From f81c0f3a9e4141b9edbbfd0e5b425573cc40b66a Mon Sep 17 00:00:00 2001 From: Jacques-Henri Jourdan <jacques-henri.jourdan@normalesup.org> Date: Mon, 23 Jan 2017 13:39:14 +0100 Subject: [PATCH] Simplify proofs related to unique borrows by making borrows respectfull of iff. --- opam.pins | 2 +- theories/lifetime/lifetime.v | 11 ---- theories/lifetime/lifetime_sig.v | 2 + theories/lifetime/model/accessors.v | 36 +++++++----- theories/lifetime/model/borrow.v | 29 +++++++--- theories/lifetime/model/definitions.v | 4 +- theories/lifetime/model/faking.v | 2 +- theories/lifetime/model/primitive.v | 21 +++++++ theories/lifetime/model/raw_reborrow.v | 20 ++++--- theories/lifetime/model/reborrow.v | 12 ++-- theories/typing/borrow.v | 29 ++++------ theories/typing/lft_contexts.v | 3 +- theories/typing/product_split.v | 15 ++--- theories/typing/type_sum.v | 9 +-- theories/typing/uniq_bor.v | 78 ++++++++------------------ 15 files changed, 136 insertions(+), 137 deletions(-) diff --git a/opam.pins b/opam.pins index 57ff8356..996ed0d8 100644 --- a/opam.pins +++ b/opam.pins @@ -1 +1 @@ -coq-iris https://gitlab.mpi-sws.org/FP/iris-coq 9fa0b57d44cbba40d7bb272b45cc0875bc68940d +coq-iris https://gitlab.mpi-sws.org/FP/iris-coq da3aa7e4497878a70b00f17bf109e18ef2a079d3 diff --git a/theories/lifetime/lifetime.v b/theories/lifetime/lifetime.v index c618222f..bae90946 100644 --- a/theories/lifetime/lifetime.v +++ b/theories/lifetime/lifetime.v @@ -67,17 +67,6 @@ Proof. iModIntro. iNext. iApply ("Hclose" with "* HP []"). by iIntros "!> $". Qed. -Lemma bor_iff (P Q : iProp Σ) E κ : - ↑lftN ⊆ E → - lft_ctx -∗ â–· â–¡ (P ↔ Q) -∗ &{κ}P ={E}=∗ &{κ}Q. -Proof. - iIntros (?) "#LFT #Heq Hb". - iMod (bor_acc_atomic_cons with "LFT Hb") as "[[HP Hclose]|[H†Hclose]]". done. - - iApply ("Hclose" with "[HP] []"). - by iApply "Heq". by iIntros "!>HQ!>"; iApply "Heq". - - iMod "Hclose". by iApply (bor_fake with "LFT"). -Qed. - Lemma bor_persistent P `{!PersistentP P} E κ : ↑lftN ⊆ E → lft_ctx -∗ &{κ}P ={E}=∗ â–· P ∨ [†κ]. diff --git a/theories/lifetime/lifetime_sig.v b/theories/lifetime/lifetime_sig.v index d9f55c4d..a290347a 100644 --- a/theories/lifetime/lifetime_sig.v +++ b/theories/lifetime/lifetime_sig.v @@ -67,9 +67,11 @@ Module Type lifetime_sig. Global Declare Instance bor_ne κ n : Proper (dist n ==> dist n) (bor κ). Global Declare Instance bor_contractive κ : Contractive (bor κ). Global Declare Instance bor_proper κ : Proper ((≡) ==> (≡)) (bor κ). + Parameter bor_iff_proper : ∀ κ P P', â–· â–¡ (P ↔ P') -∗ &{κ}P -∗ &{κ}P'. Global Declare Instance idx_bor_ne κ i n : Proper (dist n ==> dist n) (idx_bor κ i). Global Declare Instance idx_bor_contractive κ i : Contractive (idx_bor κ i). Global Declare Instance idx_bor_proper κ i : Proper ((≡) ==> (≡)) (idx_bor κ i). + Parameter idx_bor_iff_proper : ∀ κ i P P', â–· â–¡ (P ↔ P') -∗ &{κ,i}P -∗ &{κ,i}P'. Global Declare Instance lft_tok_fractional κ : Fractional (λ q, q.