite -auth_frag_op auth_frag_valid singleton_op singleton_valid=> /to_agree_op_inv_L=> <-.
iExists γs. iSplit; first done. rewrite own_op; iFrame. iExists γs. iSplit; first done. rewrite own_op; iFrame.
Qed. Qed.
Global Instance own_cnt_into_op κ x x1 x2 : Global Instance own_cnt_into_op κ x x1 x2 :
IntoOp x x1 x2 IntoAnd false (own_cnt κ x) (own_cnt κ x1) (own_cnt κ x2). IsOp x x1 x2 IntoSep (own_cnt κ x) (own_cnt κ x1) (own_cnt κ x2).
Proof. Proof.
rewrite /IntoOp /IntoAnd=> /leibniz_equiv_iff->. by rewrite -own_cnt_op. rewrite /IsOp /IntoSep=> ->. by rewrite -own_cnt_op.
Qed. Qed.
Lemma own_cnt_valid κ x : own_cnt κ x -∗ x. Lemma own_cnt_valid κ x : own_cnt κ x -∗ x.
Proof. iDestruct 1 as (γs) "[#? Hx]". by iApply own_valid. Qed. Proof. iDestruct 1 as (γs) "[#? Hx]". by iApply own_valid. Qed.
Lemma own_cnt_valid_2 κ x y : own_cnt κ x -∗ own_cnt κ y -∗ (x y). Lemma own_cnt_valid_2 κ x y : own_cnt κ x -∗ own_cnt κ y -∗ (x y).
Proof. apply wand_intro_r. rewrite -own_cnt_op. apply own_cnt_valid. Qed. Proof. apply entails_wand, wand_intro_r. rewrite -own_cnt_op. iApply own_cnt_valid. Qed.
Global Instance own_cnt_sep_gives κ x y :
CombineSepGives (own_cnt κ x) (own_cnt κ y) ( (x y)).
Proof.
rewrite /CombineSepGives. iIntros "[H1 H2]".
iDestruct (own_cnt_valid_2 with "H1 H2") as "#?"; auto.
Qed.
Lemma own_cnt_update κ x y : x ~~> y own_cnt κ x ==∗ own_cnt κ y. Lemma own_cnt_update κ x y : x ~~> y own_cnt κ x ==∗ own_cnt κ y.
Proof. Proof.
iDestruct 1 as (γs) "[#Hκ Hx]"; iExists γs. iFrame "Hκ". by iApply own_update. iDestruct 1 as (γs) "[#Hκ Hx]"; iExists γs. iFrame "Hκ". by iApply own_update.
...@@ -118,7 +133,7 @@ Qed. ...@@ -118,7 +133,7 @@ Qed.
Lemma own_cnt_update_2 κ x1 x2 y : Lemma own_cnt_update_2 κ x1 x2 y :
x1 x2 ~~> y own_cnt κ x1 -∗ own_cnt κ x2 ==∗ own_cnt κ y. x1 x2 ~~> y own_cnt κ x1 -∗ own_cnt κ x2 ==∗ own_cnt κ y.
Proof. Proof.
intros. apply wand_intro_r. rewrite -own_cnt_op. by apply own_cnt_update. intros. apply entails_wand, wand_intro_r. rewrite -own_cnt_op. by iApply own_cnt_update.
Qed. Qed.
Lemma own_inh_auth I κ x : own_ilft_auth I -∗ own_inh κ x -∗ is_Some (I !! κ)⌝. Lemma own_inh_auth I κ x : own_ilft_auth I -∗ own_inh κ x -∗ is_Some (I !! κ)⌝.
...@@ -132,19 +147,25 @@ Proof. ...@@ -132,19 +147,25 @@ Proof.
{ iDestruct 1 as (γs) "[#? [Hx Hy]]"; iSplitL "Hx"; iExists γs; eauto. } { iDestruct 1 as (γs) "[#? [Hx Hy]]"; iSplitL "Hx"; iExists γs; eauto. }
iIntros "[Hx Hy]". iIntros "[Hx Hy]".
iDestruct "Hx" as (γs) "[Hγs Hx]"; iDestruct "Hy" as (γs') "[Hγs' Hy]". iDestruct "Hx" as (γs) "[Hγs Hx]"; iDestruct "Hy" as (γs') "[Hγs' Hy]".
iDestruct (own_valid_2 with "Hγs Hγs'") as %Hγs%auth_own_valid. iCombine "Hγs Hγs'" gives %Hγs. move: Hγs.
move: Hγs; rewrite /= op_singleton singleton_valid=> /agree_op_inv /(inj to_agree) <-. rewrite -auth_frag_op auth_frag_valid singleton_op singleton_valid=> /to_agree_op_inv_L=> <-.
iExists γs. iSplit. done. rewrite own_op; iFrame. iExists γs. iSplit; first done. rewrite own_op; iFrame.
Qed. Qed.
Global Instance own_inh_into_op κ x x1 x2 : Global Instance own_inh_into_op κ x x1 x2 :
IntoOp x x1 x2 IntoAnd false (own_inh κ x) (own_inh κ x1) (own_inh κ x2). IsOp x x1 x2 IntoSep (own_inh κ x) (own_inh κ x1) (own_inh κ x2).
Proof. Proof.
rewrite /IntoOp /IntoAnd=> /leibniz_equiv_iff->. by rewrite -own_inh_op. rewrite /IsOp /IntoSep=> ->. by rewrite -own_inh_op.
Qed. Qed.
Lemma own_inh_valid κ x : own_inh κ x -∗ x. Lemma own_inh_valid κ x : own_inh κ x -∗ x.
Proof. iDestruct 1 as (γs) "[#? Hx]". by iApply own_valid. Qed. Proof. iDestruct 1 as (γs) "[#? Hx]". by iApply own_valid. Qed.
Lemma own_inh_valid_2 κ x y : own_inh κ x -∗ own_inh κ y -∗ (x y). Lemma own_inh_valid_2 κ x y : own_inh κ x -∗ own_inh κ y -∗ (x y).
Proof. apply wand_intro_r. rewrite -own_inh_op. apply own_inh_valid. Qed. Proof. apply entails_wand, wand_intro_r. rewrite -own_inh_op. iApply own_inh_valid. Qed.
Global Instance own_inh_sep_gives κ x y :
CombineSepGives (own_inh κ x) (own_inh κ y) ( (x y)).
Proof.
rewrite /CombineSepGives. iIntros "[H1 H2]".
iDestruct (own_inh_valid_2 with "H1 H2") as "#?"; auto.
Qed.
Lemma own_inh_update κ x y : x ~~> y own_inh κ x ==∗ own_inh κ y. Lemma own_inh_update κ x y : x ~~> y own_inh κ x ==∗ own_inh κ y.
Proof. Proof.
iDestruct 1 as (γs) "[#Hκ Hx]"; iExists γs. iFrame "Hκ". by iApply own_update. iDestruct 1 as (γs) "[#Hκ Hx]"; iExists γs. iFrame "Hκ". by iApply own_update.
...@@ -152,20 +173,20 @@ Qed. ...@@ -152,20 +173,20 @@ Qed.
Lemma own_inh_update_2 κ x1 x2 y : Lemma own_inh_update_2 κ x1 x2 y :
x1 x2 ~~> y own_inh κ x1 own_inh κ x2 ==∗ own_inh κ y. x1 x2 ~~> y own_inh κ x1 own_inh κ x2 ==∗ own_inh κ y.
Proof. Proof.
intros. apply wand_intro_r. rewrite -own_inh_op. by apply own_inh_update. intros. apply wand_intro_r. rewrite -own_inh_op. by iApply own_inh_update.
Qed. Qed.
(** Alive and dead *) (** Alive and dead *)
Global Instance lft_alive_in_dec A κ : Decision (lft_alive_in A κ). Global Instance lft_alive_in_dec A κ : Decision (lft_alive_in A κ).
Proof. Proof.
refine (cast_if (decide (set_Forall (λ Λ, A !! Λ = Some true) refine (cast_if (decide (set_Forall (λ Λ, A !! Λ = Some true)
(dom (gset atomic_lft) κ)))); (dom κ))));
rewrite /lft_alive_in; by setoid_rewrite <-gmultiset_elem_of_dom. rewrite /lft_alive_in; by setoid_rewrite <-gmultiset_elem_of_dom.
Qed. Qed.
Global Instance lft_dead_in_dec A κ : Decision (lft_dead_in A κ). Global Instance lft_dead_in_dec A κ : Decision (lft_dead_in A κ).
Proof. Proof.
refine (cast_if (decide (set_Exists (λ Λ, A !! Λ = Some false) refine (cast_if (decide (set_Exists (λ Λ, A !! Λ = Some false)
(dom (gset atomic_lft) κ)))); (dom κ))));
rewrite /lft_dead_in; by setoid_rewrite <-gmultiset_elem_of_dom. rewrite /lft_dead_in; by setoid_rewrite <-gmultiset_elem_of_dom.
Qed. Qed.
...@@ -173,9 +194,9 @@ Lemma lft_alive_or_dead_in A κ : ...@@ -173,9 +194,9 @@ Lemma lft_alive_or_dead_in A κ :
( Λ, Λ κ A !! Λ = None) (lft_alive_in A κ lft_dead_in A κ). ( Λ, Λ κ A !! Λ = None) (lft_alive_in A κ lft_dead_in A κ).
Proof. Proof.
rewrite /lft_alive_in /lft_dead_in. rewrite /lft_alive_in /lft_dead_in.
destruct (decide (set_Exists (λ Λ, A !! Λ = None) (dom (gset _) κ))) destruct (decide (set_Exists (λ Λ, A !! Λ = None) (dom κ)))
as [(Λ & ?%gmultiset_elem_of_dom & HAΛ)|HA%(not_set_Exists_Forall _)]; first eauto. as [(Λ & ?%gmultiset_elem_of_dom & HAΛ)|HA%(not_set_Exists_Forall _)]; first eauto.
destruct (decide (set_Exists (λ Λ, A !! Λ = Some false) (dom (gset _) κ))) destruct (decide (set_Exists (λ Λ, A !! Λ = Some false) (dom κ)))
as [(Λ & %gmultiset_elem_of_dom & ?)|HA'%(not_set_Exists_Forall _)]; first eauto. as [(Λ & %gmultiset_elem_of_dom & ?)|HA'%(not_set_Exists_Forall _)]; first eauto.
right; left. intros Λ %gmultiset_elem_of_dom. right; left. intros Λ %gmultiset_elem_of_dom.
move: (HA _ ) (HA' _ )=> /=. case: (A !! Λ)=>[[]|]; naive_solver. move: (HA _ ) (HA' _ )=> /=. case: (A !! Λ)=>[[]|]; naive_solver.
...@@ -200,6 +221,14 @@ Proof. ...@@ -200,6 +221,14 @@ Proof.
intros Halive Λ' HΛ'. intros Halive Λ' HΛ'.
rewrite lookup_insert_ne; last (by intros ->); auto. rewrite lookup_insert_ne; last (by intros ->); auto.
Qed. Qed.
Lemma lft_alive_in_union_false A κ Λs b :
( Λ, Λ Λs Λ κ) lft_alive_in A κ lft_alive_in (gset_to_gmap b Λs A) κ.
Proof.
intros Halive Λ' HΛ'.
rewrite lookup_union_r; [by apply Halive|].
apply lookup_gset_to_gmap_None.
by intros ?%.
Qed.
Lemma lft_dead_in_insert A κ Λ b : Lemma lft_dead_in_insert A κ Λ b :
A !! Λ = None lft_dead_in A κ lft_dead_in (<[Λ:=b]> A) κ. A !! Λ = None lft_dead_in A κ lft_dead_in (<[Λ:=b]> A) κ.
...@@ -215,12 +244,32 @@ Proof. ...@@ -215,12 +244,32 @@ Proof.
- exists Λ. by rewrite lookup_insert. - exists Λ. by rewrite lookup_insert.
- exists Λ'. by rewrite lookup_insert_ne. - exists Λ'. by rewrite lookup_insert_ne.
Qed. Qed.
Lemma lft_dead_in_union_false A κ Λs :
lft_dead_in A κ lft_dead_in (gset_to_gmap false Λs A) κ.
Proof.
intros (Λ&?&). destruct (decide (Λ Λs)) as [|].
- exists Λ. rewrite lookup_union_l'.
+ by rewrite lookup_gset_to_gmap_Some.
+ exists false; by rewrite lookup_gset_to_gmap_Some.
- exists Λ. rewrite lookup_union_r.
+ done.
+ by rewrite lookup_gset_to_gmap_None.
Qed.
Lemma lft_dead_in_insert_false' A κ Λ : Λ κ lft_dead_in (<[Λ:=false]> A) κ. Lemma lft_dead_in_insert_false' A κ Λ : Λ κ lft_dead_in (<[Λ:=false]> A) κ.
Proof. exists Λ. by rewrite lookup_insert. Qed. Proof. exists Λ. by rewrite lookup_insert. Qed.
Lemma lft_dead_in_union_false' A κ Λs Λ :
Λ κ Λ Λs lft_dead_in (gset_to_gmap false Λs A) κ.
Proof.
intros HΛκ .
exists Λ; split; [done|].
rewrite lookup_union_l'.
- by apply lookup_gset_to_gmap_Some.
- exists false; by apply lookup_gset_to_gmap_Some.
Qed.
Lemma lft_dead_in_alive_in_union A κ κ' : Lemma lft_dead_in_alive_in_union A κ κ' :
lft_dead_in A (κ κ') lft_alive_in A κ lft_dead_in A κ'. lft_dead_in A (κ κ') lft_alive_in A κ lft_dead_in A κ'.
Proof. Proof.
intros (Λ & [Hin|Hin]%elem_of_union & ) Halive. intros (Λ & [Hin|Hin]%gmultiset_elem_of_disj_union & ) Halive.
- contradict . rewrite (Halive _ Hin). done. - contradict . rewrite (Halive _ Hin). done.
- exists Λ. auto. - exists Λ. auto.
Qed. Qed.
...@@ -241,14 +290,6 @@ Proof. ...@@ -241,14 +290,6 @@ Proof.
by rewrite HAinsert. by rewrite HAinsert.
Qed. Qed.
Lemma lft_inv_alive_twice κ : lft_inv_alive κ -∗ lft_inv_alive κ -∗ False.
Proof.
rewrite lft_inv_alive_unfold /lft_inh.
iDestruct 1 as (P Q) "(_&_&Hinh)"; iDestruct 1 as (P' Q') "(_&_&Hinh')".
iDestruct "Hinh" as (E) "[HE _]"; iDestruct "Hinh'" as (E') "[HE' _]".
by iDestruct (own_inh_valid_2 with "HE HE'") as %?.
Qed.
Lemma lft_inv_alive_in A κ : lft_alive_in A κ lft_inv A κ -∗ lft_inv_alive κ. Lemma lft_inv_alive_in A κ : lft_alive_in A κ lft_inv A κ -∗ lft_inv_alive κ.
Proof. Proof.
rewrite /lft_inv. iIntros (?) "[[$ _]|[_ %]]". rewrite /lft_inv. iIntros (?) "[[$ _]|[_ %]]".
...@@ -261,10 +302,23 @@ Proof. ...@@ -261,10 +302,23 @@ Proof.
Qed. Qed.
(** Basic rules about lifetimes *) (** Basic rules about lifetimes *)
Lemma lft_tok_sep q κ1 κ2 : q.[κ1] q.[κ2] ⊣⊢ q.[κ1 κ2]. Local Instance lft_inhabited : Inhabited lft := _.
Proof. by rewrite /lft_tok -big_sepMS_union. Qed. Local Instance lft_eq_dec : EqDecision lft := _.
Local Instance lft_countable : Countable lft := _.
Lemma lft_dead_or κ1 κ2 : [κ1] [κ2] ⊣⊢ [ κ1 κ2]. Local Instance bor_idx_inhabited : Inhabited bor_idx := _.
Local Instance bor_idx_eq_dec : EqDecision bor_idx := _.
Local Instance bor_idx_countable : Countable bor_idx := _.
Local Instance lft_intersect_comm : Comm (A:=lft) eq () := _.
Local Instance lft_intersect_assoc : Assoc (A:=lft) eq () := _.
Local Instance lft_intersect_inj_1 κ : Inj eq eq (κ ⊓.) := _.
Local Instance lft_intersect_inj_2 κ : Inj eq eq (. κ) := _.
Local Instance lft_intersect_left_id : LeftId eq static () := _.
Local Instance lft_intersect_right_id : RightId eq static () := _.
Lemma lft_tok_sep q κ1 κ2 : q.[κ1] q.[κ2] ⊣⊢ q.[κ1 κ2].
Proof. by rewrite /lft_tok -big_sepMS_disj_union. Qed.
Lemma lft_dead_or κ1 κ2 : [κ1] [κ2] ⊣⊢ [ κ1 κ2].
Proof. Proof.
rewrite /lft_dead -or_exist. apply exist_proper=> Λ. rewrite /lft_dead -or_exist. apply exist_proper=> Λ.
rewrite -sep_or_r -pure_or. do 2 f_equiv. set_solver. rewrite -sep_or_r -pure_or. do 2 f_equiv. set_solver.
...@@ -273,113 +327,173 @@ Qed. ...@@ -273,113 +327,173 @@ Qed.
Lemma lft_tok_dead q κ : q.[κ] -∗ [ κ] -∗ False. Lemma lft_tok_dead q κ : q.[κ] -∗ [ κ] -∗ False.
Proof. Proof.
rewrite /lft_tok /lft_dead. iIntros "H"; iDestruct 1 as (Λ') "[% H']". rewrite /lft_tok /lft_dead. iIntros "H"; iDestruct 1 as (Λ') "[% H']".
iDestruct (big_sepMS_elem_of _ _ Λ' with "H") as "H"=> //. iDestruct (@big_sepMS_elem_of _ _ _ _ _ _ Λ' with "H") as "H"=> //.
iDestruct (own_valid_2 with "H H'") as %Hvalid. iCombine "H H'" gives %Hvalid.
move: Hvalid=> /auth_own_valid /=; by rewrite op_singleton singleton_valid. move: Hvalid=> /auth_frag_valid /=; by rewrite singleton_op singleton_valid.
Qed. Qed.
Lemma lft_tok_static q : q.[static]%I. Lemma lft_tok_static q : q.[static].
Proof. by rewrite /lft_tok big_sepMS_empty. Qed. Proof. by rewrite /lft_tok big_sepMS_empty. Qed.
Lemma lft_dead_static : [ static] -∗ False. Lemma lft_dead_static : [ static] -∗ False.
Proof. rewrite /lft_dead. iDestruct 1 as (Λ) "[% H']". set_solver. Qed. Proof. rewrite /lft_dead. iDestruct 1 as (Λ) "[% H']". set_solver. Qed.
Lemma lft_intersect_static_cancel_l κ κ' : κ κ' = static κ = static.
Proof.
rewrite !gmultiset_eq=>Heq Λ. move:(Heq Λ).
rewrite multiplicity_disj_union multiplicity_empty Nat.eq_add_0.
naive_solver.
Qed.
Lemma lft_tok_valid q κ :
q.[κ] -∗ (q 1)%Qp κ = static⌝.
Proof.
rewrite /lft_tok.
destruct (decide (κ = static)) as [-> | Hneq]; first by eauto.
edestruct (gmultiset_choose _ Hneq) as (Λ & Hel).
iIntros "Hm". iPoseProof (big_sepMS_elem_of with "Hm") as "Hm"; first done.
iPoseProof (own_valid with "Hm") as "%Hv".
iLeft. iPureIntro. rewrite auth_frag_valid in Hv. apply singleton_valid in Hv. done.
Qed.
(* Fractional and AsFractional instances *) (* Fractional and AsFractional instances *)
Global Instance lft_tok_fractional κ : Fractional (λ q, q.[κ])%I. Global Instance lft_tok_fractional κ : Fractional (λ q, q.[κ])%I.
Proof. Proof.
intros p q. rewrite /lft_tok -big_sepMS_sepMS. apply big_sepMS_proper. intros p q. rewrite /lft_tok -big_sepMS_sep. apply big_sepMS_proper.
intros Λ ?. rewrite -Cinl_op -op_singleton auth_frag_op own_op //. intros Λ ?. rewrite Cinl_op -singleton_op auth_frag_op own_op //.
Qed. Qed.
Global Instance lft_tok_as_fractional κ q : Global Instance lft_tok_as_fractional κ q :
AsFractional q.[κ] (λ q, q.[κ])%I q. AsFractional q.[κ] (λ q, q.[κ])%I q.
Proof. split. done. apply _. Qed. Proof. split; first done. apply _. Qed.
Global Instance frame_lft_tok p κ q1 q2 q :
FrameFractionalQp q1 q2 q
Frame p q1.[κ] q2.[κ] q.[κ] | 5.
(* FIXME(https://github.com/coq/coq/issues/17688): Φ is not inferred. *)
Proof. apply: (frame_fractional (λ q, q.[κ])%I). Qed.
Global Instance idx_bor_own_fractional i : Fractional (λ q, idx_bor_own q i)%I. Global Instance idx_bor_own_fractional i : Fractional (λ q, idx_bor_own q i)%I.
Proof. Proof.
intros p q. rewrite /idx_bor_own -own_bor_op /own_bor. f_equiv=>?. intros p q. rewrite /idx_bor_own -own_bor_op /own_bor. f_equiv=>?.
rewrite -auth_frag_op op_singleton pair_op agree_idemp. done. rewrite -auth_frag_op singleton_op -pair_op agree_idemp. done.
Qed. Qed.
Global Instance idx_bor_own_as_fractional i q : Global Instance idx_bor_own_as_fractional i q :
AsFractional (idx_bor_own q i) (λ q, idx_bor_own q i)%I q. AsFractional (idx_bor_own q i) (λ q, idx_bor_own q i)%I q.
Proof. split. done. apply _. Qed. Proof. split; first done. apply _. Qed.
Global Instance frame_idx_bor_own p i q1 q2 q :
FrameFractionalQp q1 q2 q
Frame p (idx_bor_own q1 i) (idx_bor_own q2 i) (idx_bor_own q i) | 5.
(* FIXME(https://github.com/coq/coq/issues/17688): Φ is not inferred. *)
Proof. apply: (frame_fractional (λ q, idx_bor_own q i)%I). Qed.
(** Lifetime inclusion *) (** Lifetime inclusion *)
Lemma lft_le_incl κ κ' : κ' κ (κ κ')%I. Lemma lft_incl_acc E κ κ' q :
lftN E
κ κ' -∗ q.[κ] ={E}=∗ q', q'.[κ'] (q'.[κ'] ={E}=∗ q.[κ]).
Proof.
rewrite /lft_incl.
iIntros (?) "#[H _] Hq". iApply fupd_mask_mono; first done.
iMod ("H" with "Hq") as (q') "[Hq' Hclose]". iExists q'.
iIntros "{$Hq'} !> Hq". iApply fupd_mask_mono; first done. by iApply "Hclose".
Qed.
Lemma lft_incl_dead E κ κ' : lftN E κ κ' -∗ [κ'] ={E}=∗ [κ].
Proof.
rewrite /lft_incl.
iIntros (?) "#[_ H] Hq". iApply fupd_mask_mono; first done. by iApply "H".
Qed.
Lemma lft_incl_intro κ κ' :
(( q, q.[κ] ={lftN}=∗ q', q'.[κ'] (q'.[κ'] ={lftN}=∗ q.[κ]))
([κ'] ={lftN}=∗ [κ])) -∗ κ κ'.