[κ])%I. Global Declare Instance lft_tok_as_fractional κ q : diff --git a/theories/lifetime/model/accessors.v b/theories/lifetime/model/accessors.v index 6b53811d..82b9e942 100644 --- a/theories/lifetime/model/accessors.v +++ b/theories/lifetime/model/accessors.v @@ -75,6 +75,7 @@ Lemma idx_bor_acc E q κ i P : â–· P ∗ (â–· P ={E}=∗ idx_bor_own 1 i ∗ q.[κ]). Proof. unfold idx_bor. iIntros (HE) "#LFT [#Hle #Hs] Hbor Htok". + iDestruct "Hs" as (P') "[#HPP' Hs]". iMod (lft_incl_acc with "Hle Htok") as (q') "[Htok Hclose]". solve_ndisj. iInv mgmtN as (A I) "(>HA & >HI & Hinv)" "Hclose'". iDestruct (own_bor_auth with "HI [Hbor]") as %Hκ'. by unfold idx_bor_own. @@ -82,12 +83,13 @@ Proof. /lfts_inv /lft_inv /lft_inv_dead /lft_alive_in lft_inv_alive_unfold. iDestruct "Hinv" as "[[[Hinv >%]|[Hinv >%]] Hclose'']". - iDestruct "Hinv" as (Pb Pi) "(Halive & Hvs & Hinh)". - iMod (bor_open_internal with "Hs Halive Hbor Htok") as "(Halive & Hf & $)". + iMod (bor_open_internal with "Hs Halive Hbor Htok") as "(Halive & Hf & HP')". solve_ndisj. + iDestruct ("HPP'" with "HP'") as "$". iMod ("Hclose'" with "[-Hf Hclose]") as "_". { iExists _, _. iFrame. rewrite big_sepS_later. iApply "Hclose''". iLeft. iFrame "%". iExists _, _. iFrame. } - iIntros "!>HP". clear -HE. + iIntros "!>HP'". iDestruct ("HPP'" with "HP'") as "HP". clear -HE. iInv mgmtN as (A I) "(>HA & >HI & Hinv)" "Hclose'". iDestruct (own_bor_auth with "HI Hf") as %Hκ'. rewrite big_sepS_later big_sepS_elem_of_acc ?elem_of_dom // @@ -116,6 +118,7 @@ Lemma idx_bor_atomic_acc E q κ i P : ([†κ] ∗ |={E∖↑lftN,E}=> idx_bor_own q i). Proof. unfold idx_bor, idx_bor_own. iIntros (HE) "#LFT [#Hle #Hs] Hbor". + iDestruct "Hs" as (P') "[#HPP' Hs]". iInv mgmtN as (A I) "(>HA & >HI & Hinv)" "Hclose'". iDestruct (own_bor_auth with "HI Hbor") as %Hκ'. rewrite big_sepS_later big_sepS_elem_of_acc ?elem_of_dom // @@ -126,9 +129,11 @@ Proof. iDestruct "Halive" as (B) "(Hbox & >Hown & HB)". iDestruct (own_bor_valid_2 with "Hown Hbor") as %[EQB%to_borUR_included _]%auth_valid_discrete_2. - iMod (slice_empty _ _ true with "Hs Hbox") as "[$ Hbox]". + iMod (slice_empty _ _ true with "Hs Hbox") as "[HP' Hbox]". solve_ndisj. by rewrite lookup_fmap EQB. - iMod fupd_intro_mask' as "Hclose"; last iIntros "!>HP". solve_ndisj. + iDestruct ("HPP'" with "HP'") as "$". + iMod fupd_intro_mask' as "Hclose"; last iIntros "!