Proof. iIntros "?". done. Qed.
Lemma lft_intersect_incl_l κ κ' : κ κ' κ.
Proof. Proof.
iIntros (->%gmultiset_union_difference) "!#". iSplitR. unfold lft_incl. iIntros "!>". iSplitR.
- iIntros (q). rewrite <-lft_tok_sep. iIntros "[H Hf]". iExists q. iFrame. - iIntros (q). rewrite <-lft_tok_sep. iIntros "[H Hf]". iExists q. iFrame.
rewrite <-lft_tok_sep. by iIntros "!>{$Hf}$". rewrite <-lft_tok_sep. by iIntros "!>{$Hf}$".
- iIntros "? !>". iApply lft_dead_or. auto. - iIntros "? !>". iApply lft_dead_or. auto.
Qed. Qed.
Lemma lft_incl_refl κ : (κ κ)%I. Lemma lft_intersect_incl_r κ κ' : κ κ' κ'.
Proof. by apply lft_le_incl. Qed. Proof. rewrite comm. apply lft_intersect_incl_l. Qed.
Lemma lft_incl_refl κ : κ κ.
Proof. unfold lft_incl. iIntros "!>"; iSplitR; auto 10 with iFrame. Qed.
Lemma lft_incl_trans κ κ' κ'': κ κ' -∗ κ' κ'' -∗ κ κ''. Lemma lft_incl_trans κ κ' κ'' : κ κ' -∗ κ' κ'' -∗ κ κ''.
Proof. Proof.
rewrite /lft_incl. iIntros "#[H1 H1†] #[H2 H2†] !#". iSplitR. rewrite /lft_incl. iIntros "#[H1 H1†] #[H2 H2†] !>". iSplitR.
- iIntros (q) "Hκ". - iIntros (q) "Hκ".
iMod ("H1" with "*Hκ") as (q') "[Hκ' Hclose]". iMod ("H1" with "Hκ") as (q') "[Hκ' Hclose]".
iMod ("H2" with "*Hκ'") as (q'') "[Hκ'' Hclose']". iMod ("H2" with "Hκ'") as (q'') "[Hκ'' Hclose']".
iExists q''. iIntros "{$Hκ''} !> Hκ''". iExists q''. iIntros "{$Hκ''} !> Hκ''".
iMod ("Hclose'" with "Hκ''") as "Hκ'". by iApply "Hclose". iMod ("Hclose'" with "Hκ''") as "Hκ'". by iApply "Hclose".
- iIntros "H†". iMod ("H2†" with "H†"). by iApply "H1†". - iIntros "H†". iMod ("H2†" with "H†"). by iApply "H1†".
Qed. Qed.
Lemma lft_incl_glb κ κ' κ'' : κ κ' -∗ κ κ'' -∗ κ κ' κ''. Lemma lft_intersect_acc κ κ' q q' :
q.[κ] -∗ q'.[κ'] -∗ q'', q''.[κ κ'] (q''.[κ κ'] -∗ q.[κ] q'.[κ']).
Proof. Proof.
rewrite /lft_incl. iIntros "#[H1 H1†] #[H2 H2†]!#". iSplitR. iIntros "Hκ Hκ'".
destruct (Qp.lower_bound q q') as (qq & q0 & q'0 & -> & ->).
iExists qq. rewrite -lft_tok_sep.
iDestruct "Hκ" as "[$$]". iDestruct "Hκ'" as "[$$]". auto.
Qed.
Lemma lft_incl_glb κ κ' κ'' : κ κ' -∗ κ κ'' -∗ κ κ' κ''.
Proof.
rewrite /lft_incl. iIntros "#[H1 H1†] #[H2 H2†]!>". iSplitR.
- iIntros (q) "[Hκ'1 Hκ'2]". - iIntros (q) "[Hκ'1 Hκ'2]".
iMod ("H1" with "*Hκ'1") as (q') "[Hκ' Hclose']". iMod ("H1" with "Hκ'1") as (q') "[Hκ' Hclose']".
iMod ("H2" with "*Hκ'2") as (q'') "[Hκ'' Hclose'']". iMod ("H2" with "Hκ'2") as (q'') "[Hκ'' Hclose'']".
destruct (Qp_lower_bound q' q'') as (qq & q'0 & q''0 & -> & ->). iDestruct (lft_intersect_acc with "Hκ' Hκ''") as (qq) "[Hqq Hclose]".
iExists qq. rewrite -lft_tok_sep. iExists qq. iFrame. iIntros "!> Hqq".
iDestruct "Hκ'" as "[$ Hκ']". iDestruct "Hκ''" as "[$ Hκ'']". iDestruct ("Hclose" with "Hqq") as "[Hκ' Hκ'']".
iIntros "!> [Hκ'0 Hκ''0]". iMod ("Hclose'" with "Hκ'") as "$". by iApply "Hclose''".
iMod ("Hclose'" with "[$Hκ' $Hκ'0]") as "$". - rewrite -lft_dead_or. iIntros "[H†|H†]".
iApply "Hclose''". iFrame. + by iApply "H1†".
- rewrite -lft_dead_or. iIntros "[H†|H†]". by iApply "H1†". by iApply "H2†". + by iApply "H2†".
Qed. Qed.
Lemma lft_incl_mono κ1 κ1' κ2 κ2' : Lemma lft_intersect_mono κ1 κ1' κ2 κ2' :
κ1 κ1' -∗ κ2 κ2' -∗ κ1 κ2 κ1' κ2'. κ1 κ1' -∗ κ2 κ2' -∗ κ1 κ2 κ1' κ2'.
Proof. Proof.
iIntros "#H1 #H2". iApply (lft_incl_glb with "[]"). iIntros "#H1 #H2". iApply (lft_incl_glb with "[]").
- iApply (lft_incl_trans with "[] H1"). - iApply (lft_incl_trans with "[] H1"). iApply lft_intersect_incl_l.
iApply lft_le_incl. apply gmultiset_union_subseteq_l. - iApply (lft_incl_trans with "[] H2"). iApply lft_intersect_incl_r.
- iApply (lft_incl_trans with "[] H2").
iApply lft_le_incl. apply gmultiset_union_subseteq_r.
Qed. Qed.
Lemma lft_incl_acc E κ κ' q : (** Basic rules about borrows *)
lftN E Lemma raw_bor_iff i P P' : (P P') -∗ raw_bor i P -∗ raw_bor i P'.
κ κ' -∗ q.[κ] ={E}=∗ q', q'.[κ'] (q'.[κ'] ={E}=∗ q.[κ]).
Proof. Proof.
rewrite /lft_incl. iIntros "#HPP' HP". unfold raw_bor. iDestruct "HP" as (s) "[HiP HP]".
iIntros (?) "#[H _] Hq". iApply fupd_mask_mono; first done. iExists s. iFrame. iDestruct "HP" as (P0) "[#Hiff ?]". iExists P0. iFrame.
iMod ("H" with "* Hq") as (q') "[Hq' Hclose]". iExists q'. iNext. iModIntro. iSplit; iIntros.
iIntros "{$Hq'} !> Hq". iApply fupd_mask_mono; first done. by iApply "Hclose". - by iApply "HPP'"; iApply "Hiff".
- by iApply "Hiff"; iApply "HPP'".
Qed. Qed.
Lemma lft_incl_dead E κ κ' : lftN E κ κ' -∗ [κ'] ={E}=∗ [κ]. Lemma idx_bor_iff κ i P P' : (P P') -∗ &{κ,i}P -∗ &{κ,i}P'.
Proof. Proof.
rewrite /lft_incl. unfold idx_bor. iIntros "#HPP' [$ HP]". iDestruct "HP" as (P0) "[#HP0P Hs]".
iIntros (?) "#[_ H] Hq". iApply fupd_mask_mono; first done. by iApply "H". iExists P0. iFrame. iNext. iModIntro. iSplit; iIntros.
- by iApply "HPP'"; iApply "HP0P".
- by iApply "HP0P"; iApply "HPP'".
Qed. Qed.
Lemma lft_incl_intro κ κ' :
(( q, lft_tok q κ ={lftN}=∗ q',
lft_tok q' κ' (lft_tok q' κ' ={lftN}=∗ lft_tok q κ))
(lft_dead κ' ={lftN}=∗ lft_dead κ)) -∗ κ κ'.
Proof. reflexivity. Qed.
(** Basic rules about borrows *)
Lemma bor_unfold_idx κ P : &{κ}P ⊣⊢ i, &{κ,i}P idx_bor_own 1 i. Lemma bor_unfold_idx κ P : &{κ}P ⊣⊢ i, &{κ,i}P idx_bor_own 1 i.
Proof. Proof.
rewrite /bor /raw_bor /idx_bor /bor_idx. iSplit. rewrite /bor /raw_bor /idx_bor /bor_idx. iSplit.
- iDestruct 1 as (κ') "[? Hraw]". iDestruct "Hraw" as (s) "[??]". - iDestruct 1 as (κ') "[? Hraw]". iDestruct "Hraw" as (s) "[??]".
iExists (κ', s). by iFrame. iExists (κ', s). by iFrame.
- iDestruct 1 as ([κ' s]) "[[??]?]". - iDestruct 1 as ([κ' s]) "[[??]?]". iFrame.
iExists κ'. iFrame. iExists s. by iFrame. Qed.
Lemma bor_iff κ P P' : (P P') -∗ &{κ}P -∗ &{κ}P'.
Proof.
rewrite !bor_unfold_idx. iIntros "#HPP' HP". iDestruct "HP" as (i) "[??]".
iExists i. iFrame. by iApply (idx_bor_iff with "HPP'").
Qed. Qed.
Lemma bor_shorten κ κ' P : κ κ' -∗ &{κ'}P -∗ &{κ}P. Lemma bor_shorten κ κ' P : κ κ' -∗ &{κ'}P -∗ &{κ}P.
...@@ -418,25 +532,25 @@ Proof. ...@@ -418,25 +532,25 @@ Proof.
as (γE) "(% & #Hslice & Hbox)". as (γE) "(% & #Hslice & Hbox)".
iMod (own_inh_update with "HE") as "[HE HE◯]". iMod (own_inh_update with "HE") as "[HE HE◯]".
{ by eapply auth_update_alloc, (gset_disj_alloc_empty_local_update _ {[γE]}), { by eapply auth_update_alloc, (gset_disj_alloc_empty_local_update _ {[γE]}),
disjoint_singleton_l, lookup_to_gmap_None. } disjoint_singleton_l, lookup_gset_to_gmap_None. }
iModIntro. iSplitL "Hbox HE". iModIntro. iSplitL "Hbox HE".
{ iNext. rewrite /lft_inh. iExists ({[γE]} PE). { iNext. rewrite /lft_inh. iExists ({[γE]} PE).
rewrite to_gmap_union_singleton. iFrame. } rewrite gset_to_gmap_union_singleton. iFrame. }
clear dependent PE. rewrite -(left_id_L op ( GSet {[γE]})). clear dependent PE. rewrite -(left_id ε op ( GSet {[γE]})).
iDestruct "HE◯" as "[HE◯' HE◯]". iSplitL "HE◯'". iDestruct "HE◯" as "[HE◯' HE◯]". iSplitL "HE◯'".
{ iIntros (I) "HI". iApply (own_inh_auth with "HI HE◯'"). } { iIntros (I) "HI". iApply (own_inh_auth with "HI HE◯'"). }
iIntros (Q'). rewrite {1}/lft_inh. iDestruct 1 as (PE) "[>HE Hbox]". iIntros (Q'). rewrite {1}/lft_inh. iDestruct 1 as (PE) "[>HE Hbox]".
iDestruct (own_inh_valid_2 with "HE HE◯") iDestruct (own_inh_valid_2 with "HE HE◯")
as %[Hle%gset_disj_included _]%auth_valid_discrete_2. as %[Hle%gset_disj_included _]%auth_both_valid_discrete.
iMod (own_inh_update_2 with "HE HE◯") as "HE". iMod (own_inh_update_2 with "HE HE◯") as "HE".
{ apply auth_update_dealloc, gset_disj_dealloc_local_update. } { apply auth_update_dealloc, gset_disj_dealloc_local_update. }
iMod (slice_delete_full _ _ true with "Hslice Hbox") iMod (slice_delete_full _ _ true with "Hslice Hbox")
as (Q'') "($ & #? & Hbox)"; first by solve_ndisj. as (Q'') "($ & #? & Hbox)"; first by solve_ndisj.
{ rewrite lookup_to_gmap_Some. set_solver. } { rewrite lookup_gset_to_gmap_Some. set_solver. }
iModIntro. iExists Q''. iSplit; first done. iModIntro. iExists Q''. iSplit; first done.
iNext. rewrite /lft_inh. iExists (PE {[γE]}). iFrame "HE". iNext. rewrite /lft_inh. iExists (PE {[γE]}). iFrame "HE".
rewrite {1}(union_difference_L {[ γE ]} PE); last set_solver. rewrite {1}(union_difference_L {[ γE ]} PE); last set_solver.
rewrite to_gmap_union_singleton delete_insert // lookup_to_gmap_None. rewrite gset_to_gmap_union_singleton delete_insert // lookup_gset_to_gmap_None.
set_solver. set_solver.
Qed. Qed.
...@@ -447,7 +561,7 @@ Proof. ...@@ -447,7 +561,7 @@ Proof.
rewrite /lft_inh. iIntros (?) "[Hinh HQ]". rewrite /lft_inh. iIntros (?) "[Hinh HQ]".
iDestruct "Hinh" as (E') "[Hinh Hbox]". iDestruct "Hinh" as (E') "[Hinh Hbox]".
iMod (box_fill with "Hbox HQ") as "?"=>//. iMod (box_fill with "Hbox HQ") as "?"=>//.
rewrite fmap_to_gmap. iModIntro. iExists E'. by iFrame. rewrite fmap_gset_to_gmap. iModIntro. iExists E'. by iFrame.
Qed. Qed.
(* View shifts *) (* View shifts *)
...@@ -459,18 +573,16 @@ Proof. ...@@ -459,18 +573,16 @@ Proof.
iApply ("Hvs" $! I'' with "Hinv HPb H†"). iApply ("Hvs" $! I'' with "Hinv HPb H†").
Qed. Qed.
(* TODO RJ: Are there still places where this lemma Lemma lft_vs_cons κ Pb Pb' Pi :
is re-proven inline? *) ( Pb'-∗ [κ] ={userE borN}=∗ Pb) -∗
Lemma lft_vs_cons q κ Pb Pb' Pi : lft_vs κ Pb Pi -∗ lft_vs κ Pb' Pi.
(lft_bor_dead κ Pb' ={ mgmtN}=∗ lft_bor_dead κ Pb) -∗
?q lft_vs κ Pb Pi -∗ ?q lft_vs κ Pb' Pi.
Proof. Proof.
iIntros "Hcons Hvs". iNext. rewrite !lft_vs_unfold. iIntros "Hcons Hvs". rewrite !lft_vs_unfold.
iDestruct "Hvs" as (n) "[Hn● Hvs]". iExists n. iFrame "Hn●". iDestruct "Hvs" as (n) "[Hn● Hvs]". iExists n. iFrame "Hn●".
iIntros (I). rewrite {1}lft_vs_inv_unfold. iIntros (I). rewrite {1}lft_vs_inv_unfold.
iIntros "(Hdead & Hinv & Hκs) HPb #Hκ†". iIntros "(Hinv & Hκs) HPb #Hκ†".
iMod ("Hcons" with "[$Hdead $HPb]") as "[Hdead HPb]". iMod ("Hcons" with "HPb Hκ†") as "HPb".
iApply ("Hvs" $! I with "[Hdead Hinv Hκs] HPb Hκ†"). iApply ("Hvs" $! I with "[Hinv Hκs] HPb Hκ†").
rewrite lft_vs_inv_unfold. by iFrame. rewrite lft_vs_inv_unfold. by iFrame.
Qed. Qed.
End primitive. End primitive.
From lrust.lifetime Require Export primitive. From lrust.lifetime Require Import borrow accessors.
From lrust.lifetime Require Import faking. From iris.algebra Require Import csum auth frac gmap agree gset numbers.
From iris.algebra Require Import csum auth frac gmap agree gset.
From iris.base_logic Require Import big_op.
From iris.base_logic.lib Require Import boxes. From iris.base_logic.lib Require Import boxes.
From iris.proofmode Require Import tactics. From iris.proofmode Require Import proofmode.
Set Default Proof Using "Type". From iris.prelude Require Import options.
Section rebor. Section reborrow.
Context `{invG Σ, lftG Σ}. Context `{!invGS Σ, !lftGS Σ userE}.
Implicit Types κ : lft. Implicit Types κ : lft.
(* Notice that taking lft_inv for both κ and κ' already implies (* Notice that taking lft_inv for both κ and κ' already implies
κ ≠ κ'. Still, it is probably more instructing to require κ ≠ κ'. Still, it is probably more instructing to require
κ ⊂ κ' in this lemma (as opposed to just κ ⊆ κ'), and it κ ⊂ κ' in this lemma (as opposed to just κ ⊆ κ'), and it
should not increase the burden on the user. *) should not increase the burden on the user. *)
Lemma raw_bor_unnest E q A I Pb Pi P κ i κ' : Lemma raw_bor_unnest E A I Pb Pi P κ i κ' :
borN E borN E
let Iinv := (own_ilft_auth I ?q lft_inv A κ)%I in let Iinv := (own_ilft_auth I lft_inv A κ)%I in
κ κ' κ κ'
lft_alive_in A κ' lft_alive_in A κ'
Iinv -∗ idx_bor_own 1 (κ, i) -∗ slice borN i P -∗ ?q lft_bor_alive κ' Pb -∗ Iinv -∗ idx_bor_own 1 (κ, i) -∗ slice borN i P -∗ lft_bor_alive κ' Pb -∗
?q lft_vs κ' (idx_bor_own 1 (κ, i) Pb) Pi ={E}=∗ Pb', lft_vs κ' (idx_bor_own 1 (κ, i) Pb) Pi ={E}=∗ Pb',
Iinv raw_bor κ' P ?q lft_bor_alive κ' Pb' ?q lft_vs κ' Pb' Pi. Iinv raw_bor κ' P lft_bor_alive κ' Pb' lft_vs κ' Pb' Pi.
Proof. Proof.
iIntros (? Iinv Hκκ' Haliveκ') "(HI & Hκ) Hi #Hislice Hκalive' Hvs". iIntros (? Iinv Hκκ' Haliveκ') "(HI & Hκ) Hi #Hislice Hκalive' Hvs".
rewrite lft_vs_unfold. iDestruct "Hvs" as (n) "[>Hn● Hvs]". rewrite lft_vs_unfold. iDestruct "Hvs" as (n) "[>Hn● Hvs]".
iMod (own_cnt_update with "Hn●") as "[Hn● H◯]". iMod (own_cnt_update with "Hn●") as "[Hn● H◯]".
{ apply auth_update_alloc, (nat_local_update _ 0 (S n) 1); omega. } { apply auth_update_alloc, (nat_local_update _ 0 (S n) 1); lia. }
rewrite {1}/raw_bor /idx_bor_own /=. rewrite {1}/raw_bor /idx_bor_own /=.
iDestruct (own_bor_auth with "HI Hi") as %?. iDestruct (own_bor_auth with "HI Hi") as %?.
assert (κ κ') by (by apply strict_include). assert (κ κ') by (by apply strict_include).
...@@ -36,15 +34,14 @@ Proof. ...@@ -36,15 +34,14 @@ Proof.
iDestruct "Hκ" as (Pb' Pi') "(Hκalive&Hvs'&Hinh')". iDestruct "Hκ" as (Pb' Pi') "(Hκalive&Hvs'&Hinh')".
rewrite {2}/lft_bor_alive; iDestruct "Hκalive" as (B) "(Hbox & >HB● & HB)". rewrite {2}/lft_bor_alive; iDestruct "Hκalive" as (B) "(Hbox & >HB● & HB)".
iDestruct (own_bor_valid_2 with "HB● Hi") iDestruct (own_bor_valid_2 with "HB● Hi")
as %[HB%to_borUR_included _]%auth_valid_discrete_2. as %[HB%to_borUR_included _]%auth_both_valid_discrete.
iMod (slice_empty with "Hislice Hbox") as "[HP Hbox]"; first done. iMod (slice_empty _ _ true with "Hislice Hbox") as "[HP Hbox]"; first done.
{ by rewrite lookup_fmap HB. } { by rewrite lookup_fmap HB. }
iMod (own_bor_update_2 with "HB● Hi") as "[HB● Hi]". iMod (own_bor_update_2 with "HB● Hi") as "[HB● Hi]".
{ eapply auth_update. (* FIXME: eapply singleton_local_update loops. *) { eapply auth_update, singleton_local_update; last eapply
apply: singleton_local_update; last eapply
(exclusive_local_update _ (1%Qp, to_agree (Bor_rebor κ'))); last done. (exclusive_local_update _ (1%Qp, to_agree (Bor_rebor κ'))); last done.
rewrite /to_borUR lookup_fmap. by rewrite HB. } rewrite /to_borUR lookup_fmap. by rewrite HB. }
iAssert (?q lft_inv A κ)%I with "[H◯ HB● HB Hvs' Hinh' Hbox]" as "Hκ". iAssert ( lft_inv A κ)%I with "[H◯ HB● HB Hvs' Hinh' Hbox]" as "Hκ".
{ iNext. rewrite /lft_inv. iLeft. { iNext. rewrite /lft_inv. iLeft.
iSplit; last by eauto using lft_alive_in_subseteq. iSplit; last by eauto using lft_alive_in_subseteq.
rewrite lft_inv_alive_unfold. iExists Pb', Pi'. iFrame "Hvs' Hinh'". rewrite lft_inv_alive_unfold. iExists Pb', Pi'. iFrame "Hvs' Hinh'".
...@@ -52,19 +49,18 @@ Proof. ...@@ -52,19 +49,18 @@ Proof.
rewrite /to_borUR !fmap_insert. iFrame "Hbox HB●". rewrite /to_borUR !fmap_insert. iFrame "Hbox HB●".
iDestruct (@big_sepM_delete with "HB") as "[_ HB]"; first done. iDestruct (@big_sepM_delete with "HB") as "[_ HB]"; first done.
rewrite (big_sepM_delete _ (<[_:=_]>_) i); last by rewrite lookup_insert. rewrite (big_sepM_delete _ (<[_:=_]>_) i); last by rewrite lookup_insert.
rewrite -insert_delete delete_insert ?lookup_delete //=. iFrame; auto. } rewrite -insert_delete_insert delete_insert ?lookup_delete //=. iFrame; auto. }
clear B HB Pb' Pi'. clear B HB Pb' Pi'.
rewrite {1}/lft_bor_alive. iDestruct "Hκalive'" as (B) "(Hbox & >HB● & HB)". rewrite {1}/lft_bor_alive. iDestruct "Hκalive'" as (B) "(Hbox & >HB● & HB)".
iMod (slice_insert_full with "HP Hbox") iMod (slice_insert_full _ _ true with "HP Hbox")
as (j) "(HBj & #Hjslice & Hbox)"; first done. as (j) "(HBj & #Hjslice & Hbox)"; first done.
iDestruct "HBj" as %HBj; move: HBj; rewrite lookup_fmap fmap_None=> HBj. iDestruct "HBj" as %HBj; move: HBj; rewrite lookup_fmap fmap_None=> HBj.
iMod (own_bor_update with "HB●") as "[HB● Hj]". iMod (own_bor_update with "HB●") as "[HB● Hj]".
{ apply auth_update_alloc, { apply auth_update_alloc,
(alloc_singleton_local_update _ j (1%Qp, to_agree Bor_in)); last done. (alloc_singleton_local_update _ j (1%Qp, to_agree Bor_in)); last done.
rewrite /to_borUR lookup_fmap. by rewrite HBj. } rewrite /to_borUR lookup_fmap. by rewrite HBj. }
iModIntro. iExists (P Pb)%I. rewrite /Iinv. iFrame "HI". iFrame. iModIntro. iExists (P Pb)%I. rewrite /Iinv. iFrame "HI Hκ". iSplitL "Hj".
iSplitL "Hj". { iExists j. iFrame. iExists P. rewrite -(bi.iff_refl emp). auto. }
{ rewrite /raw_bor /idx_bor_own. iExists j. by iFrame. }
iSplitL "Hbox HB● HB". iSplitL "Hbox HB● HB".
{ rewrite /lft_bor_alive. iNext. iExists (<[j:=Bor_in]> B). { rewrite /lft_bor_alive. iNext. iExists (<[j:=Bor_in]> B).
rewrite /to_borUR !fmap_insert big_sepM_insert //. iFrame. rewrite /to_borUR !fmap_insert big_sepM_insert //. iFrame.
...@@ -72,124 +68,117 @@ Proof. ...@@ -72,124 +68,117 @@ Proof.
clear dependent Iinv I. clear dependent Iinv I.
iNext. rewrite lft_vs_unfold. iExists (S n). iFrame "Hn●". iNext. rewrite lft_vs_unfold. iExists (S n). iFrame "Hn●".
iIntros (I) "Hinv [HP HPb] #Hκ†". iIntros (I) "Hinv [HP HPb] #Hκ†".
rewrite {1}lft_vs_inv_unfold; iDestruct "Hinv" as "(Hκdead' & HI & Hinv)". rewrite {1}lft_vs_inv_unfold; iDestruct "Hinv" as "(HI & Hinv)".
iDestruct (own_bor_auth with "HI Hi") as %?%elem_of_dom. iDestruct (own_bor_auth with "HI Hi") as %?%(elem_of_dom (D:=gset lft)).
iDestruct (@big_sepS_delete with "Hinv") as "[Hκalive Hinv]"; first done. iDestruct (@big_sepS_delete with "Hinv") as "[Hκalive Hinv]"; first done.
rewrite lft_inv_alive_unfold. rewrite lft_inv_alive_unfold.
iDestruct ("Hκalive" with "[%]") as (Pb' Pi') "(Hκalive&Hvs'&Hinh)"; first done. iDestruct ("Hκalive" with "[//]") as (Pb' Pi') "(Hκalive&Hvs'&Hinh)".
rewrite /lft_bor_alive; iDestruct "Hκalive" as (B') "(Hbox & HB● & HB)". rewrite /lft_bor_alive; iDestruct "Hκalive" as (B') "(Hbox & HB● & HB)".
iDestruct (own_bor_valid_2 with "HB● Hi") iDestruct (own_bor_valid_2 with "HB● Hi")
as %[HB%to_borUR_included _]%auth_valid_discrete_2. as %[HB%to_borUR_included _]%auth_both_valid_discrete.
iMod (own_bor_update_2 with "HB● Hi") as "[HB● Hi]". iMod (own_bor_update_2 with "HB● Hi") as "[HB● Hi]".
{ eapply auth_update, singleton_local_update, { eapply auth_update, singleton_local_update,
(exclusive_local_update _ (1%Qp, to_agree Bor_in)); last done. (exclusive_local_update _ (1%Qp, to_agree Bor_in)); last done.
rewrite /to_borUR lookup_fmap. by rewrite HB. } rewrite /to_borUR lookup_fmap. by rewrite HB. }
iMod (slice_fill _ _ false with "Hislice HP Hbox") iMod (slice_fill _ _ false with "Hislice HP Hbox")
as "Hbox"; first by solve_ndisj. as "Hbox".
{ set_solver+. }
{ by rewrite lookup_fmap HB. } { by rewrite lookup_fmap HB. }
iDestruct (@big_sepM_delete with "HB") as "[Hcnt HB]"; first done. iDestruct (@big_sepM_delete with "HB") as "[Hcnt HB]"; first done.
rewrite /=; iDestruct "Hcnt" as "[% H1◯]". rewrite /=. iDestruct "Hcnt" as "[% H1◯]".
iMod ("Hvs" $! I with "[Hκdead' HI Hinv Hvs' Hinh HB● Hbox HB] iMod ("Hvs" $! I with "[HI Hinv Hvs' Hinh HB● Hbox HB]
[$HPb Hi] Hκ†") as "($ & $ & Hcnt')". [$HPb $Hi] Hκ†") as "($ & $ & Hcnt')".
{ rewrite lft_vs_inv_unfold. iFrame "Hκdead' HI". { rewrite lft_vs_inv_unfold. iFrame "HI".
iApply (big_sepS_delete _ (dom (gset lft) I) with "[- $Hinv]"); first done. iApply (big_sepS_delete _ (dom I) with "[- $Hinv]"); first done.
iIntros (_). rewrite lft_inv_alive_unfold. iIntros (_). rewrite lft_inv_alive_unfold.
iExists Pb', Pi'. iFrame "Hvs' Hinh". rewrite /lft_bor_alive. iExists Pb', Pi'. iFrame "Hvs' Hinh". rewrite /lft_bor_alive.
iExists (<[i:=Bor_in]>B'). rewrite /to_borUR !fmap_insert. iFrame. iExists (<[i:=Bor_in]>B'). rewrite /to_borUR !fmap_insert. iFrame.
rewrite -insert_delete big_sepM_insert ?lookup_delete //=. by iFrame. } rewrite -insert_delete_insert big_sepM_insert ?lookup_delete //=. by iFrame. }
{ rewrite /raw_bor /idx_bor_own /=. auto. } iModIntro. rewrite -[S n]Nat.add_1_l -nat_op auth_frag_op own_cnt_op.
iModIntro. rewrite -[S n]Nat.add_1_l -nat_op_plus auth_frag_op own_cnt_op.
by iFrame. by iFrame.
Qed. Qed.
Lemma raw_bor_unnest' E q A I Pb Pi P κ κ' : Lemma raw_idx_bor_unnest E κ κ' i P :
borN E lftN E κ κ'
let Iinv := ( lft_ctx -∗ slice borN i P -∗ raw_bor κ' (idx_bor_own 1 (κ, i))
own_ilft_auth I ={E}=∗ raw_bor κ' P.
?q [ set] κ dom _ I {[κ']}, lft_inv A κ)%I in
κ κ'
lft_alive_in A κ'
Iinv -∗ raw_bor κ P -∗ ?q lft_bor_alive κ' Pb -∗
?q lft_vs κ' (raw_bor κ P Pb) Pi ={E}=∗ Pb',
Iinv raw_bor κ' P ?q lft_bor_alive κ' Pb' ?q lft_vs κ' Pb' Pi.
Proof. Proof.
iIntros (? Iinv Hκκ' Haliveκ') "(HI & Hinv) Hraw Hκalive' Hvs". iIntros (? Hκκ') "#LFT #Hs Hraw".
destruct (decide (κ = κ')) as [<-|Hκneq]. iInv mgmtN as (A I) "(>HA & >HI & Hinv)" "Hclose".
{ iModIntro. iExists Pb. rewrite /Iinv. iFrame "HI Hinv Hκalive' Hraw". iDestruct (raw_bor_inI with "HI Hraw") as %HI'.
iApply (lft_vs_cons with "[]"); last done. rewrite (big_sepS_delete _ _ κ') ?elem_of_dom // [_ A κ']/lft_inv.
iIntros "(Hdead & HPb)". iDestruct "Hinv" as "[[[Hinvκ >%]|[Hinvκ >%]] Hinv]"; last first.
iMod (raw_bor_fake _ false _ P with "Hdead") as "[Hdead Hraw]"; first solve_ndisj. { rewrite /lft_inv_dead. iDestruct "Hinvκ" as (Pi) "[Hbordead H]".
by iFrame. } iMod (raw_bor_fake with "Hbordead") as "[Hbordead $]"; first solve_ndisj.
assert (κ κ') by (by apply strict_spec_alt). iApply "Hclose". iExists _, _. iFrame.
iDestruct (raw_bor_inI with "HI Hraw") as %HI. rewrite (big_opS_delete _ (dom _) κ') ?elem_of_dom // /lft_inv /lft_inv_dead.
iDestruct (big_sepS_elem_of_acc _ _ κ with "Hinv") as "[Hinv Hclose]". auto 10 with iFrame. }
{ rewrite elem_of_difference elem_of_dom not_elem_of_singleton. done. } rewrite {1}/raw_bor. iDestruct "Hraw" as (i') "[Hbor H]".
rewrite {1}/raw_bor. iDestruct "Hraw" as (i) "[Hi #Hislice]". iDestruct "H" as (P') "[#HP' #Hs']".
iMod (raw_bor_unnest with "[$HI $Hinv] Hi Hislice Hκalive' [Hvs]") as (Pb') "([HI Hκ] & ? & ? & ?)"; [done..| |]. rewrite lft_inv_alive_unfold /lft_bor_alive [in _ _ (κ', i')]/idx_bor_own.
{ iApply (lft_vs_cons with "[]"); last done. iDestruct "Hinvκ" as (Pb Pi) "(Halive & Hvs & Hinh)".
iIntros "[$ [>? $]]". iModIntro. iNext. rewrite /raw_bor. iDestruct "Halive" as (B) "(Hbox & >H● & HB)".
iExists i. by iFrame. } iDestruct (own_bor_valid_2 with "H● Hbor")
iExists Pb'. iModIntro. iFrame. iNext. by iApply "Hclose". as %[EQB%to_borUR_included _]%auth_both_valid_discrete.
iMod (slice_empty _ _ true with "Hs' Hbox") as "[Hidx Hbox]";
first solve_ndisj.
{ by rewrite lookup_fmap EQB. }
iAssert ( idx_bor_own 1 (κ, i))%I with "[Hidx]" as ">Hidx"; [by iApply "HP'"|].
iDestruct (own_bor_auth with "HI [Hidx]") as %HI; [by rewrite /idx_bor_own|].
iDestruct (big_sepS_elem_of_acc _ _ κ with "Hinv") as "[Hinvκ Hclose']";
first by rewrite elem_of_difference elem_of_dom not_elem_of_singleton;
eauto using strict_ne.
iMod (slice_delete_empty with "Hs' Hbox") as (Pb') "[#HeqPb' Hbox]";
[solve_ndisj|by apply lookup_insert|].
iMod (own_bor_update_2 with "H● Hbor") as "H●".
{ apply auth_update_dealloc, delete_singleton_local_update. apply _. }
iMod (raw_bor_unnest with "[$HI $Hinvκ] Hidx Hs [Hbox H● HB] [Hvs]")
as (Pb'') "HH"; [solve_ndisj|done|done| | |].
{ rewrite /lft_bor_alive (big_sepM_delete _ B i') //. iDestruct "HB" as "[_ HB]".
iExists (delete i' B). rewrite -fmap_delete. iFrame.
rewrite fmap_delete -insert_delete_insert delete_insert ?lookup_delete //=. }
{ iNext. iApply (lft_vs_cons with "[] Hvs"). iIntros "[??] _ !>". iNext.
iRewrite "HeqPb'". iFrame. by iApply "HP'". }
iDestruct "HH" as "([HI Hinvκ] & $ & Halive & Hvs)".
iApply "Hclose". iExists _, _. iFrame.
rewrite (big_opS_delete _ (dom _) κ') ?elem_of_dom //.
iDestruct ("Hclose'" with "Hinvκ") as "$".
rewrite /lft_inv lft_inv_alive_unfold. auto 10 with iFrame.
Qed. Qed.
Lemma raw_rebor E κ κ' P : Lemma raw_bor_shorten E κ κ' P :
lftN E κ κ' lftN E κ κ'
lft_ctx -∗ raw_bor κ P ={E}=∗ lft_ctx -∗ raw_bor κ P ={E}=∗ raw_bor κ' P.
raw_bor κ' P ([κ'] ={E}=∗ raw_bor κ P).
Proof. Proof.
rewrite /lft_ctx. iIntros (??) "#LFT Hκ". iIntros (? Hκκ') "#LFT Hbor".
destruct (decide (κ = κ')) as [<-|Hκneq]. destruct (decide (κ = κ')) as [<-|Hκneq]; [by iFrame|].
{ iFrame. iIntros "!> #Hκ†". by iApply (raw_bor_fake' with "LFT Hκ†"). }
assert (κ κ') by (by apply strict_spec_alt). assert (κ κ') by (by apply strict_spec_alt).
iInv mgmtN as (A I) "(>HA & >HI & Hinv)" "Hclose". rewrite [_ κ P]/raw_bor. iDestruct "Hbor" as (s) "[Hbor Hs]".
iMod (ilft_create _ _ κ' with "HA HI Hinv") as (A' I') "(% & HA & HI & Hinv)". iDestruct "Hs" as (P') "[#HP'P #Hs]".
clear A I; rename A' into A; rename I' into I. iMod (raw_bor_create _ κ' with "LFT Hbor") as "[Hbor _]"; [done|].
iDestruct (big_sepS_delete _ _ κ' with "Hinv") as "[Hκinv' Hinv]"; iApply (raw_bor_iff with "HP'P"). by iApply raw_idx_bor_unnest.
first by apply elem_of_dom. Qed.
rewrite {1}/lft_inv; iDestruct "Hκinv'" as "[[? >%]|[Hdead >%]]"; last first.
{ rewrite /lft_inv_dead; iDestruct "Hdead" as (Pi) "(Hdead & >H● & Hinh)". Lemma idx_bor_unnest E κ κ' i P :
iMod (raw_bor_fake _ true _ P with "Hdead") as "[Hdead $]"; first solve_ndisj. lftN E
iMod ("Hclose" with "[-Hκ]") as "_"; last auto. lft_ctx -∗ &{κ,i} P -∗ &{κ'}(idx_bor_own 1 i) ={E}=∗ &{κ κ'} P.
iNext. rewrite {2}/lfts_inv. iExists A, I. iFrame "HA HI". Proof.
iApply (big_sepS_delete _ _ κ'); first by apply elem_of_dom. iIntros (?) "#LFT #HP Hbor".
iFrame "Hinv". rewrite /lft_inv /lft_inv_dead. iRight. rewrite [(&{κ'}_)%I]/bor. iDestruct "Hbor" as (κ'0) "[#Hκ'κ'0 Hbor]".
iSplit; last done. iExists Pi. by iFrame. } destruct (decide (κ'0 = static)) as [->|Hκ'0].
rewrite lft_inv_alive_unfold; iDestruct "Hκinv'" as (Pb Pi) "(Hbor & Hvs & Hinh)". { iMod (bor_acc_strong with "LFT [Hbor] []") as (?) "(_ & Hbor & _)";
rewrite {1}/raw_bor. iDestruct "Hκ" as (i) "[Hi #Hislice]". [done| |iApply (lft_tok_static 1)|].
iMod (lft_inh_extend _ _ (idx_bor_own 1 (κ, i)) with "Hinh") - rewrite /bor. iExists static. iFrame. iApply lft_incl_refl.
as "(Hinh & HIlookup & Hinh_close)"; first solve_ndisj. - iDestruct "Hbor" as ">Hbor".
iDestruct (own_bor_auth with "HI [Hi]") as %?. iApply bor_shorten; [|by rewrite bor_unfold_idx; auto].
{ by rewrite /idx_bor_own. } iApply lft_intersect_incl_l. }
iDestruct (big_sepS_elem_of_acc _ _ κ with "Hinv") as "[Hκ Hκclose]". rewrite /idx_bor /bor. destruct i as [κ0 i].
{ by rewrite elem_of_difference elem_of_dom not_elem_of_singleton. } iDestruct "HP" as "[Hκκ0 HP]". iDestruct "HP" as (P') "[HPP' HP']".
iMod (raw_bor_unnest _ true _ _ _ (idx_bor_own 1 (κ, i) Pi)%I iMod (raw_bor_shorten _ _ (κ0 κ'0) with "LFT Hbor") as "Hbor";
with "[$HI $Hκ] Hi Hislice Hbor [Hvs]") [done|by apply gmultiset_disj_union_subseteq_r|].
as (Pb') "([HI Hκ] & $ & Halive & Hvs)"; [solve_ndisj|done|done|..]. iMod (raw_idx_bor_unnest with "LFT HP' Hbor") as "Hbor";
{ iNext. by iApply lft_vs_frame. } [done|by apply gmultiset_disj_union_subset_l|].
iDestruct ("Hκclose" with "Hκ") as "Hinv". iExists _. iDestruct (raw_bor_iff with "HPP' Hbor") as "$".
iMod ("Hclose" with "[HA HI Hinv Halive Hinh Hvs]") as "_". by iApply lft_intersect_mono.
{ iNext. rewrite {2}/lfts_inv. iExists A, I. iFrame "HA HI".
iApply (big_sepS_delete _ _ κ'); first by apply elem_of_dom. iFrame "Hinv".
rewrite /lft_inv. iLeft. iSplit; last done.
rewrite lft_inv_alive_unfold. iExists Pb', (idx_bor_own 1 (κ, i) Pi)%I.
iFrame. }
clear dependent A I Pb Pb' Pi. iModIntro. iIntros "H†".
iInv mgmtN as (A I) "(>HA & >HI & Hinv)" "Hclose".
iDestruct ("HIlookup" with "* HI") as %Hκ'.
iDestruct (big_sepS_delete _ _ κ' with "Hinv") as "[Hκinv' Hinv]";
first by apply elem_of_dom.
rewrite {1}/lft_inv; iDestruct "Hκinv'" as "[[Halive >%]|[Hdead >%]]".
- (* the same proof is in bor_fake and bor_create *)
rewrite /lft_dead; iDestruct "H†" as (Λ) "[% #H†]".
iDestruct (own_alft_auth_agree A Λ false with "HA H†") as %EQAΛ.
unfold lft_alive_in in *. naive_solver.
- rewrite /lft_inv_dead; iDestruct "Hdead" as (Pi) "(Hdead & Hcnt & Hinh)".
iMod ("Hinh_close" $! Pi with "Hinh") as (Pi') "(Heq & >Hbor & Hinh)".
iMod ("Hclose" with "[HA HI Hinv Hdead Hinh Hcnt]") as "_".
{ iNext. rewrite /lfts_inv. iExists A, I. iFrame "HA HI".
iApply (big_sepS_delete _ _ κ'); first by apply elem_of_dom. iFrame "Hinv".
rewrite /lft_inv /lft_inv_dead. iRight. iSplit; last done.
iExists Pi'. iFrame. }
iModIntro. rewrite /raw_bor. iExists i. by iFrame.
Qed. Qed.
End rebor. End reborrow.
From lrust.lifetime Require Export lifetime. From lrust.lifetime Require Export lifetime.
From iris.base_logic.lib Require Export na_invariants. From iris.base_logic.lib Require Export na_invariants.
From iris.proofmode Require Import tactics. From iris.proofmode Require Import proofmode.
Set Default Proof Using "Type". From iris.prelude Require Import options.
Definition na_bor `{invG Σ, lftG Σ, na_invG Σ} Definition na_bor `{!invGS Σ, !lftGS Σ userE, !na_invG Σ}
(κ : lft) (tid : na_inv_pool_name) (N : namespace) (P : iProp Σ) := (κ : lft) (tid : na_inv_pool_name) (N : namespace) (P : iProp Σ) :=
( i, &{κ,i}P na_inv tid N (idx_bor_own 1 i))%I. ( i, &{κ,i}P na_inv tid N (idx_bor_own 1 i))%I.
Notation "&na{ κ , tid , N } P" := (na_bor κ tid N P) Notation "&na{ κ , tid , N }" := (na_bor κ tid N)
(format "&na{ κ , tid , N } P", at level 20, right associativity) : uPred_scope. (format "&na{ κ , tid , N }") : bi_scope.
Section na_bor. Section na_bor.
Context `{invG Σ, lftG Σ, na_invG Σ} Context `{!invGS Σ, !lftGS Σ userE, !na_invG Σ}
(tid : na_inv_pool_name) (N : namespace) (P : iProp Σ). (tid : na_inv_pool_name) (N : namespace) (P : iProp Σ).
Global Instance na_bor_ne κ tid N n : Global Instance na_bor_ne κ n : Proper (dist n ==> dist n) (na_bor κ tid N).
Proper (dist n ==> dist n) (na_bor κ tid N).
Proof. solve_proper. Qed. Proof. solve_proper. Qed.
Global Instance na_bor_contractive κ tid N : Contractive (na_bor κ tid N). Global Instance na_bor_contractive κ : Contractive (na_bor κ tid N).
Proof. solve_contractive. Qed. Proof. solve_contractive. Qed.
Global Instance na_bor_proper κ tid N : Global Instance na_bor_proper κ : Proper ((⊣⊢) ==> (⊣⊢)) (na_bor κ tid N).
Proper ((⊣⊢) ==> (⊣⊢)) (na_bor κ tid N).
Proof. solve_proper. Qed. Proof. solve_proper. Qed.
Global Instance na_bor_persistent κ : PersistentP (&na{κ,tid,N} P) := _.
Lemma na_bor_iff κ P' :
(P P') -∗ &na{κ, tid, N} P -∗ &na{κ, tid, N} P'.
Proof.
iIntros "HPP' H". iDestruct "H" as (i) "[HP ?]". iExists i. iFrame.
iApply (idx_bor_iff with "HPP' HP").
Qed.
Global Instance na_bor_persistent κ : Persistent (&na{κ,tid,N} P) := _.
Lemma bor_na κ E : lftN E &{κ}P ={E}=∗ &na{κ,tid,N}P. Lemma bor_na κ E : lftN E &{κ}P ={E}=∗ &na{κ,tid,N}P.
Proof. Proof.
...@@ -38,24 +44,23 @@ Section na_bor. ...@@ -38,24 +44,23 @@ Section na_bor.
Proof. Proof.
iIntros (???) "#LFT#HP Hκ Hnaown". iIntros (???) "#LFT#HP Hκ Hnaown".
iDestruct "HP" as (i) "(#Hpers&#Hinv)". iDestruct "HP" as (i) "(#Hpers&#Hinv)".
iMod (na_inv_open with "Hinv Hnaown") as "(>Hown&Hnaown&Hclose)"; try done. iMod (na_inv_acc with "Hinv Hnaown") as "(>Hown&Hnaown&Hclose)"; try done.
iMod (idx_bor_acc with "LFT Hpers Hown Hκ") as "[HP Hclose']". done. iMod (idx_bor_acc with "LFT Hpers Hown Hκ") as "[HP Hclose']"; first done.
iIntros "{$HP $Hnaown}!>HP Hnaown". iIntros "{$HP $Hnaown} !> HP Hnaown".
iMod ("Hclose'" with "HP") as "[Hown $]". iApply "Hclose". by iFrame. iMod ("Hclose'" with "HP") as "[Hown $]". iApply "Hclose". by iFrame.
Qed. Qed.