>HP'". solve_ndisj. + iDestruct ("HPP'" with "HP'") as "HP". iMod "Hclose" as "_". iMod (slice_fill _ _ true with "Hs HP Hbox") as "Hbox". solve_ndisj. by rewrite lookup_insert. iFrame. iApply "Hclose'". iExists _, _. iFrame. rewrite big_sepS_later. @@ -151,6 +156,7 @@ Lemma bor_acc_strong E q κ P : Proof. unfold bor, raw_bor. iIntros (HE) "#LFT Hbor Htok". iDestruct "Hbor" as (κ'') "(#Hle & Htmp)". iDestruct "Htmp" as (s'') "(Hbor & #Hs)". + iDestruct "Hs" as (P') "[#HPP' Hs]". iMod (lft_incl_acc with "Hle Htok") as (q') "[Htok Hclose]". solve_ndisj. iInv mgmtN as (A I) "(>HA & >HI & Hinv)" "Hclose'". iDestruct (own_bor_auth with "HI [Hbor]") as %Hκ'. by unfold idx_bor_own. @@ -158,8 +164,9 @@ Proof. /lfts_inv /lft_inv /lft_inv_dead /lft_alive_in lft_inv_alive_unfold. iDestruct "Hinv" as "[[[Hinv >%]|[Hinv >%]] Hclose'']". - iDestruct "Hinv" as (Pb Pi) "(Halive & Hvs & Hinh)". - iMod (bor_open_internal _ _ (κ'', s'') with "Hs Halive Hbor Htok") as "(Halive & Hbor & $)". - solve_ndisj. + iMod (bor_open_internal _ _ (κ'', s'') with "Hs Halive Hbor Htok") + as "(Halive & Hbor & HP')". solve_ndisj. + iDestruct ("HPP'" with "HP'") as "$". iMod ("Hclose'" with "[-Hbor Hclose]") as "_". { iExists _, _. iFrame. rewrite big_sepS_later. iApply "Hclose''". iLeft. iFrame "%". iExists _, _. iFrame. } @@ -176,7 +183,8 @@ Proof. as %[EQB%to_borUR_included _]%auth_valid_discrete_2. iMod (slice_delete_empty _ _ true with "Hs Hbox") as (Pb') "[EQ Hbox]". solve_ndisj. by rewrite lookup_fmap EQB. - iDestruct (add_vs with "EQ Hvs HvsQ") as "Hvs". + iDestruct (add_vs with "EQ Hvs [HvsQ]") as "Hvs". + { iNext. iIntros "HQ H†". iApply "HPP'". iApply ("HvsQ" with "HQ H†"). } iMod (slice_insert_empty _ _ true with "Hbox") as (j) "(% & #Hs' & Hbox)". iMod (own_bor_update_2 with "Hown Hbor") as "Hown". { apply auth_update. etrans. @@ -196,7 +204,8 @@ Proof. { iExists _, _. iFrame. rewrite big_sepS_later /lft_bor_alive. iApply "Hclose''". iLeft. iFrame "%". iExists _, _. iFrame. } iMod ("Hclose" with "Htok") as "$". iExists κ''. iModIntro. - iSplit; first by iApply lft_incl_refl. iExists j. iFrame "∗#". + iSplit; first by iApply lft_incl_refl. iExists j. iFrame. + iExists Q. rewrite -uPred.iff_refl. eauto. + iDestruct "Hinv" as (?) "[Hinv _]". iDestruct "Hinv" as (B ?) "[>Hinv _]". iDestruct (own_bor_valid_2 with "Hinv Hbor") as %[(_ & <- & INCL%option_included)%singleton_included _]%auth_valid_discrete_2. @@ -215,6 +224,7 @@ Lemma bor_acc_atomic_strong E κ P : Proof. iIntros (HE) "#LFT Hbor". rewrite bor_unfold_idx /idx_bor /bor /raw_bor. iDestruct "Hbor" as (i) "((#Hle & #Hs) & Hbor)". + iDestruct "Hs" as (P') "[#HPP' Hs]". iInv mgmtN as (A I) "(>HA & >HI & Hinv)" "Hclose'". iDestruct (own_bor_auth with "HI [Hbor]") as %Hκ'. by unfold idx_bor_own. rewrite big_sepS_later big_sepS_elem_of_acc ?elem_of_dom // @@ -226,10 +236,11 @@ Proof. iDestruct "Halive" as (B) "(Hbox & >Hown & HB)". iDestruct (own_bor_valid_2 with "Hown Hbor") as %[EQB%to_borUR_included _]%auth_valid_discrete_2. - iMod (slice_delete_full _ _ true with "Hs Hbox") as (Pb') "($ & EQ & Hbox)". - solve_ndisj. by rewrite lookup_fmap EQB. + iMod (slice_delete_full _ _ true with "Hs Hbox") as (Pb') "(HP' & EQ & Hbox)". + solve_ndisj. by rewrite lookup_fmap EQB. iDestruct ("HPP'" with "HP'") as "$". iMod fupd_intro_mask' as "Hclose"; last iIntros "!>*HQ HvsQ". solve_ndisj. - iMod "Hclose" as "_". iDestruct (add_vs with "EQ Hvs HvsQ") as "Hvs". + iMod "Hclose" as "_". iDestruct (add_vs with "EQ Hvs [HvsQ]") as "Hvs". + { iNext. iIntros "HQ H†". iApply "HPP'". iApply ("HvsQ" with "HQ H†"). } iMod (slice_insert_full _ _ true with "HQ Hbox") as (j) "(% & #Hs' & Hbox)". solve_ndisj. iMod (own_bor_update_2 with "Hown Hbor") as "Hown". @@ -241,7 +252,7 @@ Proof. rewrite own_bor_op. iDestruct "Hown" as "[Hâ— Hâ—¯]". iMod ("Hclose'" with "[- Hâ—¯]"); last first. { iModIntro. iExists (i.1). iSplit; first by iApply lft_incl_refl. - iExists j. iFrame. done. } + iExists j. iFrame. iExists Q. rewrite -uPred.iff_refl. auto. } iExists _, _. iFrame. rewrite big_sepS_later. iApply "Hclose''". iLeft. iFrame "%". iExists _, _. iFrame. iNext. rewrite -!fmap_delete -fmap_insert -(fmap_insert _ _ _ Bor_in). @@ -281,5 +292,4 @@ Proof. - iLeft. iIntros "!> {$HP} HP". iMod ("Hclose" with "* HP []"); auto. - iRight. by iFrame. Qed. - End accessors. diff --git a/theories/lifetime/model/borrow.v b/theories/lifetime/model/borrow.v index 4fba2a91..1f220cda 100644 --- a/theories/lifetime/model/borrow.v +++ b/theories/lifetime/model/borrow.v @@ -44,7 +44,8 @@ Proof. iMod ("Hclose" with "[HA HI Hclose']") as "_"; [by iExists _, _; iFrame|]. iSplitL "HBâ—¯ HsliceB". + rewrite /bor /raw_bor /idx_bor_own. iExists κ; simpl. - iModIntro. iSplit; first by iApply lft_incl_refl. iExists γB. by iFrame. + iModIntro. iSplit; first by iApply lft_incl_refl. iExists γB. iFrame. + iExists P. rewrite -uPred.iff_refl. auto. + clear -HE. iIntros "!