Lemma na_bor_shorten κ κ': κ κ' -∗ &na{κ',tid,N}P -∗ &na{κ,tid,N}P. Lemma na_bor_shorten κ κ': κ κ' -∗ &na{κ',tid,N}P -∗ &na{κ,tid,N}P.
Proof. Proof.
iIntros "Hκκ' H". iDestruct "H" as (i) "[??]". iExists i. iFrame. iIntros "Hκκ' H". iDestruct "H" as (i) "[H ?]". iExists i. iFrame.
iApply (idx_bor_shorten with "Hκκ' H"). iApply (idx_bor_shorten with "Hκκ' H").
Qed. Qed.
Lemma na_bor_fake E κ: lftN E lft_ctx -∗ [κ] ={E}=∗ &na{κ,tid,N}P. Lemma na_bor_fake E κ: lftN E lft_ctx -∗ [κ] ={E}=∗ &na{κ,tid,N}P.
Proof. Proof.
iIntros (?) "#LFT#H†". iApply (bor_na with ">"). done. iIntros (?) "#LFT#H†". iApply (bor_na with "[>]"); first done.
by iApply (bor_fake with "LFT H†"). by iApply (bor_fake with "LFT H†").
Qed. Qed.
End na_bor. End na_bor.
Typeclasses Opaque na_bor. Global Typeclasses Opaque na_bor.
#!/bin/bash
set -e
# Helper script to build and/or install just one package out of this repository.
# Assumes that all the other packages it depends on have been installed already!
PROJECT="$1"
shift
COQFILE="_CoqProject.$PROJECT"
MAKEFILE="Makefile.package.$PROJECT"
if ! grep -E -q "^$PROJECT/" _CoqProject; then
echo "No files in $PROJECT/ found in _CoqProject; this does not seem to be a valid project name."
exit 1
fi
# Generate _CoqProject file and Makefile
rm -f "$COQFILE"
# Get the right "-Q" line.
grep -E "^-Q $PROJECT[ /]" _CoqProject >> "$COQFILE"
# Get everything until the first empty line except for the "-Q" lines.
sed -n '/./!q;p' _CoqProject | grep -E -v "^-Q " >> "$COQFILE"
# Get the files.
grep -E "^$PROJECT/" _CoqProject >> "$COQFILE"
# Now we can run coq_makefile.
"${COQBIN}coq_makefile" -f "$COQFILE" -o "$MAKEFILE"
# Run build
make -f "$MAKEFILE" "$@"
# Cleanup
rm -f ".$MAKEFILE.d" "$MAKEFILE"*
opam-version: "1.2"
name: "coq-lambda-rust"
version: "dev"
maintainer: "Ralf Jung <jung@mpi-sws.org>"
authors: "The RustBelt Team"
homepage: "http://plv.mpi-sws.org/rustbelt/"
bug-reports: "https://gitlab.mpi-sws.org/FP/lambdaRust-coq/issues"
dev-repo: "https://gitlab.mpi-sws.org/FP/lambdaRust-coq.git"
build: [
[make "-j%{jobs}%"]
]
install: [make "install"]
remove: [ "sh" "-c" "rm -rf '%{lib}%/coq/user-contrib/lrust'" ]
depends: [
"coq-iris"
]
coq-iris https://gitlab.mpi-sws.org/FP/iris-coq 9fa0b57d44cbba40d7bb272b45cc0875bc68940d
From lrust.lang Require Export lifting.
From iris.proofmode Require Import tactics.
From iris.base_logic Require Import big_op.
Set Default Proof Using "Type".
Import uPred.
(** Define some derived forms, and derived lemmas about them. *)
Notation Lam xl e := (Rec BAnon xl e).
Notation Let x e1 e2 := (App (Lam [x] e2) [e1]).
Notation Seq e1 e2 := (Let BAnon e1 e2).
Notation LamV xl e := (RecV BAnon xl e).
Notation LetCtx x e2 := (AppRCtx (LamV [x] e2) [] []).
Notation SeqCtx e2 := (LetCtx BAnon e2).
Notation Skip := (Seq (Lit LitUnit) (Lit LitUnit)).
Coercion lit_of_bool : bool >-> base_lit.
Notation If e0 e1 e2 := (Case e0 [e2;e1]).
Notation Newlft := (Lit LitUnit) (only parsing).
Notation Endlft := Skip (only parsing).
Section derived.
Context `{ownPG lrust_lang Σ}.
Implicit Types P Q : iProp Σ.
Implicit Types Φ : val iProp Σ.
(** Proof rules for working on the n-ary argument list. *)
Lemma wp_app_ind E f (el : list expr) (Ql : vec (val iProp Σ) (length el)) vs Φ:
is_Some (to_val f)
([ list] eQ zip el Ql, WP eQ.1 @ E {{ eQ.2 }}) -∗
( vl : vec val (length el), ([ list] vQ zip vl Ql, vQ.2 $ vQ.1) -∗
WP App f (of_val <$> vs ++ vl) @ E {{ Φ }}) -∗
WP App f ((of_val <$> vs) ++ el) @ E {{ Φ }}.
Proof.
intros [vf Hf]. revert vs Ql. induction el as [|e el IH]=>/= vs Ql; inv_vec Ql.
- iIntros "_ H". iSpecialize ("H" $! [#]). rewrite !app_nil_r big_sepL_nil.
by iApply "H".
- intros Q Ql. rewrite /= big_sepL_cons /=. iIntros "[He Hl] HΦ".
assert (App f ((of_val <$> vs) ++ e :: el) = fill_item (AppRCtx vf vs el) e)
as -> by rewrite /= (of_to_val f) //.
iApply wp_bindi. iApply (wp_wand with "He"). iIntros (v) "HQ /=".
rewrite cons_middle (assoc app) -(fmap_app _ _ [v]) (of_to_val f) //.
iApply (IH _ _ with "Hl"). iIntros "* Hvl". rewrite -assoc.
iApply ("HΦ" $! (v:::vl)). rewrite /= big_sepL_cons. iFrame.
Qed.
Lemma wp_app_vec E f el (Ql : vec (val iProp Σ) (length el)) Φ :
is_Some (to_val f)
([ list] eQ zip el Ql, WP eQ.1 @ E {{ eQ.2 }}) -∗
( vl : vec val (length el), ([ list] vQ zip vl Ql, vQ.2 $ vQ.1) -∗
WP App f (of_val <$> (vl : list val)) @ E {{ Φ }}) -∗
WP App f el @ E {{ Φ }}.
Proof.
iIntros (Hf). iApply (wp_app_ind _ _ _ _ []). done.
Qed.
Lemma wp_app (Ql : list (val iProp Σ)) E f el Φ :
length Ql = length el is_Some (to_val f)
([ list] eQ zip el Ql, WP eQ.1 @ E {{ eQ.2 }}) -∗
( vl : list val, length vl = length el -∗
([ list] k vQ zip vl Ql, vQ.2 $ vQ.1) -∗
WP App f (of_val <$> (vl : list val)) @ E {{ Φ }}) -∗
WP App f el @ E {{ Φ }}.
Proof.
iIntros (Hlen Hf) "Hel HΦ". rewrite -(vec_to_list_of_list Ql).
generalize (list_to_vec Ql). rewrite Hlen. clear Hlen Ql=>Ql.
iApply (wp_app_vec with "Hel"); first done. iIntros (vl) "Hvl".
iApply ("HΦ" with "[%] Hvl"). by rewrite vec_to_list_length.
Qed.
(** Proof rules for the sugar *)
Lemma wp_lam E xl e e' el Φ :
Forall (λ ei, is_Some (to_val ei)) el
Closed (xl +b+ []) e
subst_l xl el e = Some e'
WP e' @ E {{ Φ }} -∗ WP App (Lam xl e) el @ E {{ Φ }}.
Proof.
iIntros (???) "?". iApply (wp_rec _ _ BAnon)=>//.
by rewrite /= option_fmap_id.
Qed.
Lemma wp_let E x e1 e2 v Φ :
to_val e1 = Some v
Closed (x :b: []) e2
WP subst' x e1 e2 @ E {{ Φ }} -∗ WP Let x e1 e2 @ E {{ Φ }}.
Proof. eauto using wp_lam. Qed.
Lemma wp_let' E x e1 e2 v Φ :
to_val e1 = Some v
Closed (x :b: []) e2
WP subst' x (of_val v) e2 @ E {{ Φ }} -∗ WP Let x e1 e2 @ E {{ Φ }}.
Proof. intros ?. rewrite (of_to_val e1) //. eauto using wp_let. Qed.
Lemma wp_seq E e1 e2 v Φ :
to_val e1 = Some v
Closed [] e2
WP e2 @ E {{ Φ }} -∗ WP Seq e1 e2 @ E {{ Φ }}.
Proof. iIntros (??) "?". by iApply (wp_let _ BAnon). Qed.
Lemma wp_skip E Φ : Φ (LitV LitUnit) -∗ WP Skip @ E {{ Φ }}.
Proof. iIntros. iApply wp_seq. done. iNext. by iApply wp_value. Qed.
Lemma wp_le E (n1 n2 : Z) P Φ :
(n1 n2 P -∗ |={E}=> Φ (LitV true))
(n2 < n1 P -∗ |={E}=> Φ (LitV false))
P -∗ WP BinOp LeOp (Lit (LitInt n1)) (Lit (LitInt n2)) @ E {{ Φ }}.
Proof.
iIntros (Hl Hg) "HP". iApply wp_fupd.
destruct (bool_decide_reflect (n1 n2)); [rewrite Hl //|rewrite Hg; last omega];
clear Hl Hg; (iApply wp_bin_op_pure; first by econstructor); iNext; iIntros (?? Heval);
inversion_clear Heval; [rewrite bool_decide_true //|rewrite bool_decide_false //].
Qed.
Lemma wp_offset E l z Φ :
(|={E}=> Φ (LitV $ LitLoc $ shift_loc l z)) -∗
WP BinOp OffsetOp (Lit $ LitLoc l) (Lit $ LitInt z) @ E {{ Φ }}.
Proof.
iIntros "HP". iApply wp_fupd. iApply wp_bin_op_pure; first by econstructor.
iNext. iIntros (?? Heval). inversion_clear Heval. done.
Qed.
Lemma wp_plus E z1 z2 Φ :
(|={E}=> Φ (LitV $ LitInt $ z1 + z2)) -∗
WP BinOp PlusOp (Lit $ LitInt z1) (Lit $ LitInt z2) @ E {{ Φ }}.
Proof.
iIntros "HP". iApply wp_fupd. iApply wp_bin_op_pure; first by econstructor.
iNext. iIntros (?? Heval). inversion_clear Heval. done.
Qed.
Lemma wp_minus E z1 z2 Φ :
(|={E}=> Φ (LitV $ LitInt $ z1 - z2)) -∗
WP BinOp MinusOp (Lit $ LitInt z1) (Lit $ LitInt z2) @ E {{ Φ }}.
Proof.
iIntros "HP". iApply wp_fupd. iApply wp_bin_op_pure; first by econstructor.
iNext. iIntros (?? Heval). inversion_clear Heval. done.
Qed.
(* TODO: Add lemmas for equality test. *)
Lemma wp_if E (b : bool) e1 e2 Φ :
(if b then WP e1 @ E {{ Φ }} else WP e2 @ E {{ Φ }})%I -∗
WP If (Lit b) e1 e2 @ E {{ Φ }}.
Proof. iIntros "?". by destruct b; iApply wp_case. Qed.
End derived.
From iris.program_logic Require Export weakestpre ownp.
From iris.program_logic Require Import ectx_lifting.
From lrust.lang Require Export lang.
From lrust.lang Require Import tactics.
From iris.proofmode Require Import tactics.
Set Default Proof Using "Type".
Import uPred.
Local Hint Extern 0 (head_reducible _ _) => do_head_step eauto 2.
(* TODO : as for heap_lang, directly use a global heap invariant. *)
Section lifting.
Context `{ownPG lrust_lang Σ}.
Implicit Types P Q : iProp Σ.
Implicit Types ef : option expr.
(** Bind. This bundles some arguments that wp_ectx_bind leaves as indices. *)
Lemma wp_bind {E e} K Φ :
WP e @ E {{ v, WP fill K (of_val v) @ E {{ Φ }} }} -∗ WP fill K e @ E {{ Φ }}.
Proof. exact: wp_ectx_bind. Qed.
Lemma wp_bindi {E e} Ki Φ :
WP e @ E {{ v, WP fill_item Ki (of_val v) @ E {{ Φ }} }} -∗
WP fill_item Ki e @ E {{ Φ }}.
Proof. exact: weakestpre.wp_bind. Qed.
(** Base axioms for core primitives of the language: Stateful reductions. *)
Lemma wp_alloc_pst E σ n:
0 < n
{{{ ownP σ }}} Alloc (Lit $ LitInt n) @ E
{{{ l σ', RET LitV $ LitLoc l;
⌜∀ m, σ !! (shift_loc l m) = None
⌜∃ vl, n = length vl init_mem l vl σ = σ'
ownP σ' }}}.
Proof.
iIntros (? Φ) "HP HΦ". iApply (ownP_lift_atomic_head_step _ σ); eauto.
iFrame "HP". iNext. iIntros (v2 σ2 ef) "% HP". inv_head_step.
rewrite big_sepL_nil right_id. by iApply "HΦ"; iFrame; eauto.
Qed.
Lemma wp_free_pst E σ l n :
0 < n
( m, is_Some (σ !! (shift_loc l m)) (0 m < n))
{{{ ownP σ }}} Free (Lit $ LitInt n) (Lit $ LitLoc l) @ E
{{{ RET LitV $ LitUnit; ownP (free_mem l (Z.to_nat n) σ) }}}.
Proof.
iIntros (???) "HP HΦ". iApply (ownP_lift_atomic_head_step _ σ); eauto.
iFrame "HP". iNext. iIntros (v2 σ2 ef) "% HP". inv_head_step.
rewrite big_sepL_nil right_id. by iApply "HΦ".
Qed.
Lemma wp_read_sc_pst E σ l n v :
σ !! l = Some (RSt n, v)
{{{ ownP σ }}} Read ScOrd (Lit $ LitLoc l) @ E {{{ RET v; ownP σ }}}.
Proof.
iIntros (??) "?HΦ". iApply ownP_lift_atomic_det_head_step; eauto.
by intros; inv_head_step; eauto using to_of_val.
rewrite big_sepL_nil right_id; iFrame.
Qed.
Lemma wp_read_na2_pst E σ l n v :
σ !! l = Some(RSt $ S n, v)
{{{ ownP σ }}} Read Na2Ord (Lit $ LitLoc l) @ E
{{{ RET v; ownP (<[l:=(RSt n, v)]>σ) }}}.
Proof.
iIntros (??) "?HΦ". iApply ownP_lift_atomic_det_head_step; eauto.
by intros; inv_head_step; eauto using to_of_val.
rewrite big_sepL_nil right_id; iFrame.
Qed.
Lemma wp_read_na1_pst E l Φ :
(|={E,}=> σ n v, σ !! l = Some(RSt $ n, v)
ownP σ
(ownP (<[l:=(RSt $ S n, v)]>σ) ={,E}=∗
WP Read Na2Ord (Lit $ LitLoc l) @ E {{ Φ }})) -∗
WP Read Na1Ord (Lit $ LitLoc l) @ E {{ Φ }}.
Proof.
iIntros "HΦP". iApply (ownP_lift_head_step E); auto.
iMod "HΦP" as (σ n v) "(%&HΦ&HP)". iModIntro. iExists σ. iSplit. done. iFrame.
iNext. iIntros (e2 σ2 ef) "% HΦ". inv_head_step.
rewrite big_sepL_nil right_id. iApply ("HP" with "HΦ").
Qed.
Lemma wp_write_sc_pst E σ l v v' :
σ !! l = Some (RSt 0, v')
{{{ ownP σ }}} Write ScOrd (Lit $ LitLoc l) (of_val v) @ E
{{{ RET LitV LitUnit; ownP (<[l:=(RSt 0, v)]>σ) }}}.
Proof.
iIntros (??) "?HΦ". iApply ownP_lift_atomic_det_head_step; eauto.
by intros; inv_head_step; eauto. rewrite big_sepL_nil right_id; iFrame.
Qed.
Lemma wp_write_na2_pst E σ l v v' :
σ !! l = Some(WSt, v')
{{{ ownP σ }}} Write Na2Ord (Lit $ LitLoc l) (of_val v) @ E
{{{ RET LitV LitUnit; ownP (<[l:=(RSt 0, v)]>σ) }}}.
Proof.
iIntros (??) "?HΦ". iApply ownP_lift_atomic_det_head_step; eauto.
by intros; inv_head_step; eauto. rewrite big_sepL_nil right_id; iFrame.
Qed.
Lemma wp_write_na1_pst E l v Φ :
(|={E,}=> σ v', σ !! l = Some(RSt 0, v')
ownP σ
(ownP (<[l:=(WSt, v')]>σ) ={,E}=∗
WP Write Na2Ord (Lit $ LitLoc l) (of_val v) @ E {{ Φ }})) -∗
WP Write Na1Ord (Lit $ LitLoc l) (of_val v) @ E {{ Φ }}.
Proof.
iIntros "HΦP". iApply (ownP_lift_head_step E); auto.
iMod "HΦP" as (σ v') "(%&HΦ&HP)". iModIntro. iExists σ. iSplit. done. iFrame.
iNext. iIntros (e2 σ2 ef) "% HΦ". inv_head_step.
rewrite big_sepL_nil right_id. iApply ("HP" with "HΦ").
Qed.
Lemma wp_cas_pst E n σ l e1 lit1 lit2 litl :
to_val e1 = Some $ LitV lit1
σ !! l = Some (RSt n, LitV litl)
(lit_eq σ lit1 litl lit_neq σ lit1 litl)
(lit_eq σ lit1 litl n = 0%nat)
{{{ ownP σ }}} CAS (Lit $ LitLoc l) e1 (Lit lit2) @ E
{{{ b, RET LitV $ lit_of_bool b;
if b is true then lit_eq σ lit1 litl ownP (<[l:=(RSt 0, LitV lit2)]>σ)
else lit_neq σ lit1 litl ownP σ }}}.
Proof.
iIntros (?%of_to_val ? Hdec Hn ?) "HP HΦ". subst.
iApply ownP_lift_atomic_head_step; eauto.
{ destruct Hdec as [Heq|Hneq].
- specialize (Hn Heq). subst. do 3 eexists. by eapply CasSucS.
- do 3 eexists. by eapply CasFailS. }
iFrame. iNext. iIntros (e2 σ2 efs Hs) "Ho".
inv_head_step; rewrite big_sepL_nil right_id.
- iApply ("HΦ" $! false). eauto.
- iApply ("HΦ" $! true). eauto.
- exfalso. refine (_ (Hn _)); last done. intros. omega.
Qed.
(** Base axioms for core primitives of the language: Stateless reductions *)
Lemma wp_fork E e :
{{{ WP e {{ _, True }} }}} Fork e @ E {{{ RET LitV LitUnit; True }}}.
Proof.
iIntros (?) "?HΦ". iApply ownP_lift_pure_det_head_step; eauto.
by intros; inv_head_step; eauto. iNext.
rewrite big_sepL_singleton. iFrame. iApply wp_value. done. by iApply "HΦ".
Qed.
Lemma wp_rec E e f xl erec erec' el Φ :
e = Rec f xl erec (* to avoids recursive calls being unfolded *)
Forall (λ ei, is_Some (to_val ei)) el
Closed (f :b: xl +b+ []) erec
subst_l (f::xl) (e::el) erec = Some erec'
WP erec' @ E {{ Φ }} -∗ WP App e el @ E {{ Φ }}.
Proof.
iIntros (-> ???) "?". iApply ownP_lift_pure_det_head_step; subst; eauto.
by intros; inv_head_step; eauto. iNext. rewrite big_sepL_nil. by iFrame.
Qed.
Lemma wp_bin_op_heap E σ op l1 l2 l' :
bin_op_eval σ op l1 l2 l'
{{{ ownP σ }}} BinOp op (Lit l1) (Lit l2) @ E
{{{ l'', RET LitV l''; bin_op_eval σ op l1 l2 l'' ownP σ }}}.
Proof.
iIntros (? Φ) "HP HΦ". iApply ownP_lift_atomic_head_step; eauto.
iFrame "HP". iNext. iIntros (e2 σ2 efs Hs) "Ho".
inv_head_step; rewrite big_sepL_nil right_id.
iApply "HΦ". eauto.
Qed.
Lemma wp_bin_op_pure E op l1 l2 l' :
( σ, bin_op_eval σ op l1 l2 l')
{{{ True }}} BinOp op (Lit l1) (Lit l2) @ E
{{{ l'' σ, RET LitV l''; bin_op_eval σ op l1 l2 l'' }}}.
Proof.
iIntros (? Φ) "HΦ". iApply ownP_lift_pure_head_step; eauto.
{ intros. inv_head_step. done. }
iNext. iIntros (e2 efs σ Hs).
inv_head_step; rewrite big_sepL_nil right_id.
rewrite -wp_value //. iApply "HΦ". eauto.
Qed.
Lemma wp_case E i e el Φ :
0 i
el !! (Z.to_nat i) = Some e
WP e @ E {{ Φ }} -∗ WP Case (Lit $ LitInt i) el @ E {{ Φ }}.
Proof.
iIntros (??) "?". iApply ownP_lift_pure_det_head_step; eauto.
by intros; inv_head_step; eauto. iNext. rewrite big_sepL_nil. by iFrame.
Qed.
End lifting.
From iris.proofmode Require Import coq_tactics.
From iris.proofmode Require Export tactics.
From iris.base_logic Require Import namespaces.
From lrust.lang Require Export wp_tactics heap.
Set Default Proof Using "Type".
Import uPred.
Ltac wp_strip_later ::= iNext.
Section heap.
Context `{heapG Σ}.
Implicit Types P Q : iProp Σ.
Implicit Types Φ : val iProp Σ.
Implicit Types Δ : envs (iResUR Σ).
Lemma tac_wp_alloc Δ Δ' E j1 j2 n Φ :
(Δ heap_ctx) heapN E 0 < n
IntoLaterNEnvs 1 Δ Δ'
( l vl, n = length vl Δ'',
envs_app false (Esnoc (Esnoc Enil j1 (l ↦∗ vl)) j2 (l(Z.to_nat n))) Δ'
= Some Δ''
(Δ'' |={E}=> Φ (LitV $ LitLoc l)))
Δ WP Alloc (Lit $ LitInt n) @ E {{ Φ }}.
Proof.
intros ???? . rewrite -wp_fupd. eapply wand_apply; first exact:wp_alloc.
rewrite -always_and_sep_l. apply and_intro; first done.
rewrite into_laterN_env_sound; apply later_mono, forall_intro=> l;
apply forall_intro=> vl. apply wand_intro_l. rewrite -assoc.
apply pure_elim_sep_l=> Hn. apply wand_elim_r'.
destruct ( l vl) as (Δ''&?&HΔ'). done.
rewrite envs_app_sound //; simpl. by rewrite right_id HΔ'.
Qed.
Lemma tac_wp_free Δ Δ' Δ'' Δ''' E i1 i2 vl (n : Z) (n' : nat) l Φ :
(Δ heap_ctx) heapN E n = length vl
IntoLaterNEnvs 1 Δ Δ'
envs_lookup i1 Δ' = Some (false, l ↦∗ vl)%I
envs_delete i1 false Δ' = Δ''
envs_lookup i2 Δ'' = Some (false, ln')%I
envs_delete i2 false Δ'' = Δ'''
n' = length vl
(Δ''' |={E}=> Φ (LitV LitUnit))
Δ WP Free (Lit $ LitInt n) (Lit $ LitLoc l) @ E {{ Φ }}.
Proof.
intros ?? -> ?? <- ? <- -> . rewrite -wp_fupd.
eapply wand_apply; first exact:wp_free. rewrite -!assoc -always_and_sep_l.
apply and_intro; first done.
rewrite into_laterN_env_sound -!later_sep; apply later_mono.
do 2 (rewrite envs_lookup_sound' //). by rewrite wand_True.
Qed.
Lemma tac_wp_read Δ Δ' E i l q v o Φ :
(Δ heap_ctx) heapN E o = Na1Ord o = ScOrd
IntoLaterNEnvs 1 Δ Δ'
envs_lookup i Δ' = Some (false, l {q} v)%I
(Δ' |={E}=> Φ v)
Δ WP Read o (Lit $ LitLoc l) @ E {{ Φ }}.
Proof.
intros ??[->| ->]???.
- rewrite -wp_fupd. eapply wand_apply; first exact:wp_read_na.
rewrite -!assoc -always_and_sep_l. apply and_intro; first done.
rewrite into_laterN_env_sound -later_sep envs_lookup_split //; simpl.
by apply later_mono, sep_mono_r, wand_mono.
- rewrite -wp_fupd. eapply wand_apply; first exact:wp_read_sc.
rewrite -!assoc -always_and_sep_l. apply and_intro; first done.
rewrite into_laterN_env_sound -later_sep envs_lookup_split //; simpl.
by apply later_mono, sep_mono_r, wand_mono.
Qed.
Lemma tac_wp_write Δ Δ' Δ'' E i l v e v' o Φ :
to_val e = Some v'
(Δ heap_ctx) heapN E o = Na1Ord o = ScOrd
IntoLaterNEnvs 1 Δ Δ'
envs_lookup i Δ' = Some (false, l v)%I
envs_simple_replace i false (Esnoc Enil i (l v')) Δ' = Some Δ''
(Δ'' |={E}=> Φ (LitV LitUnit))
Δ WP Write o (Lit $ LitLoc l) e @ E {{ Φ }}.
Proof.
intros ???[->| ->]????.
- rewrite -wp_fupd. eapply wand_apply; first by apply wp_write_na.
rewrite -!assoc -always_and_sep_l. apply and_intro; first done.
rewrite into_laterN_env_sound -later_sep envs_simple_replace_sound //; simpl.
rewrite right_id. by apply later_mono, sep_mono_r, wand_mono.
- rewrite -wp_fupd. eapply wand_apply; first by apply wp_write_sc.
rewrite -!assoc -always_and_sep_l. apply and_intro; first done.
rewrite into_laterN_env_sound -later_sep envs_simple_replace_sound //; simpl.
rewrite right_id. by apply later_mono, sep_mono_r, wand_mono.
Qed.
End heap.
Tactic Notation "wp_apply" open_constr(lem) :=
lazymatch goal with
| |- _ wp ?E ?e ?Q => reshape_expr e ltac:(fun K e' =>
wp_bind_core K; iApply lem; try iNext)
| _ => fail "wp_apply: not a 'wp'"
end.
Tactic Notation "wp_alloc" ident(l) ident(vl) "as" constr(H) constr(Hf) :=
lazymatch goal with
| |- _ wp ?E ?e ?Q =>
first
[reshape_expr e ltac:(fun K e' =>
match eval hnf in e' with Alloc _ => wp_bind_core K end)
|fail 1 "wp_alloc: cannot find 'Alloc' in" e];
eapply tac_wp_alloc with _ H Hf;
[iAssumption || fail "wp_alloc: cannot find heap_ctx"
|solve_ndisj
|try fast_done
|apply _
|first [intros l vl ? | fail 1 "wp_alloc:" l "or" vl "not fresh"];
eexists; split;
[env_cbv; reflexivity || fail "wp_alloc:" H "or" Hf "not fresh"
|wp_finish]]
| _ => fail "wp_alloc: not a 'wp'"
end.
Tactic Notation "wp_alloc" ident(l) ident(vl) :=
let H := iFresh in let Hf := iFresh in wp_alloc l vl as H Hf.
Tactic Notation "wp_free" :=
lazymatch goal with
| |- _ wp ?E ?e ?Q =>
first
[reshape_expr e ltac:(fun K e' =>
match eval hnf in e' with Free _ _ => wp_bind_core K end)
|fail 1 "wp_free: cannot find 'Free' in" e];
eapply tac_wp_free;
[iAssumption || fail "wp_free: cannot find heap_ctx"
|solve_ndisj
|try fast_done
|apply _
|let l := match goal with |- _ = Some (_, (?l ↦∗ _)%I) => l end in
iAssumptionCore || fail "wp_free: cannot find" l "↦∗ ?"
|env_cbv; reflexivity
|let l := match goal with |- _ = Some (_, ( ?l _)%I) => l end in
iAssumptionCore || fail "wp_free: cannot find †" l "… ?"
|env_cbv; reflexivity
|try fast_done
|wp_finish]
| _ => fail "wp_free: not a 'wp'"
end.
Tactic Notation "wp_read" :=
lazymatch goal with
| |- _ wp ?E ?e ?Q =>
first
[reshape_expr e ltac:(fun K e' =>
match eval hnf in e' with Read _ _ => wp_bind_core K end)
|fail 1 "wp_read: cannot find 'Read' in" e];
eapply tac_wp_read;
[iAssumption || fail "wp_read: cannot find heap_ctx"
|solve_ndisj
|(right; fast_done) || (left; fast_done) ||
fail "wp_read: order is neither Na2Ord nor ScOrd"
|apply _
|let l := match goal with |- _ = Some (_, (?l {_} _)%I) => l end in
iAssumptionCore || fail "wp_read: cannot find" l "↦ ?"
|wp_finish]
| _ => fail "wp_read: not a 'wp'"
end.
Tactic Notation "wp_write" :=
lazymatch goal with
| |- _ wp ?E ?e ?Q =>
first
[reshape_expr e ltac:(fun K e' =>
match eval hnf in e' with Write _ _ _ => wp_bind_core K end)
|fail 1 "wp_write: cannot find 'Write' in" e];
eapply tac_wp_write;
[let e' := match goal with |- to_val ?e' = _ => e' end in
wp_done || fail "wp_write:" e' "not a value"
|iAssumption || fail "wp_write: cannot find heap_ctx"
|solve_ndisj
|(right; fast_done) || (left; fast_done) ||
fail "wp_write: order is neither Na2Ord nor ScOrd"
|apply _
|let l := match goal with |- _ = Some (_, (?l {_} _)%I) => l end in
iAssumptionCore || fail "wp_write: cannot find" l "↦ ?"
|env_cbv; reflexivity
|wp_finish]
| _ => fail "wp_write: not a 'wp'"
end.
From lrust.lang Require Export tactics derived.
Set Default Proof Using "Type".
Import uPred.
(** wp-specific helper tactics *)
Ltac wp_bind_core K :=
lazymatch eval hnf in K with
| [] => idtac
| _ => etrans; [|fast_by apply (wp_bind K)]; simpl
end.
(* FIXME : the [reflexivity] tactic is not able to solve trivial
reflexivity proofs, while [exact (reflexivity _)] does. *)
Ltac wp_done :=
rewrite /= ?to_of_val;
match goal with
| |- _ = _ => exact (reflexivity _)
| |- Forall _ [] => fast_by apply List.Forall_nil
| |- Forall _ (_ :: _) => apply List.Forall_cons; wp_done
| |- is_Some (Some ?v) => exists v; reflexivity
| |- _ => fast_done
end.
(* sometimes, we will have to do a final view shift, so only apply
pvs_intro if we obtain a consecutive wp *)
Ltac wp_strip_pvs :=
lazymatch goal with
| |- _ |={?E}=> _ =>
etrans; [|apply fupd_intro];
match goal with |- _ wp E _ _ => simpl | _ => fail end
end.
Ltac wp_value_head := etrans; [|eapply wp_value_fupd; wp_done]; lazy beta.
Ltac wp_strip_later := idtac. (* a hook to be redefined later *)
Ltac wp_seq_head :=
lazymatch goal with
| |- _ wp ?E (Seq _ _) ?Q =>
etrans; [|eapply wp_seq; wp_done]; wp_strip_later
end.
Ltac wp_finish := intros_revert ltac:(
rewrite /= ?to_of_val;
try wp_strip_later;
repeat lazymatch goal with
| |- _ wp ?E (Seq _ _) ?Q =>
etrans; [|eapply wp_seq; wp_done]; wp_strip_later
| |- _ wp ?E _ ?Q => wp_value_head
| |- _ |={_}=> _ => wp_strip_pvs
end).
Tactic Notation "wp_value" :=
lazymatch goal with
| |- _ wp ?E ?e ?Q => reshape_expr e ltac:(fun K e' =>
wp_bind_core K; wp_value_head) || fail "wp_value: cannot find value in" e
| _ => fail "wp_value: not a wp"
end.
Tactic Notation "wp_rec" :=
lazymatch goal with
| |- _ wp ?E ?e ?Q => reshape_expr e ltac:(fun K e' =>
match eval hnf in e' with App ?e1 _ =>
(* hnf does not reduce through an of_val *)
(* match eval hnf in e1 with Rec _ _ _ => *)
wp_bind_core K; etrans; [|eapply wp_rec; wp_done]; simpl_subst; wp_finish
(* end *) end) || fail "wp_rec: cannot find 'Rec' in" e
| _ => fail "wp_rec: not a 'wp'"
end.
Tactic Notation "wp_lam" :=
lazymatch goal with
| |- _ wp ?E ?e ?Q => reshape_expr e ltac:(fun K e' =>
match eval hnf in e' with App ?e1 _ =>
(* match eval hnf in e1 with Rec BAnon _ _ => *)
wp_bind_core K; etrans; [|eapply wp_lam; wp_done]; simpl_subst; wp_finish
(* end *) end) || fail "wp_lam: cannot find 'Lam' in" e
| _ => fail "wp_lam: not a 'wp'"
end.
Tactic Notation "wp_let" := wp_lam.
Tactic Notation "wp_seq" := wp_let.
Tactic Notation "wp_op" :=
lazymatch goal with
| |- _ wp ?E ?e ?Q => reshape_expr e ltac:(fun K e' =>
match eval hnf in e' with
| BinOp LeOp _ _ => wp_bind_core K; apply wp_le; wp_finish
| BinOp OffsetOp _ _ =>
wp_bind_core K; etrans; [|eapply wp_offset; try fast_done]; wp_finish
| BinOp PlusOp _ _ =>
wp_bind_core K; etrans; [|eapply wp_plus; try fast_done]; wp_finish
| BinOp MinusOp _ _ =>
wp_bind_core K; etrans; [|eapply wp_minus; try fast_done]; wp_finish
end) || fail "wp_op: cannot find 'BinOp' in" e
| _ => fail "wp_op: not a 'wp'"
end.
Tactic Notation "wp_if" :=
lazymatch goal with
| |- _ wp ?E ?e ?Q => reshape_expr e ltac:(fun K e' =>
match eval hnf in e' with
| If _ _ _ =>
wp_bind_core K;
etrans; [|eapply wp_if]; wp_finish
end) || fail "wp_if: cannot find 'If' in" e
| _ => fail "wp_if: not a 'wp'"
end.
Tactic Notation "wp_case" :=
lazymatch goal with
| |- _ wp ?E ?e ?Q => reshape_expr e ltac:(fun K e' =>
match eval hnf in e' with
| Case _ _ _ =>
wp_bind_core K;
etrans; [|eapply wp_case; wp_done];
simpl_subst; wp_finish
end) || fail "wp_case: cannot find 'Case' in" e
| _ => fail "wp_case: not a 'wp'"
end.
Tactic Notation "wp_bind" open_constr(efoc) :=
lazymatch goal with
| |- _ wp ?E ?e ?Q => reshape_expr e ltac:(fun K e' =>
match e' with
| efoc => unify e' efoc; wp_bind_core K
end) || fail "wp_bind: cannot find" efoc "in" e
| _ => fail "wp_bind: not a 'wp'"
end.
From Coq Require Import Qcanon.
From iris.proofmode Require Import tactics.
From iris.base_logic Require Import lib.fractional.
From iris.algebra Require Import frac.
From lrust.lifetime Require Export shr_borrow.
Set Default Proof Using "Type".
Class frac_borG Σ := frac_borG_inG :> inG Σ fracR.
Definition frac_bor `{invG Σ, lftG Σ, frac_borG Σ} κ (Φ : Qp iProp Σ) :=
( γ κ', κ κ' &shr{κ'} q, Φ q own γ q
(q = 1%Qp q', (q + q' = 1)%Qp q'.[κ']))%I.
Notation "&frac{ κ } P" := (frac_bor κ P)
(format "&frac{ κ } P", at level 20, right associativity) : uPred_scope.
Section frac_bor.
Context `{invG Σ, lftG Σ, frac_borG Σ}.
Implicit Types E : coPset.
Global Instance frac_bor_contractive κ n :
Proper (pointwise_relation _ (dist_later n) ==> dist n) (frac_bor κ).
Proof. solve_contractive. Qed.
Global Instance frac_bor_ne κ n :
Proper (pointwise_relation _ (dist n) ==> dist n) (frac_bor κ).
Proof. solve_proper. Qed.
Global Instance frac_bor_proper κ :
Proper (pointwise_relation _ (⊣⊢) ==> (⊣⊢)) (frac_bor κ).
Proof. solve_proper. Qed.
Global Instance frac_bor_persistent κ : PersistentP (&frac{κ}Φ) := _.
Lemma bor_fracture φ E κ :
lftN E lft_ctx -∗ &{κ}(φ 1%Qp) ={E}=∗ &frac{κ}φ.
Proof.
iIntros (?) "#LFT Hφ". iMod (own_alloc 1%Qp) as (γ) "?". done.
iMod (bor_acc_atomic_strong with "LFT Hφ") as "[H|[H† Hclose]]". done.
- iDestruct "H" as (κ') "(#Hκκ' & Hφ & Hclose)".
iMod ("Hclose" with "*[-] []") as "Hφ"; last first.
{ iExists γ, κ'. iFrame "#". iApply (bor_share with "Hφ"). done. }
{ iIntros "!>HΦ H†!>". iNext. iDestruct "HΦ" as (q') "(HΦ & _ & [%|Hκ])". by subst.
iDestruct "Hκ" as (q'') "[_ Hκ]".
iDestruct (lft_tok_dead with "Hκ H†") as "[]". }
iExists 1%Qp. iFrame. eauto.
- iMod ("Hclose" with "*") as "_"; last first.
iExists γ, κ. iSplitR. by iApply lft_incl_refl.
iMod (bor_fake with "LFT H†"). done. by iApply bor_share.
Qed.
Lemma frac_bor_atomic_acc E κ φ :
lftN E
lft_ctx -∗ &frac{κ}φ ={E,E∖↑lftN}=∗ ( q, φ q ( φ q ={E∖↑lftN,E}=∗ True))
[κ] |={E∖↑lftN,E}=> True.
Proof.
iIntros (?) "#LFT #Hφ". iDestruct "Hφ" as (γ κ') "[Hκκ' Hshr]".
iMod (shr_bor_acc with "LFT Hshr") as "[[Hφ Hclose]|[H† Hclose]]". done.
- iLeft. iDestruct "Hφ" as (q) "(Hφ & Hγ & H)". iExists q. iFrame.
iIntros "!>Hφ". iApply "Hclose". iExists q. iFrame.
- iRight. iMod "Hclose" as "_". iMod (lft_incl_dead with "Hκκ' H†") as "$". done.
iApply fupd_intro_mask. set_solver. done.
Qed.
Lemma frac_bor_acc' E q κ Φ:
lftN E
lft_ctx -∗ ( q1 q2, Φ (q1+q2)%Qp Φ q1 Φ q2) -∗
&frac{κ}Φ -∗ q.[κ] ={E}=∗ q', Φ q' ( Φ q' ={E}=∗ q.[κ]).
Proof.
iIntros (?) "#LFT #HΦ Hfrac Hκ". unfold frac_bor.
iDestruct "Hfrac" as (γ κ') "#[#Hκκ' Hshr]".
iMod (lft_incl_acc with "Hκκ' Hκ") as (qκ') "[[Hκ1 Hκ2] Hclose]". done.
iMod (shr_bor_acc_tok with "LFT Hshr Hκ1") as "[H Hclose']". done.
iDestruct "H" as () "(HΦqΦ & >Hown & Hq)".
destruct (Qp_lower_bound (qκ'/2) (/2)) as (qq & qκ'0 & qΦ0 & Hqκ' & HqΦ).
iExists qq.
iAssert ( Φ qq Φ (qΦ0 + / 2))%Qp%I with "[HΦqΦ]" as "[$ HqΦ]".
{ iNext. rewrite -{1}(Qp_div_2 ) {1}HqΦ. iApply "HΦ". by rewrite assoc. }
rewrite -{1}(Qp_div_2 ) {1}HqΦ -assoc {1}Hqκ'.
iDestruct "Hκ2" as "[Hκq Hκqκ0]". iDestruct "Hown" as "[Hownq Hown]".
iMod ("Hclose'" with "[HqΦ Hq Hown Hκq]") as "Hκ1".
{ iNext. iExists _. iFrame. iRight. iDestruct "Hq" as "[%|Hq]".
- subst. iExists qq. iIntros "{$Hκq}!%".
by rewrite (comm _ qΦ0) -assoc (comm _ qΦ0) -HqΦ Qp_div_2.
- iDestruct "Hq" as (q') "[% Hq'κ]". iExists (qq + q')%Qp.
iIntros "{$Hκq $Hq'κ}!%". by rewrite assoc (comm _ _ qq) assoc -HqΦ Qp_div_2. }
clear HqΦ qΦ0. iIntros "!>HqΦ".
iMod (shr_bor_acc_tok with "LFT Hshr Hκ1") as "[H Hclose']". done.
iDestruct "H" as () "(HΦqΦ & >Hown & >[%|Hq])".
{ subst. iCombine "Hown" "Hownq" as "Hown".
by iDestruct (own_valid with "Hown") as %Hval%Qp_not_plus_q_ge_1. }
iDestruct "Hq" as (q') "[HqΦq' Hq'κ]". iCombine "Hown" "Hownq" as "Hown".
iDestruct (own_valid with "Hown") as %Hval. iDestruct "HqΦq'" as %HqΦq'.
assert (0 < q'-qq qq = q')%Qc as [Hq'q|<-].
{ change ( + qq 1)%Qc in Hval. apply Qp_eq in HqΦq'. simpl in Hval, HqΦq'.
rewrite <-HqΦq', <-Qcplus_le_mono_l in Hval. apply Qcle_lt_or_eq in Hval.
destruct Hval as [Hval|Hval].
by left; apply ->Qclt_minus_iff. right; apply Qp_eq, Qc_is_canon. by rewrite Hval. }
- assert (q' = mk_Qp _ Hq'q + qq)%Qp as ->. { apply Qp_eq. simpl. ring. }
iDestruct "Hq'κ" as "[Hq'qκ Hqκ]".
iMod ("Hclose'" with "[HqΦ HΦqΦ Hown Hq'qκ]") as "Hqκ2".
{ iNext. iExists ( + qq)%Qp. iFrame. iSplitR "Hq'qκ". by iApply "HΦ"; iFrame.
iRight. iExists _. iIntros "{$Hq'qκ}!%".
revert HqΦq'. rewrite !Qp_eq. move=>/=<-. ring. }
iApply "Hclose". iFrame. rewrite Hqκ'. by iFrame.
- iMod ("Hclose'" with "[HqΦ HΦqΦ Hown]") as "Hqκ2".
{ iNext. iExists ( qq)%Qp. iFrame. iSplitL. by iApply "HΦ"; iFrame. auto. }
iApply "Hclose". iFrame. rewrite Hqκ'. by iFrame.
Qed.
Lemma frac_bor_acc E q κ `{Fractional _ Φ} :
lftN E
lft_ctx -∗ &frac{κ}Φ -∗ q.[κ] ={E}=∗ q', Φ q' ( Φ q' ={E}=∗ q.[κ]).
Proof.
iIntros (?) "LFT". iApply (frac_bor_acc' with "LFT"). done.
iIntros "!#*". rewrite fractional. iSplit; auto.
Qed.
Lemma frac_bor_shorten κ κ' Φ: κ κ' -∗ &frac{κ'}Φ -∗ &frac{κ}Φ.
Proof.
iIntros "Hκκ' H". iDestruct "H" as (γ κ0) "[#H⊑ ?]". iExists γ, κ0. iFrame.
iApply (lft_incl_trans with "Hκκ' []"). auto.
Qed.
Lemma frac_bor_fake E κ Φ:
lftN E lft_ctx -∗ [κ] ={E}=∗ &frac{κ}Φ.
Proof.
iIntros (?) "#LFT#H†". iApply (bor_fracture with "LFT >"). done.
by iApply (bor_fake with "LFT").
Qed.
Lemma frac_bor_lft_incl κ κ' q:
lft_ctx -∗ &frac{κ}(λ q', (q * q').[κ']) -∗ κ κ'.
Proof.
iIntros "#LFT#Hbor". iApply lft_incl_intro. iAlways. iSplitR.
- iIntros (q') "Hκ'".
iMod (frac_bor_acc with "LFT Hbor Hκ'") as (q'') "[>? Hclose]". done.
iExists _. iFrame. iIntros "!>Hκ'". iApply "Hclose". auto.
- iIntros "H†'".
iMod (frac_bor_atomic_acc with "LFT Hbor") as "[H|[$ $]]". done.
iDestruct "H" as (q') "[>Hκ' _]".
iDestruct (lft_tok_dead with "Hκ' H†'") as "[]".
Qed.
End frac_bor.
Typeclasses Opaque frac_bor.
From lrust.lifetime Require Export lifetime_sig.
From lrust.lifetime.model Require definitions primitive accessors faking borrow
reborrow creation.
From iris.proofmode Require Import tactics.
Set Default Proof Using "Type".
Module Export lifetime : lifetime_sig.
Include definitions.
Include primitive.
Include borrow.
Include faking.
Include reborrow.
Include accessors.
Include creation.
End lifetime.
Section derived.
Context `{invG Σ, lftG Σ}.
Implicit Types κ : lft.
Lemma bor_acc_cons E q κ P :
lftN E
lft_ctx -∗ &{κ} P -∗ q.[κ] ={E}=∗ P
Q, Q -∗ ( Q ={⊤∖↑lftN}=∗ P) ={E}=∗ &{κ} Q q.[κ].
Proof.
iIntros (?) "#LFT HP Htok".
iMod (bor_acc_strong with "LFT HP Htok") as (κ') "(#Hκκ' & $ & Hclose)"; first done.
iIntros "!>*HQ HPQ". iMod ("Hclose" with "*HQ [HPQ]") as "[Hb $]".
- iNext. iIntros "? _". by iApply "HPQ".
- iApply (bor_shorten with "Hκκ' Hb").
Qed.
Lemma bor_acc E q κ P :
lftN E
lft_ctx -∗ &{κ}P -∗ q.[κ] ={E}=∗ P ( P ={E}=∗ &{κ}P q.[κ]).