> H†". iInv mgmtN as (A I) "(>HA & >HI & Hinv)" "Hclose". iDestruct ("HIlookup" with "* HI") as %Hκ. @@ -74,6 +75,7 @@ Proof. iIntros (HE) "#LFT Hbor". iInv mgmtN as (A I) "(>HA & >HI & Hinv)" "Hclose". rewrite {1}/bor. iDestruct "Hbor" as (κ') "[#Hκκ' Hbor]". rewrite /raw_bor /idx_bor_own. iDestruct "Hbor" as (s) "[Hbor Hslice]". + iDestruct "Hslice" as (P') "[#HPP' Hslice]". iDestruct (own_bor_auth with "HI Hbor") as %Hκ'. rewrite big_sepS_later big_sepS_elem_of_acc ?elem_of_dom // /lfts_inv /lft_inv /lft_inv_dead /lft_alive_in. simpl. @@ -83,9 +85,16 @@ Proof. iDestruct "H" as (B) "(Hbox & >Hown & HB)". iDestruct (own_bor_valid_2 with "Hown Hbor") as %[EQB%to_borUR_included _]%auth_valid_discrete_2. - iMod (slice_split _ _ true with "Hslice Hbox") - as (γ1 γ2) "(% & % & % & Hs1 & Hs2 & Hbox)"; first solve_ndisj. + iMod (slice_iff _ _ true with "HPP' Hslice Hbox") + as (s' Pb') "(% & #HPbPb' & Hslice & Hbox)"; first solve_ndisj. { by rewrite lookup_fmap EQB. } + iAssert (â–· lft_vs κ' Pb' Pi)%I with "[Hvs]" as "Hvs". + { iNext. iApply (lft_vs_cons false with "[] Hvs"). iIntros "[$ ?]!>". + by iApply "HPbPb'". } + iMod (slice_split _ _ true with "Hslice Hbox") + as (γ1 γ2) "(Hγ1 & Hγ2 & % & Hs1 & Hs2 & Hbox)"; first solve_ndisj. + { by rewrite lookup_insert. } + rewrite delete_insert //. iDestruct "Hγ1" as %Hγ1. iDestruct "Hγ2" as %Hγ2. iMod (own_bor_update_2 with "Hown Hbor") as "Hbor". { etrans; last etrans. - apply auth_update_dealloc. by apply delete_singleton_local_update, _. @@ -100,11 +109,13 @@ Proof. -fmap_None -lookup_fmap fmap_delete //. } rewrite !own_bor_op. iDestruct "Hbor" as "[[Hâ— Hâ—¯2] Hâ—¯1]". iAssert (&{κ}P)%I with "[Hâ—¯1 Hs1]" as "$". - { rewrite /bor /raw_bor /idx_bor_own. iExists κ'. iFrame "#". iExists γ1. iFrame. } + { rewrite /bor /raw_bor /idx_bor_own. iExists κ'. iFrame "#". iExists γ1. + iFrame. iExists P. rewrite -uPred.iff_refl. auto. } iAssert (&{κ}Q)%I with "[Hâ—¯2 Hs2]" as "$". - { rewrite /bor /raw_bor /idx_bor_own. iExists κ'. iFrame "#". iExists γ2. iFrame. } + { rewrite /bor /raw_bor /idx_bor_own. iExists κ'. iFrame "#". iExists γ2. + iFrame. iExists Q. rewrite -uPred.iff_refl. auto. } iApply "Hclose". iExists A, I. iFrame. rewrite big_sepS_later. - iApply "Hclose'". iLeft. iFrame "%". iExists Pb, Pi. iFrame. iExists _. + iApply "Hclose'". iLeft. iFrame "%". iExists Pb', Pi. iFrame. iExists _. rewrite /to_borUR -!fmap_delete -!fmap_insert. iFrame "Hbox Hâ—". rewrite !big_sepM_insert /=. + by rewrite left_id -(big_sepM_delete _ _ _ _ EQB). @@ -131,6 +142,8 @@ Proof. done. by apply gmultiset_union_subseteq_r. iInv mgmtN as (A I) "(>HA & >HI & Hinv)" "Hclose". unfold raw_bor, idx_bor_own. iDestruct "Hbor1" as (j1) "[Hbor1 Hslice1]". iDestruct "Hbor2" as (j2) "[Hbor2 Hslice2]". + iDestruct "Hslice1" as (P') "[#HPP' Hslice1]". + iDestruct "Hslice2" as (Q') "[#HQQ' Hslice2]". iDestruct (own_bor_auth