Proof.
iIntros (?) "#LFT HP Htok".
iMod (bor_acc_cons with "LFT HP Htok") as "($ & Hclose)"; first done.
iIntros "!>HP". iMod ("Hclose" with "*HP []") as "[$ $]"; auto.
Qed.
Lemma bor_or E κ P Q :
lftN E
lft_ctx -∗ &{κ}(P Q) ={E}=∗ (&{κ}P &{κ}Q).
Proof.
iIntros (?) "#LFT H". rewrite uPred.or_alt.
iMod (bor_exists with "LFT H") as ([]) "H"; auto.
Qed.
Lemma bor_later E κ P :
lftN E
lft_ctx -∗ &{κ}( P) ={E,E∖↑lftN}▷=∗ &{κ}P.
Proof.
iIntros (?) "#LFT Hb".
iMod (bor_acc_atomic_cons with "LFT Hb") as "[H|[H† Hclose]]"; first done.
- iDestruct "H" as "[HP Hclose]". iModIntro. iNext.
iApply ("Hclose" with "* HP"). by iIntros "!> $".
- iIntros "!> !>". iMod "Hclose" as "_". by iApply (bor_fake with "LFT").
Qed.
Lemma bor_later_tok E q κ P :
lftN E
lft_ctx -∗ &{κ}( P) -∗ q.[κ] ={E}▷=∗ &{κ}P q.[κ].
Proof.
iIntros (?) "#LFT Hb Htok".
iMod (bor_acc_cons with "LFT Hb Htok") as "[HP Hclose]"; first done.
iModIntro. iNext. iApply ("Hclose" with "* HP []"). by iIntros "!> $".
Qed.
Lemma bor_iff (P Q : iProp Σ) E κ :
lftN E
lft_ctx -∗ (P Q) -∗ &{κ}P ={E}=∗ &{κ}Q.
Proof.
iIntros (?) "#LFT #Heq Hb".
iMod (bor_acc_atomic_cons with "LFT Hb") as "[[HP Hclose]|[H† Hclose]]". done.
- iApply ("Hclose" with "[HP] []").
by iApply "Heq". by iIntros "!>HQ!>"; iApply "Heq".
- iMod "Hclose". by iApply (bor_fake with "LFT").
Qed.
Lemma bor_persistent P `{!PersistentP P} E κ :
lftN E
lft_ctx -∗ &{κ}P ={E}=∗ P [κ].
Proof.
iIntros (?) "#LFT Hb".
iMod (bor_acc_atomic with "LFT Hb") as "[[#HP Hob]|[#H† Hclose]]"; first done.
- iMod ("Hob" with "HP") as "_". auto.
- iMod "Hclose" as "_". auto.
Qed.
Lemma bor_persistent_tok P `{!PersistentP P} E κ q :
lftN E
lft_ctx -∗ &{κ}P -∗ q.[κ] ={E}=∗ P q.[κ].
Proof.
iIntros (?) "#LFT Hb Htok".
iMod (bor_acc with "LFT Hb Htok") as "[#HP Hob]"; first done.
by iMod ("Hob" with "HP") as "[_ $]".
Qed.
Lemma lft_incl_static κ : (κ static)%I.
Proof.
iApply lft_incl_intro. iIntros "!#". iSplitR.
- iIntros (q) "?". iExists 1%Qp. iSplitR. by iApply lft_tok_static. auto.
- iIntros "Hst". by iDestruct (lft_dead_static with "Hst") as "[]".
Qed.
End derived.
From lrust.lifetime Require Export borrow.
From lrust.lifetime Require Import raw_reborrow accessors.
From iris.algebra Require Import csum auth frac gmap agree gset.
From iris.base_logic Require Import big_op.
From iris.base_logic.lib Require Import boxes.
From iris.proofmode Require Import tactics.
Set Default Proof Using "Type".
Section reborrow.
Context `{invG Σ, lftG Σ}.
Implicit Types κ : lft.
(* This lemma has no good place... and reborrowing is where we need it inside the model. *)
Lemma bor_exists {A} (Φ : A iProp Σ) `{!Inhabited A} E κ :
lftN E
lft_ctx -∗ &{κ}( x, Φ x) ={E}=∗ x, &{κ}Φ x.
Proof.
iIntros (?) "#LFT Hb".
iMod (bor_acc_atomic_cons with "LFT Hb") as "[H|[H† >_]]"; first done.
- iDestruct "H" as "[HΦ Hclose]". iDestruct "HΦ" as (x) "HΦ".
iExists x. iApply ("Hclose" with "HΦ"). iIntros "!> ?"; eauto.
- iExists inhabitant. by iApply (bor_fake with "LFT").
Qed.
Lemma rebor E κ κ' P :
lftN E
lft_ctx -∗ κ' κ -∗ &{κ}P ={E}=∗ &{κ'}P ([κ'] ={E}=∗ &{κ}P).
Proof.
iIntros (?) "#LFT #H⊑". rewrite {1}/bor; iDestruct 1 as (κ'') "[#H⊑' Hκ'']".
iMod (raw_rebor _ _ (κ' κ'') with "LFT Hκ''") as "[Hκ'' Hclose]"; first done.
{ apply gmultiset_union_subseteq_r. }
iModIntro. iSplitL "Hκ''".
- rewrite /bor. iExists (κ' κ''). iFrame "Hκ''".
iApply (lft_incl_glb with "[]"); first iApply lft_incl_refl.
by iApply (lft_incl_trans with "H⊑").
- iIntros "Hκ†". iMod ("Hclose" with "[Hκ†]") as "Hκ''".
{ iApply lft_dead_or; auto. }
iModIntro. rewrite /bor. eauto.
Qed.
Lemma bor_unnest E κ κ' P :
lftN E
lft_ctx -∗ &{κ'} &{κ} P ={E, E∖↑lftN}▷=∗ &{κ κ'} P.
Proof.
iIntros (?) "#LFT Hκ". rewrite {2}/bor.
iMod (bor_exists with "LFT Hκ") as (κ0) "Hκ"; first done.
iMod (bor_sep with "LFT Hκ") as "[Hκ⊑ Hκ]"; first done.
rewrite {2}/bor; iDestruct "Hκ" as (κ0') "[#Hκ'⊑ Hκ]".
iMod (bor_acc_atomic with "LFT Hκ⊑") as "[[#Hκ⊑ Hclose]|[#H† Hclose]]"; first done; last first.
{ iModIntro. iNext. iMod "Hclose" as "_". iApply (bor_fake with "LFT"); first done.
iApply lft_dead_or. iRight. done. }
iMod ("Hclose" with "Hκ⊑") as "_".
set (κ'' := κ0 κ0').
iMod (raw_rebor _ _ κ'' with "LFT Hκ") as "[Hκ _]"; first done.
{ apply gmultiset_union_subseteq_r. }
iInv mgmtN as (A I) "(>HA & >HI & Hinv)" "Hclose".
iMod (ilft_create _ _ κ'' with "HA HI Hinv") as (A' I') "(% & HA & HI & Hinv)".
clear A I; rename A' into A; rename I' into I.
iDestruct (big_sepS_delete _ _ κ'' with "Hinv") as "[Hκ'' Hinv]";
first by apply elem_of_dom.
rewrite {1}/lft_inv; iDestruct "Hκ''" as "[[Hinv' >%]|[Hdead >Hdeadin]]"; last first.
{ iDestruct "Hdeadin" as %Hdeadin. iMod (lft_dead_in_tok with "HA") as "[HA #H†]"; first done.
iMod ("Hclose" with "[-]") as "_".
{ rewrite /lfts_inv. iExists A, I. iFrame "HA HI".
iApply (big_sepS_delete _ _ κ''); first by apply elem_of_dom.
iNext; iFrame "Hinv". rewrite /lft_inv. iRight. iSplit; auto. }
iMod (fupd_intro_mask') as "Hclose"; last iModIntro; first solve_ndisj.
iNext. iMod "Hclose" as "_".
iApply (bor_fake with "LFT >"); first done.
iApply (lft_incl_dead with "[] H†"); first done.
by iApply (lft_incl_mono with "Hκ⊑"). }
rewrite {1}/raw_bor /idx_bor_own /=; iDestruct "Hκ" as (i) "[Hi #Hislice]".
rewrite lft_inv_alive_unfold;
iDestruct "Hinv'" as (Pb Pi) "(Halive & Hvs & Hinh)".
rewrite /lft_bor_alive; iDestruct "Halive" as (B) "(Hbox & >HB● & HB)".
iDestruct (own_bor_valid_2 with "HB● Hi")
as %[HB%to_borUR_included _]%auth_valid_discrete_2.
iMod (slice_delete_full _ _ true with "Hislice Hbox") as (Pb') "(HP & #EQ & Hbox)"; first solve_ndisj.
{ by rewrite lookup_fmap HB. }
iMod (own_bor_update_2 with "HB● Hi") as "HB●".
{ apply auth_update_dealloc, delete_singleton_local_update. apply _. }
iMod (fupd_intro_mask') as "Hclose'"; last iModIntro; first solve_ndisj.
iNext. iMod "Hclose'" as "_".
iAssert (lft_bor_alive κ'' Pb') with "[Hbox HB● HB]" as "Halive".
{ rewrite /lft_bor_alive. iExists (delete i B).
rewrite fmap_delete. iFrame "Hbox". iSplitL "HB●".
- rewrite /to_borUR fmap_delete. done.
- rewrite big_sepM_delete; last done. iDestruct "HB" as "[_ $]". }
iMod (raw_bor_unnest' _ false with "[$HI $Hinv] HP Halive [Hvs]") as (Pb'') "([HI Hinv] & HP & Halive & Hvs)";
[solve_ndisj|exact: gmultiset_union_subseteq_l|done| |].
{ (* TODO: Use iRewrite supporting contractive rewriting. *)
iApply (lft_vs_cons with "[]"); last done.
iIntros "[$ Hbor]". iModIntro. iNext. by iRewrite "EQ". }
iMod ("Hclose" with "[-HP]") as "_".
{ iNext. simpl. rewrite /lfts_inv. iExists A, I. iFrame.
rewrite (big_sepS_delete _ (dom _ I) κ''); last by apply elem_of_dom.
iFrame. rewrite /lft_inv lft_inv_alive_unfold. iLeft.
iFrame "%". iExists Pb'', Pi. iFrame. }
iModIntro. rewrite /bor. iExists κ''. iFrame. subst κ''.
by iApply (lft_incl_mono with "Hκ⊑").
Qed.
End reborrow.
From iris.algebra Require Import gmap auth frac.
From iris.proofmode Require Import tactics.
From lrust.lifetime Require Export lifetime.
Set Default Proof Using "Type".
(** Shared bors *)
Definition shr_bor `{invG Σ, lftG Σ} κ (P : iProp Σ) :=
( i, &{κ,i}P inv lftN ( q, idx_bor_own q i))%I.
Notation "&shr{ κ } P" := (shr_bor κ P)
(format "&shr{ κ } P", at level 20, right associativity) : uPred_scope.
Section shared_bors.
Context `{invG Σ, lftG Σ} (P : iProp Σ).
Global Instance shr_bor_ne κ n : Proper (dist n ==> dist n) (shr_bor κ).
Proof. solve_proper. Qed.
Global Instance shr_bor_contractive κ : Contractive (shr_bor κ).
Proof. solve_contractive. Qed.
Global Instance shr_bor_proper : Proper ((⊣⊢) ==> (⊣⊢)) (shr_bor κ).
Proof. solve_proper. Qed.
Global Instance shr_bor_persistent : PersistentP (&shr{κ} P) := _.
Lemma bor_share E κ : lftN E &{κ}P ={E}=∗ &shr{κ}P.
Proof.
iIntros (?) "HP". rewrite bor_unfold_idx. iDestruct "HP" as (i) "(#?&Hown)".
iExists i. iFrame "#". iApply inv_alloc. auto.
Qed.
Lemma shr_bor_acc E κ :
lftN E
lft_ctx -∗ &shr{κ}P ={E,E∖↑lftN}=∗ P (P ={E∖↑lftN,E}=∗ True)
[κ] |={E∖↑lftN,E}=> True.
Proof.
iIntros (?) "#LFT #HP". iDestruct "HP" as (i) "(#Hidx&#Hinv)".
iInv lftN as (q') ">[Hq'0 Hq'1]" "Hclose".
iMod ("Hclose" with "[Hq'1]") as "_". by eauto.
iMod (idx_bor_atomic_acc with "LFT Hidx Hq'0") as "[[HP Hclose]|[H† Hclose]]". done.
- iLeft. iFrame. iIntros "!>HP". by iMod ("Hclose" with "HP").
- iRight. iFrame. iIntros "!>". by iMod "Hclose".
Qed.
Lemma shr_bor_acc_tok E q κ :
lftN E
lft_ctx -∗ &shr{κ}P -∗ q.[κ] ={E,E∖↑lftN}=∗ P (P ={E∖↑lftN,E}=∗ q.[κ]).
Proof.
iIntros (?) "#LFT #Hshr Hκ".
iMod (shr_bor_acc with "LFT Hshr") as "[[$ Hclose]|[H† _]]". done.
- iIntros "!>HP". by iMod ("Hclose" with "HP").
- iDestruct (lft_tok_dead with "Hκ H†") as "[]".
Qed.
Lemma shr_bor_shorten κ κ': κ κ' -∗ &shr{κ'}P -∗ &shr{κ}P.
Proof.
iIntros "#H⊑ H". iDestruct "H" as (i) "[??]". iExists i. iFrame.
by iApply (idx_bor_shorten with "H⊑").
Qed.
Lemma shr_bor_fake E κ: lftN E lft_ctx -∗ [κ] ={E}=∗ &shr{κ}P.
Proof.
iIntros (?) "#LFT#H†". iApply (bor_share with ">"). done.
by iApply (bor_fake with "LFT H†").
Qed.
End shared_bors.
Typeclasses Opaque shr_bor.
From iris.base_logic Require Import big_op.
From iris.proofmode Require Import tactics.
From lrust.typing Require Export type.
From lrust.typing Require Import programs.
Set Default Proof Using "Type".
Section typing.
Context `{typeG Σ}.
(** Jumping to and defining a continuation. *)
Lemma type_jump args E L C T k T' :
(k cont(L, T'))%CC C
tctx_incl E L T (T' (list_to_vec args))
typed_body E L C T (k (of_val <$> args)).
Proof.
iIntros (HC Hincl) "!#". iIntros (tid qE) "#HEAP #LFT Htl HE HL HC HT".
iMod (Hincl with "LFT HE HL HT") as "(HE & HL & HT)".
iSpecialize ("HC" with "HE * []"); first done.
rewrite -{3}(vec_to_list_of_list args). iApply ("HC" with "* Htl HL HT").
Qed.
Lemma type_cont argsb L1 (T' : vec val (length argsb) _) E L2 C T econt e2 kb :
Closed (kb :b: argsb +b+ []) econt Closed (kb :b: []) e2
( k, typed_body E L2 (k cont(L1, T') :: C) T (subst' kb k e2))
( k (args : vec val (length argsb)),
typed_body E L1 (k cont(L1, T') :: C) (T' args) (subst_v (kb::argsb) (k:::args) econt))
typed_body E L2 C T (e2 cont: kb argsb := econt).
Proof.
iIntros (Hc1 Hc2 He2 Hecont) "!#". iIntros (tid qE) "#HEAP #LFT Htl HE HL HC HT". iApply wp_let'.
{ simpl. rewrite decide_left. done. }
iModIntro. iApply (He2 with "* HEAP LFT Htl HE HL [HC] HT"). clear He2.
iIntros "HE". iLöb as "IH". iIntros (x) "H".
iDestruct "H" as %[->|?]%elem_of_cons; last by iApply ("HC" with "HE *").
iIntros (args) "Htl HL HT". iApply wp_rec; try done.
{ rewrite Forall_fmap Forall_forall=>? _. rewrite /= to_of_val. eauto. }
{ by rewrite -(subst_v_eq (_ :: _) (RecV _ _ _ ::: _)). }
iNext. iApply (Hecont with "* HEAP LFT Htl HE HL [HC] HT").
by iApply "IH".
Qed.
End typing.
From lrust.lang Require Import proofmode.
From lrust.typing Require Export lft_contexts type bool.
Set Default Proof Using "Type".
Section fixpoint.
Context `{typeG Σ}.
Global Instance type_inhabited : Inhabited type := populate bool.
Context (T : type type) `{Contractive T}.
Global Instance fixpoint_copy :
( `(!Copy ty), Copy (T ty)) Copy (fixpoint T).
Proof.
intros ?. apply fixpoint_ind.
- intros ??[[EQsz%leibniz_equiv EQown]EQshr].
specialize (λ tid vl, EQown tid vl). specialize (λ κ tid l, EQshr κ tid l).
simpl in *=>-[Hp Hsh]; (split; [intros ??|intros ???]).
+ revert Hp. by rewrite /PersistentP -EQown.
+ intros F l q. rewrite -EQsz -EQshr. setoid_rewrite <-EQown. auto.
- exists bool. apply _.
- done.
- intros c Hc. split.
+ intros tid vl. apply uPred.equiv_entails, equiv_dist=>n.
by rewrite conv_compl uPred.always_always.
+ intros κ tid E F l q ? ?.
apply uPred.entails_equiv_and, equiv_dist=>n. etrans.
{ apply equiv_dist, uPred.entails_equiv_and, (copy_shr_acc κ tid E F)=>//.
by rewrite -conv_compl. }
symmetry. (* FIXME : this is too slow *)
do 2 f_equiv; first by rewrite conv_compl. set (cn:=c n).
repeat (apply (conv_compl n c) || f_contractive || f_equiv);
by rewrite conv_compl.
Qed.
Global Instance fixpoint_send :
( `(!Send ty), Send (T ty)) Send (fixpoint T).
Proof.
intros ?. apply fixpoint_ind.
- intros ?? EQ ????. by rewrite -EQ.
- exists bool. apply _.
- done.
- intros c Hc ???. apply uPred.entails_equiv_and, equiv_dist=>n.
rewrite conv_compl. apply equiv_dist, uPred.entails_equiv_and; apply Hc.
Qed.
Global Instance fixpoint_sync :
( `(!Sync ty), Sync (T ty)) Sync (fixpoint T).
Proof.
intros ?. apply fixpoint_ind.
- intros ?? EQ ?????. by rewrite -EQ.
- exists bool. apply _.
- done.
- intros c Hc ????. apply uPred.entails_equiv_and, equiv_dist=>n.
rewrite conv_compl. apply equiv_dist, uPred.entails_equiv_and; apply Hc.
Qed.
Lemma fixpoint_unfold_eqtype E L : eqtype E L (fixpoint T) (T (fixpoint T)).
Proof.
unfold eqtype, subtype, type_incl. setoid_rewrite <-fixpoint_unfold.
split; iIntros "_ _ _"; (iSplit; first done); iSplit; iIntros "!#*$".
Qed.
End fixpoint.
Section subtyping.
Context `{typeG Σ} (E : elctx) (L : llctx).
(* TODO : is there a way to declare these as a [Proper] instances ? *)
Lemma fixpoint_mono T1 `{Contractive T1} T2 `{Contractive T2} :
( ty1 ty2, subtype E L ty1 ty2 subtype E L (T1 ty1) (T2 ty2))
subtype E L (fixpoint T1) (fixpoint T2).
Proof.
intros H12. apply fixpoint_ind.
- intros ?? EQ ?. etrans; last done. by apply equiv_subtype.
- by eexists _.
- intros. rewrite (fixpoint_unfold_eqtype T2). by apply H12.
- intros c Hc.
assert (Hsz : lft_ctx -∗ lft_contexts.elctx_interp_0 E -∗
lft_contexts.llctx_interp_0 L -∗
(compl c).(ty_size) = (fixpoint T2).(ty_size)).
{ iIntros "LFT HE HL". iDestruct (Hc 0%nat with "LFT HE HL") as "[$ _]". }
assert (Hown : lft_ctx -∗ lft_contexts.elctx_interp_0 E -∗
lft_contexts.llctx_interp_0 L -∗
( tid vl, (compl c).(ty_own) tid vl -∗ (fixpoint T2).(ty_own) tid vl)).
{ apply uPred.entails_equiv_and, equiv_dist=>n.
destruct (conv_compl (S n) c) as [[_ Heq] _]. setoid_rewrite (λ tid vl, Heq tid vl).
apply equiv_dist, uPred.entails_equiv_and. iIntros "LFT HE HL".
iDestruct (Hc (S n) with "LFT HE HL") as "[_ [$ _]]". }
assert (Hshr : lft_ctx -∗ lft_contexts.elctx_interp_0 E -∗
lft_contexts.llctx_interp_0 L -∗
( κ tid l,
(compl c).(ty_shr) κ tid l -∗ (fixpoint T2).(ty_shr) κ tid l)).
{ apply uPred.entails_equiv_and, equiv_dist=>n.
destruct (conv_compl n c) as [_ Heq]. setoid_rewrite (λ κ tid l, Heq κ tid l).
apply equiv_dist, uPred.entails_equiv_and. iIntros "LFT HE HL".
iDestruct (Hc n with "LFT HE HL") as "[_ [_ $]]". }
iIntros "LFT HE HL". iSplit; [|iSplit].
+ iApply (Hsz with "LFT HE HL").
+ iApply (Hown with "LFT HE HL").
+ iApply (Hshr with "LFT HE HL").
Qed.
Lemma fixpoint_proper T1 `{Contractive T1} T2 `{Contractive T2} :
( ty1 ty2, eqtype E L ty1 ty2 eqtype E L (T1 ty1) (T2 ty2))
eqtype E L (fixpoint T1) (fixpoint T2).
Proof.
intros H12. apply fixpoint_ind.
- intros ?? EQ ?. etrans; last done. by apply equiv_eqtype.
- by eexists _.
- intros. rewrite (fixpoint_unfold_eqtype T2). by apply H12.
- intros c Hc. setoid_rewrite eqtype_unfold in Hc. rewrite eqtype_unfold.
assert (Hsz : lft_ctx -∗ lft_contexts.elctx_interp_0 E -∗
lft_contexts.llctx_interp_0 L -∗
(compl c).(ty_size) = (fixpoint T2).(ty_size)).
{ iIntros "LFT HE HL". iDestruct (Hc 0%nat with "LFT HE HL") as "[$ _]". }
assert (Hown : lft_ctx -∗ lft_contexts.elctx_interp_0 E -∗
lft_contexts.llctx_interp_0 L -∗
( tid vl, (compl c).(ty_own) tid vl (fixpoint T2).(ty_own) tid vl)).
{ apply uPred.entails_equiv_and, equiv_dist=>n.
destruct (conv_compl (S n) c) as [[_ Heq] _]. setoid_rewrite (λ tid vl, Heq tid vl).
apply equiv_dist, uPred.entails_equiv_and. iIntros "LFT HE HL".
iDestruct (Hc (S n) with "LFT HE HL") as "[_ [$ _]]". }
assert (Hshr : lft_ctx -∗ lft_contexts.elctx_interp_0 E -∗
lft_contexts.llctx_interp_0 L -∗
( κ tid l,
(compl c).(ty_shr) κ tid l (fixpoint T2).(ty_shr) κ tid l)).
{ apply uPred.entails_equiv_and, equiv_dist=>n.
destruct (conv_compl n c) as [_ Heq]. setoid_rewrite (λ κ tid l, Heq κ tid l).
apply equiv_dist, uPred.entails_equiv_and. iIntros "LFT HE HL".
iDestruct (Hc n with "LFT HE HL") as "[_ [_ $]]". }
iIntros "LFT HE HL". iSplit; [|iSplit].
+ iApply (Hsz with "LFT HE HL").
+ iApply (Hown with "LFT HE HL").
+ iApply (Hshr with "LFT HE HL").
Qed.
Lemma fixpoint_unfold_subtype_l ty T `{Contractive T} :
subtype E L ty (T (fixpoint T)) subtype E L ty (fixpoint T).
Proof. intros. by rewrite fixpoint_unfold_eqtype. Qed.
Lemma fixpoint_unfold_subtype_r ty T `{Contractive T} :
subtype E L (T (fixpoint T)) ty subtype E L (fixpoint T) ty.
Proof. intros. by rewrite fixpoint_unfold_eqtype. Qed.
Lemma fixpoint_unfold_eqtype_l ty T `{Contractive T} :
eqtype E L ty (T (fixpoint T)) eqtype E L ty (fixpoint T).
Proof. intros. by rewrite fixpoint_unfold_eqtype. Qed.
Lemma fixpoint_unfold_eqtype_r ty T `{Contractive T} :
eqtype E L (T (fixpoint T)) ty eqtype E L (fixpoint T) ty.
Proof. intros. by rewrite fixpoint_unfold_eqtype. Qed.
End subtyping.
Hint Resolve fixpoint_mono fixpoint_proper : lrust_typing.
(* These hints can loop if [fixpoint_mono] and [fixpoint_proper] have
not been tried before, so we give them a high cost *)
Hint Resolve fixpoint_unfold_subtype_l|100 : lrust_typing.
Hint Resolve fixpoint_unfold_subtype_r|100 : lrust_typing.
Hint Resolve fixpoint_unfold_eqtype_l|100 : lrust_typing.
Hint Resolve fixpoint_unfold_eqtype_r|100 : lrust_typing.
From iris.base_logic Require Import big_op.
From iris.proofmode Require Import tactics.
From iris.algebra Require Import vector.
From lrust.typing Require Export type.
From lrust.typing Require Import programs cont.
Set Default Proof Using "Type".
Section fn.
Context `{typeG Σ} {A : Type} {n : nat}.
Program Definition fn (E : A elctx)
(tys : A vec type n) (ty : A type) : type :=
{| st_own tid vl := ( fb kb xb e H,
vl = [@RecV fb (kb::xb) e H] length xb = n
(x : A) (k : val) (xl : vec val (length xb)),
typed_body (E x) []
[kcont([], λ v : vec _ 1, [v!!!0 ty x])]
(zip_with (TCtx_hasty of_val) xl (tys x))
(subst_v (fb::kb::xb) (RecV fb (kb::xb) e:::k:::xl) e))%I |}.
Next Obligation.
iIntros (E tys ty tid vl) "H". iDestruct "H" as (fb kb xb e ?) "[% _]". by subst.
Qed.
Global Instance fn_send E tys ty : Send (fn E tys ty).
Proof. iIntros (tid1 tid2 vl). done. Qed.
Global Instance fn_contractive n' E :
Proper (pointwise_relation A (dist_later n') ==>
pointwise_relation A (dist_later n') ==> dist n') (fn E).
Proof.
intros ?? Htys ?? Hty. unfold fn. f_equiv. rewrite st_dist_unfold /=.
f_contractive=>tid vl. unfold typed_body.
do 12 f_equiv. f_contractive. do 18 f_equiv.
- rewrite !cctx_interp_singleton /=. do 5 f_equiv.
rewrite !tctx_interp_singleton /tctx_elt_interp. do 3 f_equiv. apply Hty.
- rewrite /tctx_interp !big_sepL_zip_with /=. do 3 f_equiv.
assert (Hprop : n tid p i, Proper (dist (S n) ==> dist n)
(λ (l : list _), ty, l !! i = Some ty tctx_elt_interp tid (p ty))%I);
last by apply Hprop, Htys.
clear. intros n tid p i x y. rewrite list_dist_lookup=>Hxy.
specialize (Hxy i). destruct (x !! i) as [tyx|], (y !! i) as [tyy|];
inversion_clear Hxy; last done.
transitivity (tctx_elt_interp tid (p tyx));
last transitivity (tctx_elt_interp tid (p tyy)); last 2 first.
+ unfold tctx_elt_interp. do 3 f_equiv. by apply ty_own_ne.
+ apply equiv_dist. iSplit.
* iIntros "H * #EQ". by iDestruct "EQ" as %[=->].
* iIntros "H". by iApply "H".
+ apply equiv_dist. iSplit.
* iIntros "H". by iApply "H".
* iIntros "H * #EQ". by iDestruct "EQ" as %[=->].
Qed.
Global Instance fn_ne n' E :
Proper (pointwise_relation A (dist n') ==>
pointwise_relation A (dist n') ==> dist n') (fn E).
Proof.
intros ?? H1 ?? H2.
apply fn_contractive=>u; (destruct n'; [done|apply dist_S]);
[apply (H1 u)|apply (H2 u)].
Qed.
End fn.
Section typing.
Context `{typeG Σ}.
Lemma fn_subtype_full {A n} E0 L0 E E' (tys tys' : A vec type n) ty ty' :
( x, elctx_incl E0 L0 (E x) (E' x))
( x, Forall2 (subtype (E0 ++ E x) L0) (tys' x) (tys x))
( x, subtype (E0 ++ E x) L0 (ty x) (ty' x))
subtype E0 L0 (fn E' tys ty) (fn E tys' ty').
Proof.
intros HE Htys Hty. apply subtype_simple_type=>//= _ vl.
iIntros "#LFT #HE0 #HL0 Hf". iDestruct "Hf" as (fb kb xb e ?) "[% [% #Hf]]". subst.
iExists fb, kb, xb, e, _. iSplit. done. iSplit. done. iNext.
rewrite /typed_body. iIntros "* !# * #HEAP _ Htl HE HL HC HT".
iDestruct (elctx_interp_persist with "HE") as "#HEp".
iMod (HE with "HE0 HL0 * HE") as (qE') "[HE' Hclose]". done.
iApply ("Hf" with "* HEAP LFT Htl HE' HL [HC Hclose] [HT]").
- iIntros "HE'". unfold cctx_interp. iIntros (elt) "Helt".
iDestruct "Helt" as %->%elem_of_list_singleton. iIntros (ret) "Htl HL HT".
iMod ("Hclose" with "HE'") as "HE".
iSpecialize ("HC" with "HE"). unfold cctx_elt_interp.
iApply ("HC" $! (_ cont(_, _)%CC) with "[%] * Htl HL >").
{ by apply elem_of_list_singleton. }
rewrite /tctx_interp !big_sepL_singleton /=.
iDestruct "HT" as (v) "[HP Hown]". iExists v. iFrame "HP".
iDestruct (Hty x with "LFT [HE0 HEp] HL0") as "(_ & #Hty & _)".
{ rewrite /elctx_interp_0 big_sepL_app. by iSplit. }
by iApply "Hty".
- rewrite /tctx_interp
-(fst_zip (tys x) (tys' x)) ?vec_to_list_length //
-{1}(snd_zip (tys x) (tys' x)) ?vec_to_list_length //
!zip_with_fmap_r !(zip_with_zip (λ _ _, (_ _) _ _)) !big_sepL_fmap.
iApply big_sepL_impl. iSplit; last done. iIntros "{HT}!#".
iIntros (i [p [ty1' ty2']]) "#Hzip H /=".
iDestruct "H" as (v) "[? Hown]". iExists v. iFrame.
rewrite !lookup_zip_with.
iDestruct "Hzip" as %(? & ? & ([? ?] & (? & Hty'1 &
(? & Hty'2 & [=->->])%bind_Some)%bind_Some & [=->->->])%bind_Some)%bind_Some.
specialize (Htys x). eapply Forall2_lookup_lr in Htys; try done.
iDestruct (Htys with "* [] [] []") as "(_ & #Ho & _)"; [done| |done|].
+ rewrite /elctx_interp_0 big_sepL_app. by iSplit.
+ by iApply "Ho".
Qed.
Lemma fn_subtype_ty {A n} E0 L0 E (tys1 tys2 : A vec type n) ty1 ty2 :
( x, Forall2 (subtype (E0 ++ E x) L0) (tys2 x) (tys1 x))
( x, subtype (E0 ++ E x) L0 (ty1 x) (ty2 x))
subtype E0 L0 (fn E tys1 ty1) (fn E tys2 ty2).
Proof. intros. by apply fn_subtype_full. Qed.
(* This proper and the next can probably not be inferred, but oh well. *)
Global Instance fn_subtype_ty' {A n} E0 L0 E :
Proper (flip (pointwise_relation A (λ (v1 v2 : vec type n), Forall2 (subtype E0 L0) v1 v2)) ==>
pointwise_relation A (subtype E0 L0) ==> subtype E0 L0) (fn E).
Proof.
intros tys1 tys2 Htys ty1 ty2 Hty. apply fn_subtype_ty.
- intros. eapply Forall2_impl; first eapply Htys. intros ??.
eapply subtype_weaken; last done. by apply submseteq_inserts_r.
- intros. eapply subtype_weaken, Hty; last done. by apply submseteq_inserts_r.
Qed.
Global Instance fn_eqtype_ty' {A n} E0 L0 E :
Proper (pointwise_relation A (λ (v1 v2 : vec type n), Forall2 (eqtype E0 L0) v1 v2) ==>
pointwise_relation A (eqtype E0 L0) ==> eqtype E0 L0) (fn E).
Proof.
intros tys1 tys2 Htys ty1 ty2 Hty. split; eapply fn_subtype_ty'; try (by intro; apply Hty);
intros x; (apply Forall2_flip + idtac); (eapply Forall2_impl; first by eapply (Htys x)); by intros ??[].
Qed.
Lemma fn_subtype_elctx_sat {A n} E0 L0 E E' (tys : A vec type n) ty :
( x, elctx_sat (E x) [] (E' x))
subtype E0 L0 (fn E' tys ty) (fn E tys ty).
Proof.
intros. apply fn_subtype_full; try done. by intros; apply elctx_sat_incl.
Qed.
Lemma fn_subtype_lft_incl {A n} E0 L0 E κ κ' (tys : A vec type n) ty :
lctx_lft_incl E0 L0 κ κ'
subtype E0 L0 (fn (λ x, (κ κ') :: E x)%EL tys ty) (fn E tys ty).
Proof.
intros Hκκ'. apply fn_subtype_full; try done. intros.
apply elctx_incl_lft_incl; last by apply elctx_incl_refl.
iIntros "#HE #HL". iApply (Hκκ' with "[HE] HL").
rewrite /elctx_interp_0 big_sepL_app. iDestruct "HE" as "[$ _]".
Qed.
Lemma fn_subtype_specialize {A B n} (σ : A B) E0 L0 E tys ty :
subtype E0 L0 (fn (n:=n) E tys ty) (fn (E σ) (tys σ) (ty σ)).
Proof.
apply subtype_simple_type=>//= _ vl.
iIntros "#LFT _ _ Hf". iDestruct "Hf" as (fb kb xb e ?) "[% [% #Hf]]". subst.
iExists fb, kb, xb, e, _. iSplit. done. iSplit. done.
rewrite /typed_body. iNext. iIntros "*". iApply "Hf".
Qed.
Lemma type_call' {A} E L E' T p (ps : list path)
(tys : A vec type (length ps)) ty k x :
elctx_sat E L (E' x)
typed_body E L [k cont(L, λ v : vec _ 1, (v!!!0 ty x) :: T)]
((p fn E' tys ty) :: zip_with TCtx_hasty ps (tys x) ++ T)
(call: p ps k).
Proof.
iIntros (HE) "!# * #HEAP #LFT Htl HE HL HC".
rewrite tctx_interp_cons tctx_interp_app. iIntros "(Hf & Hargs & HT)".
wp_bind p. iApply (wp_hasty with "Hf"). iIntros (v) "% Hf".
iApply (wp_app_vec _ _ (_::_) ((λ v, v = k):::
vmap (λ ty (v : val), tctx_elt_interp tid (v ty)) (tys x))%I
with "* [Hargs]"); first wp_done.
- rewrite /= big_sepL_cons. iSplitR "Hargs"; first by iApply wp_value'.
clear dependent ty k p.
rewrite /tctx_interp vec_to_list_map zip_with_fmap_r
(zip_with_zip (λ e ty, (e, _))) zip_with_zip !big_sepL_fmap.
iApply (big_sepL_mono' with "Hargs"). iIntros (i [p ty]) "HT/=".
iApply (wp_hasty with "HT"). setoid_rewrite tctx_hasty_val. iIntros (?) "? $".
- simpl. change (@length expr ps) with (length ps).
iIntros (vl'). inv_vec vl'=>kv vl. rewrite /= big_sepL_cons.
iIntros "/= [% Hvl]". subst kv. iDestruct "Hf" as (fb kb xb e ?) "[EQ [EQl #Hf]]".
iDestruct "EQ" as %[=->]. iDestruct "EQl" as %EQl. revert vl tys.
rewrite <-EQl=>vl tys. iApply wp_rec; try done.
{ rewrite -fmap_cons Forall_fmap Forall_forall=>? _. rewrite /= to_of_val. eauto. }
{ rewrite -fmap_cons -(subst_v_eq (fb::kb::xb) (_:::k:::vl)) //. }
iNext. iSpecialize ("Hf" $! x k vl).
iMod (HE with "HE HL") as (q') "[HE' Hclose]"; first done.
iApply ("Hf" with "HEAP LFT Htl HE' [] [HC Hclose HT]").
+ by rewrite /llctx_interp big_sepL_nil.
+ iIntros "HE'". iApply fupd_cctx_interp. iMod ("Hclose" with "HE'") as "[HE HL]".
iSpecialize ("HC" with "HE"). iModIntro. iIntros (y) "IN".
iDestruct "IN" as %->%elem_of_list_singleton. iIntros (args) "Htl _ Hret".
iSpecialize ("HC" with "* []"); first by (iPureIntro; apply elem_of_list_singleton).
iApply ("HC" $! args with "Htl HL").
rewrite tctx_interp_singleton tctx_interp_cons. iFrame.
+ rewrite /tctx_interp vec_to_list_map zip_with_fmap_r
(zip_with_zip (λ v ty, (v, _))) zip_with_zip !big_sepL_fmap.
iApply (big_sepL_mono' with "Hvl"). by iIntros (i [v ty']).
Qed.
Lemma type_call {A} x E L E' C T T' T'' p (ps : list path)
(tys : A vec type (length ps)) ty k :
(p fn E' tys ty)%TC T
elctx_sat E L (E' x)
tctx_extract_ctx E L (zip_with TCtx_hasty ps (tys x)) T T'
(k cont(L, T''))%CC C
( ret : val, tctx_incl E L ((ret ty x)::T') (T'' [# ret]))
typed_body E L C T (call: p ps k).
Proof.
intros Hfn HE HTT' HC HT'T''.
rewrite -typed_body_mono /flip; last done; first by eapply type_call'.
- etrans. eapply (incl_cctx_incl _ [_]); first by intros ? ->%elem_of_list_singleton.
apply cctx_incl_cons_match; first done. intros args. by inv_vec args.
- etrans; last by apply (tctx_incl_frame_l [_]).
apply copy_elem_of_tctx_incl; last done. apply _.
Qed.
Lemma type_letcall {A} x E L E' C T T' p (ps : list path)
(tys : A vec type (length ps)) ty b e :
Closed (b :b: []) e Closed [] p Forall (Closed []) ps
(p fn E' tys ty)%TC T
elctx_sat E L (E' x)
tctx_extract_ctx E L (zip_with TCtx_hasty ps (tys x)) T T'
( ret : val, typed_body E L C ((ret ty x)::T') (subst' b ret e))
typed_body E L C T (letcall: b := p ps in e).
Proof.
intros ?? Hpsc ????. eapply (type_cont [_] _ (λ r, (r!!!0 ty x) :: T')%TC).
- (* TODO : make [solve_closed] work here. *)
eapply is_closed_weaken; first done. set_solver+.
- (* TODO : make [solve_closed] work here. *)
rewrite /Closed /= !andb_True. split.
+ by eapply is_closed_weaken, list_subseteq_nil.
+ eapply Is_true_eq_left, forallb_forall, List.Forall_forall, Forall_impl=>//.
intros. eapply Is_true_eq_true, is_closed_weaken=>//. set_solver+.
- intros.
(* TODO : make [simpl_subst] work here. *)
change (subst' "_k" k (p (Var "_k" :: ps))) with
((subst "_k" k p) (of_val k :: map (subst "_k" k) ps)).
rewrite is_closed_nil_subst //.
assert (map (subst "_k" k) ps = ps) as ->.
{ clear -Hpsc. induction Hpsc=>//=. rewrite is_closed_nil_subst //. congruence. }
eapply type_call; try done. constructor. done.
- move=>/= k ret. inv_vec ret=>ret. rewrite /subst_v /=.
rewrite ->(is_closed_subst []), incl_cctx_incl; first done; try set_solver+.
apply subst'_is_closed; last done. apply is_closed_of_val.
Qed.
Lemma type_rec {A} E L E' fb (argsb : list binder) e
(tys : A vec type (length argsb)) ty
T `{!CopyC T, !SendC T} :
Closed (fb :b: "return" :b: argsb +b+ []) e
( x (f : val) k (args : vec val (length argsb)),
typed_body (E' x) [] [k cont([], λ v : vec _ 1, [v!!!0 ty x])]
((f fn E' tys ty) ::
zip_with (TCtx_hasty of_val) args (tys x) ++ T)
(subst_v (fb :: BNamed "return" :: argsb) (f ::: k ::: args) e))
typed_instruction_ty E L T (funrec: fb argsb := e) (fn E' tys ty).
Proof.
iIntros (Hc Hbody) "!# * #HEAP #LFT $ $ $ #HT". iApply wp_value.
{ simpl. rewrite ->(decide_left Hc). done. }
rewrite tctx_interp_singleton. iLöb as "IH". iExists _. iSplit.
{ simpl. rewrite decide_left. done. }
iExists fb, _, argsb, e, _. iSplit. done. iSplit. done. iNext. clear qE.
iIntros (x k args) "!#". iIntros (tid' qE) "_ _ Htl HE HL HC HT'".
iApply (Hbody with "* HEAP LFT Htl HE HL HC").
rewrite tctx_interp_cons tctx_interp_app. iFrame "HT' IH".
by iApply sendc_change_tid.
Qed.
Lemma type_fn {A} E L E' (argsb : list binder) e
(tys : A vec type (length argsb)) ty
T `{!CopyC T, !SendC T} :
Closed ("return" :b: argsb +b+ []) e
( x k (args : vec val (length argsb)),
typed_body (E' x) [] [k cont([], λ v : vec _ 1, [v!!!0 ty x])]
(zip_with (TCtx_hasty of_val) args (tys x) ++ T)
(subst_v (BNamed "return" :: argsb) (k ::: args) e))
typed_instruction_ty E L T (funrec: <> argsb := e) (fn E' tys ty).
Proof.
intros. apply type_rec; try done. intros. rewrite -typed_body_mono //=.
eapply contains_tctx_incl. by constructor.
Qed.
End typing.
Hint Resolve fn_subtype_full : lrust_typing.
From iris.proofmode Require Import tactics.
From iris.base_logic Require Import big_op.
From iris.base_logic.lib Require Import fractional.
From lrust.lifetime Require Import frac_borrow.
Set Default Proof Using "Type".
Inductive elctx_elt : Type :=
| ELCtx_Alive (κ : lft)
| ELCtx_Incl (κ κ' : lft).
Notation elctx := (list elctx_elt).
Delimit Scope lrust_elctx_scope with EL.
(* We need to define [elctx] and [llctx] as notations to make eauto
work. But then, Coq is not able to bind them to their
notations, so we have to use [Arguments] everywhere. *)
Bind Scope lrust_elctx_scope with elctx_elt.
Notation "☀ κ" := (ELCtx_Alive κ) (at level 70) : lrust_elctx_scope.
Infix "⊑" := ELCtx_Incl (at level 70) : lrust_elctx_scope.
Notation "a :: b" := (@cons elctx_elt a%EL b%EL)
(at level 60, right associativity) : lrust_elctx_scope.
Notation "[ x1 ; x2 ; .. ; xn ]" :=
(@cons elctx_elt x1%EL (@cons elctx_elt x2%EL
(..(@cons elctx_elt xn%EL (@nil elctx_elt))..))) : lrust_elctx_scope.
Notation "[ x ]" := (@cons elctx_elt x%EL (@nil elctx_elt)) : lrust_elctx_scope.
Definition llctx_elt : Type := lft * list lft.
Notation llctx := (list llctx_elt).
Delimit Scope lrust_llctx_scope with LL.
Bind Scope lrust_llctx_scope with llctx_elt.
Notation "κ ⊑ κl" := (@pair lft (list lft) κ κl) (at level 70) : lrust_llctx_scope.
Notation "a :: b" := (@cons llctx_elt a%LL b%LL)
(at level 60, right associativity) : lrust_llctx_scope.
Notation "[ x1 ; x2 ; .. ; xn ]" :=
(@cons llctx_elt x1%LL (@cons llctx_elt x2%LL
(..(@cons llctx_elt xn%LL (@nil llctx_elt))..))) : lrust_llctx_scope.
Notation "[ x ]" := (@cons llctx_elt x%LL (@nil llctx_elt)) : lrust_llctx_scope.
Section lft_contexts.
Context `{invG Σ, lftG Σ}.
Implicit Type (κ : lft).
(* External lifetime contexts. *)
Definition elctx_elt_interp (x : elctx_elt) (q : Qp) : iProp Σ :=
match x with
| κ => q.[κ]%I
| κ κ' => (κ κ')%I
end%EL.
Global Instance elctx_elt_interp_fractional x:
Fractional (elctx_elt_interp x).
Proof. destruct x; unfold elctx_elt_interp; apply _. Qed.
Typeclasses Opaque elctx_elt_interp.
Definition elctx_elt_interp_0 (x : elctx_elt) : iProp Σ :=
match x with
| κ => True%I
| κ κ' => (κ κ')%I
end%EL.
Global Instance elctx_elt_interp_0_persistent x:
PersistentP (elctx_elt_interp_0 x).
Proof. destruct x; apply _. Qed.
Typeclasses Opaque elctx_elt_interp_0.
Lemma elctx_elt_interp_persist x q :
elctx_elt_interp x q -∗ elctx_elt_interp_0 x.
Proof. destruct x; by iIntros "?/=". Qed.
Definition elctx_interp (E : elctx) (q : Qp) : iProp Σ :=
([ list] x E, elctx_elt_interp x q)%I.
Global Arguments elctx_interp _%EL _%Qp.
Global Instance elctx_interp_fractional E:
Fractional (elctx_interp E).
Proof. intros ??. rewrite -big_sepL_sepL. by setoid_rewrite <-fractional. Qed.
Global Instance elctx_interp_as_fractional E q:
AsFractional (elctx_interp E q) (elctx_interp E) q.
Proof. split. done. apply _. Qed.
Global Instance elctx_interp_permut:
Proper (() ==> eq ==> (⊣⊢)) elctx_interp.
Proof. intros ????? ->. by apply big_opL_permutation. Qed.
Typeclasses Opaque elctx_interp.