with "HI Hbor1") as %Hκ'. rewrite big_sepS_later big_sepS_elem_of_acc ?elem_of_dom // /lfts_inv /lft_inv /lft_inv_dead /lft_alive_in. simpl. @@ -166,7 +179,8 @@ Proof. iAssert (&{κ}(P ∗ Q))%I with "[Hâ—¯ Hslice]" as "$". { rewrite /bor /raw_bor /idx_bor_own. iExists (κ1 ∪ κ2). iSplit; first by iApply (lft_incl_glb with "Hκ1 Hκ2"). - iExists γ. iFrame. } + iExists γ. iFrame. iExists _. iFrame. iNext. iAlways. + by iSplit; iIntros "[HP HQ]"; iSplitL "HP"; (iApply "HPP'" || iApply "HQQ'"). } iApply "Hclose". iExists A, I. iFrame. rewrite big_sepS_later. iApply "Hclose'". iLeft. iFrame "%". iExists Pb, Pi. iFrame. iExists _. rewrite /to_borUR -!fmap_delete -!fmap_insert. iFrame "Hbox Hâ—". @@ -182,5 +196,4 @@ Proof. iRight. iSplit; last by auto. iExists _. iFrame. } unfold bor. iExists _. iFrame. iApply (lft_incl_glb with "Hκ1 Hκ2"). Qed. - End borrow. diff --git a/theories/lifetime/model/definitions.v b/theories/lifetime/model/definitions.v index d5677a85..e4a59714 100644 --- a/theories/lifetime/model/definitions.v +++ b/theories/lifetime/model/definitions.v @@ -183,9 +183,9 @@ Section defs. Definition idx_bor_own (q : frac) (i : bor_idx) : iProp Σ := own_bor (i.1) (â—¯ {[ i.2 := (q, to_agree Bor_in) ]}). Definition idx_bor (κ : lft) (i : bor_idx) (P : iProp Σ) : iProp Σ := - (lft_incl κ (i.1) ∗ slice borN (i.2) P)%I. + (lft_incl κ (i.1) ∗ ∃ P', â–· â–¡ (P' ↔ P) ∗ slice borN (i.2) P')%I. Definition raw_bor (κ : lft) (P : iProp Σ) : iProp Σ := - (∃ s : slice_name, idx_bor_own 1 (κ, s) ∗ slice borN s P)%I. + (∃ s : slice_name, idx_bor_own 1 (κ, s) ∗ ∃ P', â–· â–¡ (P' ↔ P) ∗ slice borN s P')%I. Definition bor (κ : lft) (P : iProp Σ) : iProp Σ := (∃ κ', lft_incl κ κ' ∗ raw_bor κ' P)%I. End defs. diff --git a/theories/lifetime/model/faking.v b/theories/lifetime/model/faking.v index 07e170e1..95287fd0 100644 --- a/theories/lifetime/model/faking.v +++ b/theories/lifetime/model/faking.v @@ -90,7 +90,7 @@ Proof. by do 2 eapply lookup_to_gmap_None. } rewrite /bor /raw_bor /idx_bor_own /=. iModIntro. iSplitR "Hâ—¯". - iExists ({[γ]} ∪ B), (P ∗ Pinh)%I. rewrite !to_gmap_union_singleton. by iFrame. - - iExists γ. by iFrame. + - iExists γ. iFrame. iExists P. rewrite -uPred.iff_refl. eauto. Qed. Lemma raw_bor_fake' E κ P : diff --git a/theories/lifetime/model/primitive.v b/theories/lifetime/model/primitive.v index 84ddb63f..8d99817c 100644 --- a/theories/lifetime/model/primitive.v +++ b/theories/lifetime/model/primitive.v @@ -373,6 +373,21 @@ Lemma lft_incl_intro κ κ' : Proof. reflexivity. Qed. (** Basic rules about borrows *) +Lemma raw_bor_iff_proper i P P' : â–· â–¡ (P ↔ P') -∗ raw_bor i