Definition elctx_interp_0 (E : elctx) : iProp Σ :=
([ list] x E, elctx_elt_interp_0 x)%I.
Global Arguments elctx_interp_0 _%EL.
Global Instance elctx_interp_0_persistent E:
PersistentP (elctx_interp_0 E).
Proof. apply _. Qed.
Global Instance elctx_interp_0_permut:
Proper (() ==> (⊣⊢)) elctx_interp_0.
Proof. intros ???. by apply big_opL_permutation. Qed.
Typeclasses Opaque elctx_interp_0.
Lemma elctx_interp_persist x q :
elctx_interp x q -∗ elctx_interp_0 x.
Proof.
unfold elctx_interp, elctx_interp_0. f_equiv. intros _ ?.
apply elctx_elt_interp_persist.
Qed.
(* Local lifetime contexts. *)
Definition llctx_elt_interp (x : llctx_elt) (q : Qp) : iProp Σ :=
let κ' := foldr () static (x.2) in
( κ0, x.1 = κ' κ0 q.[κ0] (1.[κ0] ={,⊤∖↑lftN}▷=∗ [κ0]))%I.
Global Instance llctx_elt_interp_fractional x :
Fractional (llctx_elt_interp x).
Proof.
destruct x as [κ κs]. iIntros (q q'). iSplit; iIntros "H".
- iDestruct "H" as (κ0) "(% & [Hq Hq'] & #?)".
iSplitL "Hq"; iExists _; by iFrame "∗%".
- iDestruct "H" as "[Hq Hq']".
iDestruct "Hq" as (κ0) "(% & Hq & #?)".
iDestruct "Hq'" as (κ0') "(% & Hq' & #?)". simpl in *.
rewrite (inj (union (foldr () static κs)) κ0' κ0); last congruence.
iExists κ0. by iFrame "∗%".
Qed.
Typeclasses Opaque llctx_elt_interp.
Definition llctx_elt_interp_0 (x : llctx_elt) : Prop :=
let κ' := foldr () static (x.2) in ( κ0, x.1 = κ' κ0).
Lemma llctx_elt_interp_persist x q :
llctx_elt_interp x q -∗ llctx_elt_interp_0 x⌝.
Proof.
iIntros "H". unfold llctx_elt_interp.
iDestruct "H" as (κ0) "[% _]". by iExists κ0.
Qed.
Definition llctx_interp (L : llctx) (q : Qp) : iProp Σ :=
([ list] x L, llctx_elt_interp x q)%I.
Global Arguments llctx_interp _%LL _%Qp.
Global Instance llctx_interp_fractional L:
Fractional (llctx_interp L).
Proof. intros ??. rewrite -big_sepL_sepL. by setoid_rewrite <-fractional. Qed.
Global Instance llctx_interp_as_fractional L q:
AsFractional (llctx_interp L q) (llctx_interp L) q.
Proof. split. done. apply _. Qed.
Global Instance llctx_interp_permut:
Proper (() ==> eq ==> (⊣⊢)) llctx_interp.
Proof. intros ????? ->. by apply big_opL_permutation. Qed.
Typeclasses Opaque llctx_interp.
Definition llctx_interp_0 (L : llctx) : Prop :=
x, x L llctx_elt_interp_0 x.
Global Arguments llctx_interp_0 _%LL.
Lemma llctx_interp_persist L q :
llctx_interp L q -∗ llctx_interp_0 L⌝.
Proof.
iIntros "H". iIntros (x ?). iApply llctx_elt_interp_persist.
unfold llctx_interp. by iApply (big_sepL_elem_of with "H").
Qed.
Lemma lctx_equalize_lft qE qL κ1 κ2 `{!frac_borG Σ} :
lft_ctx -∗ llctx_elt_interp (κ1 [κ2]%list) qL ={}=∗
elctx_elt_interp (κ1 κ2) qE elctx_elt_interp (κ2 κ1) qE.
Proof.
iIntros "#LFT Hκ". rewrite /llctx_elt_interp /=. (* TODO: Why is this unfold necessary? *)
iDestruct "Hκ" as (κ) "(% & Hκ & _)".
iMod (bor_create _ κ2 with "LFT [Hκ]") as "[Hκ _]"; first done; first by iFrame.
iMod (bor_fracture (λ q, (qL * q).[_])%I with "LFT [Hκ]") as "#Hκ"; first done.
{ rewrite Qp_mult_1_r. done. }
iModIntro. subst κ1. iSplit.
- iApply lft_le_incl.
rewrite <-!gmultiset_union_subseteq_l. done.
- iApply (lft_incl_glb with "[]"); first iApply (lft_incl_glb with "[]").
+ iApply lft_incl_refl.
+ iApply lft_incl_static.
+ iApply (frac_bor_lft_incl with "LFT"). done.
Qed.
Context (E : elctx) (L : llctx).
(* Lifetime inclusion *)
Definition lctx_lft_incl κ κ' : Prop :=
elctx_interp_0 E -∗ llctx_interp_0 L -∗ κ κ'.
Definition lctx_lft_eq κ κ' : Prop :=
lctx_lft_incl κ κ' lctx_lft_incl κ' κ.
Lemma lctx_lft_incl_relf κ : lctx_lft_incl κ κ.
Proof. iIntros "_ _". iApply lft_incl_refl. Qed.
Global Instance lctx_lft_incl_preorder : PreOrder lctx_lft_incl.
Proof.
split; first by intros ?; apply lctx_lft_incl_relf.
iIntros (??? H1 H2) "#HE #HL". iApply (lft_incl_trans with "[#] [#]").
iApply (H1 with "HE HL"). iApply (H2 with "HE HL").
Qed.
Global Instance lctx_lft_incl_proper :
Proper (lctx_lft_eq ==> lctx_lft_eq ==> iff) lctx_lft_incl.
Proof. intros ??[] ??[]. split; intros; by etrans; [|etrans]. Qed.
Global Instance lctx_lft_eq_equivalence : Equivalence lctx_lft_eq.
Proof.
split.
- by split.
- intros ?? Heq; split; apply Heq.
- intros ??? H1 H2. split; etrans; (apply H1 || apply H2).
Qed.
Lemma lctx_lft_incl_static κ : lctx_lft_incl κ static.
Proof. iIntros "_ _". iApply lft_incl_static. Qed.
Lemma lctx_lft_incl_local κ κ' κs :
(κ κs)%LL L κ' κs lctx_lft_incl κ κ'.
Proof.
iIntros (? Hκ'κs) "_ H". iDestruct "H" as %HL.
edestruct HL as [κ0 EQ]. done. simpl in EQ; subst.
iApply lft_le_incl. etrans; last by apply gmultiset_union_subseteq_l.
clear -Hκ'κs. induction Hκ'κs.
- apply gmultiset_union_subseteq_l.
- etrans. done. apply gmultiset_union_subseteq_r.
Qed.
Lemma lctx_lft_incl_local' κ κ' κ'' κs :
(κ κs)%LL L κ' κs lctx_lft_incl κ' κ'' lctx_lft_incl κ κ''.
Proof. intros. etrans; last done. by eapply lctx_lft_incl_local. Qed.
Lemma lctx_lft_incl_external κ κ' : (κ κ')%EL E lctx_lft_incl κ κ'.
Proof.
iIntros (?) "H _".
rewrite /elctx_interp_0 /elctx_elt_interp_0 big_sepL_elem_of //. done.
Qed.
Lemma lctx_lft_incl_external' κ κ' κ'' :
(κ κ')%EL E lctx_lft_incl κ' κ'' lctx_lft_incl κ κ''.
Proof. intros. etrans; last done. by eapply lctx_lft_incl_external. Qed.
(* Lifetime aliveness *)
Definition lctx_lft_alive (κ : lft) : Prop :=
F qE qL, lftN F elctx_interp E qE -∗ llctx_interp L qL ={F}=∗
q', q'.[κ] (q'.[κ] ={F}=∗ elctx_interp E qE llctx_interp L qL).
Lemma lctx_lft_alive_static : lctx_lft_alive static.
Proof.
iIntros (F qE qL ?) "$$". iExists 1%Qp. iSplitL. by iApply lft_tok_static. auto.
Qed.
Lemma lctx_lft_alive_local κ κs:
(κ κs)%LL L Forall lctx_lft_alive κs lctx_lft_alive κ.
Proof.
iIntros ([i HL]%elem_of_list_lookup_1 Hκs F qE qL ?) "HE HL".
iDestruct "HL" as "[HL1 HL2]". rewrite {2}/llctx_interp /llctx_elt_interp.
iDestruct (big_sepL_lookup_acc with "HL2") as "[Hκ Hclose]". done.
iDestruct "Hκ" as (κ0) "(EQ & Htok & #Hend)". simpl. iDestruct "EQ" as %->.
iAssert ( q', q'.[foldr union static κs]
(q'.[foldr union static κs] ={F}=∗ elctx_interp E qE llctx_interp L (qL / 2)))%I
with ">[HE HL1]" as "H".
{ move:(qL/2)%Qp=>qL'. clear HL. iClear "Hend".
iInduction Hκs as [|κ κs ?] "IH" forall (qE qL').
- iExists 1%Qp. iFrame. iSplitR; last by auto. iApply lft_tok_static.
- iDestruct "HL1" as "[HL1 HL2]". iDestruct "HE" as "[HE1 HE2]".
iMod ( with "* HE1 HL1") as (q') "[Htok' Hclose]". done.
iMod ("IH" with "* HE2 HL2") as (q'') "[Htok'' Hclose']".
destruct (Qp_lower_bound q' q'') as (q0 & q'2 & q''2 & -> & ->).
iExists q0. rewrite -lft_tok_sep. iDestruct "Htok'" as "[$ Hr']".
iDestruct "Htok''" as "[$ Hr'']". iIntros "!>[Hκ Hfold]".
iMod ("Hclose" with "[$Hκ $Hr']") as "[$$]". iApply "Hclose'". iFrame. }
iDestruct "H" as (q') "[Htok' Hclose']". rewrite -{5}(Qp_div_2 qL).
destruct (Qp_lower_bound q' (qL/2)) as (q0 & q'2 & q''2 & -> & ->).
iExists q0. rewrite -(lft_tok_sep q0). iDestruct "Htok" as "[$ Htok]".
iDestruct "Htok'" as "[$ Htok']". iIntros "!>[Hfold Hκ0]".
iMod ("Hclose'" with "[$Hfold $Htok']") as "[$$]".
rewrite /llctx_interp /llctx_elt_interp. iApply "Hclose". iExists κ0. iFrame. auto.
Qed.
Lemma lctx_lft_alive_external κ: (κ)%EL E lctx_lft_alive κ.
Proof.
iIntros ([i HE]%elem_of_list_lookup_1 F qE qL ?) "HE $ !>".
rewrite /elctx_interp /elctx_elt_interp.
iDestruct (big_sepL_lookup_acc with "HE") as "[Hκ Hclose]". done.
iExists qE. iFrame. iIntros "?!>". by iApply "Hclose".
Qed.
Lemma lctx_lft_alive_incl κ κ':
lctx_lft_alive κ lctx_lft_incl κ κ' lctx_lft_alive κ'.
Proof.
iIntros (Hal Hinc F qE qL ?) "HE HL".
iAssert (κ κ')%I with "[#]" as "#Hincl". iApply (Hinc with "[HE] [HL]").
by iApply elctx_interp_persist. by iApply llctx_interp_persist.
iMod (Hal with "HE HL") as (q') "[Htok Hclose]". done.
iMod (lft_incl_acc with "Hincl Htok") as (q'') "[Htok Hclose']". done.
iExists q''. iIntros "{$Htok}!>Htok". iApply ("Hclose" with ">").
by iApply "Hclose'".
Qed.
Lemma lctx_lft_alive_external' κ κ':
(κ)%EL E (κ κ')%EL E lctx_lft_alive κ'.
Proof.
intros. eapply lctx_lft_alive_incl, lctx_lft_incl_external; last done.
by apply lctx_lft_alive_external.
Qed.
(* External lifetime context satisfiability *)
Definition elctx_sat E' : Prop :=
qE qL F, lftN F elctx_interp E qE -∗ llctx_interp L qL ={F}=∗
qE', elctx_interp E' qE'
(elctx_interp E' qE' ={F}=∗ elctx_interp E qE llctx_interp L qL).
Lemma elctx_sat_nil : elctx_sat [].
Proof.
iIntros (qE qL F ?) "$$". iExists 1%Qp. rewrite /elctx_interp big_sepL_nil. auto.
Qed.
Lemma elctx_sat_alive E' κ :
lctx_lft_alive κ elctx_sat E' elctx_sat ((κ) :: E')%EL.
Proof.
iIntros ( HE' qE qL F ?) "[HE1 HE2] [HL1 HL2]".
iMod ( with "HE1 HL1") as (q) "[Htok Hclose]". done.
iMod (HE' with "HE2 HL2") as (q') "[HE' Hclose']". done.
destruct (Qp_lower_bound q q') as (q0 & q2 & q'2 & -> & ->). iExists q0.
rewrite {5 6}/elctx_interp big_sepL_cons /=.
iDestruct "Htok" as "[$ Htok]". iDestruct "HE'" as "[Hf HE']".
iSplitL "Hf". by rewrite /elctx_interp.
iIntros "!>[Htok' ?]". iMod ("Hclose" with "[$Htok $Htok']") as "[$$]".
iApply "Hclose'". iFrame. by rewrite /elctx_interp.
Qed.
Lemma elctx_sat_lft_incl E' κ κ' :
lctx_lft_incl κ κ' elctx_sat E' elctx_sat ((κ κ') :: E')%EL.
Proof.
iIntros (Hκκ' HE' qE qL F ?) "HE HL".
iAssert (κ κ')%I with "[#]" as "#Hincl". iApply (Hκκ' with "[HE] [HL]").
by iApply elctx_interp_persist. by iApply llctx_interp_persist.
iMod (HE' with "HE HL") as (q) "[HE' Hclose']". done.
iExists q. rewrite {1 2 4 5}/elctx_interp big_sepL_cons /=.
iIntros "{$Hincl $HE'}!>[_ ?]". by iApply "Hclose'".
Qed.
End lft_contexts.
Arguments lctx_lft_incl {_ _ _} _%EL _%LL _ _.
Arguments lctx_lft_eq {_ _ _} _%EL _%LL _ _.
Arguments lctx_lft_alive {_ _ _} _%EL _%LL _.
Arguments elctx_sat {_ _ _} _%EL _%LL _%EL.
Section elctx_incl.
(* External lifetime context inclusion, in a persistent context.
(Used for function types subtyping).
On paper, this corresponds to using only the inclusions from E, L
to show E1; [] |- E2.
*)
Context `{invG Σ, lftG Σ} (E : elctx) (L : llctx).
Definition elctx_incl E1 E2 : Prop :=
F, lftN F elctx_interp_0 E -∗ llctx_interp_0 L -∗
qE1, elctx_interp E1 qE1 ={F}=∗ qE2, elctx_interp E2 qE2
(elctx_interp E2 qE2 ={F}=∗ elctx_interp E1 qE1).
Global Instance : RewriteRelation elctx_incl.
Arguments elctx_incl _%EL _%EL.
Global Instance elctx_incl_preorder : PreOrder elctx_incl.
Proof.
split.
- iIntros (???) "_ _ * ?". iExists _. iFrame. eauto.
- iIntros (x y z Hxy Hyz ??) "#HE #HL * HE1".
iMod (Hxy with "HE HL * HE1") as (qy) "[HE1 Hclose1]"; first done.
iMod (Hyz with "HE HL * HE1") as (qz) "[HE1 Hclose2]"; first done.
iModIntro. iExists qz. iFrame "HE1". iIntros "HE1".
iApply ("Hclose1" with ">"). iApply "Hclose2". done.
Qed.
Lemma elctx_incl_refl E' : elctx_incl E' E'.
Proof. reflexivity. Qed.
Lemma elctx_incl_nil E' : elctx_incl E' [].
Proof.
iIntros (??) "_ _ * $". iExists 1%Qp.
rewrite /elctx_interp big_sepL_nil. auto.
Qed.
Global Instance elctx_incl_app_proper :
Proper (elctx_incl ==> elctx_incl ==> elctx_incl) app.
Proof.
iIntros (?? HE1 ?? HE2 ??) "#HE #HL *". rewrite {1}/elctx_interp big_sepL_app.
iIntros "[HE1 HE2]".
iMod (HE1 with "HE HL * HE1") as (q1) "[HE1 Hclose1]"; first done.
iMod (HE2 with "HE HL * HE2") as (q2) "[HE2 Hclose2]"; first done.
destruct (Qp_lower_bound q1 q2) as (q & ? & ? & -> & ->).
iModIntro. iExists q. rewrite /elctx_interp !big_sepL_app.
iDestruct "HE1" as "[$ HE1]". iDestruct "HE2" as "[$ HE2]".
iIntros "[HE1' HE2']".
iMod ("Hclose1" with "[$HE1 $HE1']") as "$".
iMod ("Hclose2" with "[$HE2 $HE2']") as "$".
done.
Qed.
Global Instance elctx_incl_cons_proper x :
Proper (elctx_incl ==> elctx_incl) (cons x).
Proof. by apply (elctx_incl_app_proper [_] [_]). Qed.
Lemma elctx_incl_dup E1 :
elctx_incl E1 (E1 ++ E1).
Proof.
iIntros (??) "#HE #HL * [HE1 HE1']".
iModIntro. iExists (qE1 / 2)%Qp.
rewrite /elctx_interp !big_sepL_app. iFrame.
iIntros "[HE1 HE1']". by iFrame.
Qed.
Lemma elctx_sat_incl E1 E2 :
elctx_sat E1 [] E2 elctx_incl E1 E2.
Proof.
iIntros (H12 ??) "#HE #HL * HE1".
iMod (H12 _ 1%Qp with "HE1 []") as (qE2) "[HE2 Hclose]". done.
{ by rewrite /llctx_interp big_sepL_nil. }
iExists qE2. iFrame. iIntros "!> HE2".
by iMod ("Hclose" with "HE2") as "[$ _]".
Qed.
Lemma elctx_incl_lft_alive E1 E2 κ :
lctx_lft_alive E1 [] κ elctx_incl E1 E2 elctx_incl E1 ((κ) :: E2).
Proof.
intros HE2. rewrite (elctx_incl_dup E1).
apply (elctx_incl_app_proper _ [_]); last done.
apply elctx_sat_incl. apply elctx_sat_alive, elctx_sat_nil; first done.
Qed.
Lemma elctx_incl_lft_incl E1 E2 κ κ' :
lctx_lft_incl (E ++ E1) L κ κ' elctx_incl E1 E2
elctx_incl E1 ((κ κ') :: E2).
Proof.
iIntros (Hκκ' HE2 ??) "#HE #HL * HE1".
iDestruct (elctx_interp_persist with "HE1") as "#HE1'".
iDestruct (Hκκ' with "[HE HE1'] HL") as "#Hκκ'".
{ rewrite /elctx_interp_0 big_sepL_app. auto. }
iMod (HE2 with "HE HL * HE1") as (qE2) "[HE2 Hclose']". done.
iExists qE2. rewrite /elctx_interp big_sepL_cons /=. iFrame "∗#".
iIntros "!> [_ HE2']". by iApply "Hclose'".
Qed.
End elctx_incl.
Arguments elctx_incl {_ _ _} _%EL _%LL _%EL _%EL.
(* We first try to solve everything without the merging rules, and
then start from scratch with them.
The reason is that we want we want the search proof search for
[tctx_extract_hasty] to suceed even if the type is an evar, and
merging makes it diverge in this case. *)
Ltac solve_typing :=
(typeclasses eauto with lrust_typing typeclass_instances core; fail) ||
(typeclasses eauto with lrust_typing lrust_typing_merge typeclass_instances core; fail).
Create HintDb lrust_typing discriminated.
Create HintDb lrust_typing_merge discriminated.
Hint Constructors Forall Forall2 elem_of_list : lrust_typing.
Hint Resolve
lctx_lft_incl_relf lctx_lft_incl_static lctx_lft_incl_local'
lctx_lft_incl_external'
lctx_lft_alive_static lctx_lft_alive_local lctx_lft_alive_external
elctx_sat_nil elctx_sat_alive elctx_sat_lft_incl
elctx_incl_refl elctx_incl_nil elctx_incl_lft_alive elctx_incl_lft_incl
: lrust_typing.
Hint Resolve lctx_lft_alive_external' | 100 : lrust_typing.
Hint Opaque elctx_incl elctx_sat lctx_lft_alive lctx_lft_incl : lrust_typing.
Lemma elctx_incl_lft_incl_alive `{invG Σ, lftG Σ} E L E1 E2 κ κ' :
lctx_lft_incl (E ++ E1) L κ κ' elctx_incl E L E1 E2
elctx_incl E L ((κ) :: E1) ((κ') :: E2).
Proof.
move=> ? /elctx_incl_lft_incl -> //.
apply (elctx_incl_app_proper _ _ [_; _] [_]); solve_typing.
Qed.
From lrust.typing Require Import typing.
Set Default Proof Using "Type".
Section get_x.
Context `{typeG Σ}.
Definition get_x : val :=
funrec: <> ["p"] :=
let: "p'" := !"p" in
letalloc: "r" <- "p'" + #0 in
delete [ #1; "p"] ;; "return" ["r"].
Lemma get_x_type :
typed_instruction_ty [] [] [] get_x
(fn (λ α, [α])%EL (λ α, [# box (&uniq{α}Π[int; int])]) (λ α, box (&shr{α} int))).
Proof.
apply type_fn; try apply _. move=> /= α ret p. inv_vec p=>p. simpl_subst.
eapply type_deref; [solve_typing..|by apply read_own_move|done|].
intros p'; simpl_subst.
eapply (type_letalloc_1 (&shr{α}int)); [solve_typing..|]=>r. simpl_subst.
eapply type_delete; [solve_typing..|].
eapply (type_jump [_]); solve_typing.
Qed.
End get_x.
From lrust.typing Require Import typing.
Set Default Proof Using "Type".
Section init_prod.
Context `{typeG Σ}.
Definition init_prod : val :=
funrec: <> ["x"; "y"] :=
let: "x'" := !"x" in let: "y'" := !"y" in
let: "r" := new [ #2] in
"r" + #0 <- "x'";; "r" + #1 <- "y'";;
delete [ #1; "x"] ;; delete [ #1; "y"] ;; "return" ["r"].
Lemma init_prod_type :
typed_instruction_ty [] [] [] init_prod
(fn (λ _, []) (λ _, [# box int; box int]) (λ (_ : ()), box (Π[int;int]))).
Proof.
apply type_fn; try apply _. move=> /= [] ret p. inv_vec p=>x y. simpl_subst.
eapply type_deref; [solve_typing..|apply read_own_move|done|]=>x'. simpl_subst.
eapply type_deref; [solve_typing..|apply read_own_move|done|]=>y'. simpl_subst.
eapply (type_new_subtype (Π[uninit 1; uninit 1])); [solve_typing..|].
intros r. simpl_subst. unfold Z.to_nat, Pos.to_nat; simpl.
eapply (type_assign (own_ptr 2 (uninit 1))); [solve_typing..|by apply write_own|].
eapply type_assign; [solve_typing..|by apply write_own|].
eapply type_delete; [solve_typing..|].
eapply type_delete; [solve_typing..|].
eapply (type_jump [_]); solve_typing.
Qed.
End init_prod.