P -∗ raw_bor i P'. +Proof. + iIntros "#HPP' HP". unfold raw_bor. iDestruct "HP" as (s) "[HiP HP]". + iExists s. iFrame. iDestruct "HP" as (P0) "[#Hiff ?]". iExists P0. iFrame. + iNext. iAlways. iSplit; iIntros. + by iApply "HPP'"; iApply "Hiff". by iApply "Hiff"; iApply "HPP'". +Qed. + +Lemma idx_bor_iff_proper κ i P P' : â–· â–¡ (P ↔ P') -∗ &{κ,i}P -∗ &{κ,i}P'. +Proof. + unfold idx_bor. iIntros "#HPP' [$ HP]". iDestruct "HP" as (P0) "[#HP0P Hs]". + iExists P0. iFrame. iNext. iAlways. iSplit; iIntros. + by iApply "HPP'"; iApply "HP0P". by iApply "HP0P"; iApply "HPP'". +Qed. + Lemma bor_unfold_idx κ P : &{κ}P ⊣⊢ ∃ i, &{κ,i}P ∗ idx_bor_own 1 i. Proof. rewrite /bor /raw_bor /idx_bor /bor_idx. iSplit. @@ -382,6 +397,12 @@ Proof. iExists κ'. iFrame. iExists s. by iFrame. Qed. +Lemma bor_iff_proper κ P P' : â–· â–¡ (P ↔ P') -∗ &{κ}P -∗ &{κ}P'. +Proof. + rewrite !bor_unfold_idx. iIntros "#HPP' HP". iDestruct "HP" as (i) "[??]". + iExists i. iFrame. by iApply (idx_bor_iff_proper with "HPP'"). +Qed. + Lemma bor_shorten κ κ' P : κ ⊑ κ' -∗ &{κ'}P -∗ &{κ}P. Proof. rewrite /bor. iIntros "#Hκκ'". iDestruct 1 as (i) "[#? ?]". diff --git a/theories/lifetime/model/raw_reborrow.v b/theories/lifetime/model/raw_reborrow.v index 7dbf4a55..a3be4ed6 100644 --- a/theories/lifetime/model/raw_reborrow.v +++ b/theories/lifetime/model/raw_reborrow.v @@ -62,9 +62,10 @@ Proof. { apply auth_update_alloc, (alloc_singleton_local_update _ j (1%Qp, to_agree Bor_in)); last done. rewrite /to_borUR lookup_fmap. by rewrite HBj. } - iModIntro. iExists (P ∗ Pb)%I. rewrite /Iinv. iFrame "HI". iFrame. + iModIntro. iExists (P ∗ Pb)% I. rewrite /Iinv. iFrame "HI". iFrame. iSplitL "Hj". - { rewrite /raw_bor /idx_bor_own. iExists j. by iFrame. } + { rewrite /raw_bor /idx_bor_own. iExists j. iFrame. iExists P. + rewrite -uPred.iff_refl. auto. } iSplitL "Hbox HBâ— HB". { rewrite /lft_bor_alive. iNext. iExists (<[j:=Bor_in]> B). rewrite /to_borUR !fmap_insert big_sepM_insert //. iFrame. @@ -125,11 +126,14 @@ Proof. iDestruct (big_sepS_elem_of_acc _ _ κ with "Hinv") as "[Hinv Hclose]". { rewrite elem_of_difference elem_of_dom not_elem_of_singleton. done. } rewrite {1}/raw_bor. iDestruct "Hraw" as (i) "[Hi #Hislice]". - iMod (raw_bor_unnest with "[$HI $Hinv] Hi Hislice Hκalive' [Hvs]") as (Pb') "([HI Hκ] & ? & ? & ?)"; [done..| |]. + iDestruct "Hislice" as (P') "[#HPP' Hislice]". + iMod (raw_bor_unnest with "[$HI $Hinv] Hi Hislice Hκalive' [Hvs]") + as (Pb') "([HI Hκ] & ? & ? & ?)"; [done..| |]. { iApply (lft_vs_cons with "[]"); last done. iIntros "[$ [>? $]]". iModIntro. iNext. rewrite /raw_bor. - iExists i. by iFrame. } - iExists Pb'. iModIntro. iFrame. iNext. by iApply "Hclose". + iExists i. iFrame. iExists _. iFrame "#". } + iExists Pb'. iModIntro. iFrame. iSplitL "Hclose Hκ". by iApply "Hclose". + by iApply (raw_bor_iff_proper with "HPP'"). Qed. Lemma raw_rebor E κ κ' P : @@ -156,6 +160,7 @@ Proof. iSplit; last done. iExists Pi. by iFrame. } rewrite lft_inv_alive_unfold; iDestruct "Hκinv'" as (Pb Pi) "(Hbor & Hvs & Hinh)". rewrite {1}/raw_bor. iDestruct "Hκ" as (i) "[Hi #Hislice]". + iDestruct "Hislice" as (P') "[#HPP' Hislice]". iMod (lft_inh_extend _ _ (idx_bor_own 1 (κ, i)) with "Hinh") as "(Hinh & HIlookup & Hinh_close)"; first solve_ndisj. iDestruct (own_bor_auth with "HI [Hi]") as %?. @@ -164,8 +169,9 @@ Proof. { by rewrite elem_of_difference elem_of_dom not_elem_of_singleton. } iMod (raw_bor_unnest _ true _ _ _ (idx_bor_own 1 (κ, i) ∗ Pi)%I with "[$HI $Hκ] Hi Hislice Hbor [Hvs]") - as (Pb') "([HI Hκ] & $ & Halive & Hvs)"; [solve_ndisj|done|done|..]. + as (Pb') "([HI Hκ] & HP' & Halive & Hvs)"; [solve_ndisj|done|done|..]. { iNext. by iApply lft_vs_frame. } + iDestruct (raw_bor_iff_proper with "HPP' HP'") as "$". iDestruct ("Hκclose" with "Hκ") as "Hinv". iMod ("Hclose" with "[HA HI Hinv Halive Hinh Hvs]") as "_". { iNext. rewrite {2}/lfts_inv. iExists A, I. iFrame "HA HI". @@ -190,6 +196,6 @@ Proof. iApply (big_sepS_delete _ _ κ'); first by apply elem_of_dom. iFrame "Hinv". rewrite /lft_inv /lft_inv_dead. iRight. iSplit; last done. iExists Pi'. iFrame. } - iModIntro. rewrite /raw_bor. iExists i. by iFrame. + iModIntro. rewrite /raw_bor. iExists i. iFrame. iExists _. auto. Qed. End rebor. diff --git a/theories/lifetime/model/reborrow.v b/theories/lifetime/model/reborrow.v index 59d91f25..ad98e4d8 100644 --- a/theories/lifetime/model/reborrow.v +++ b/theories/lifetime/model/reborrow.v @@ -35,7 +35,7 @@ Proof. by iApply (lft_incl_trans with "H⊑"). - iIntros "Hκ†". iMod ("Hclose" with "[Hκ†]") as "Hκ''". { iApply lft_dead_or; auto. } - iModIntro. rewrite /bor. eauto. + iModIntro. rewrite /bor. eauto. Qed. Lemma bor_unnest E κ κ' P : @@ -70,13 +70,16 @@ Proof. iApply (lft_incl_dead with "[] H†"); first done. by iApply (lft_incl_mono with "Hκ⊑"). } rewrite {1}/raw_bor /idx_bor_own /=; iDestruct "Hκ" as (i) "[Hi #Hislice]". + iDestruct "Hislice" as (P') "[#HPP' Hislice]". rewrite lft_inv_alive_unfold; iDestruct "Hinv'" as (Pb Pi) "(Halive & Hvs & Hinh)". rewrite /lft_bor_alive; iDestruct "Halive" as (B) "(Hbox & >HBâ— & HB)". iDestruct (own_bor_valid_2 with "HBâ— Hi") as %[HB%to_borUR_included _]%auth_valid_discrete_2. - iMod (slice_delete_full _ _ true with "Hislice Hbox") as (Pb') "(HP & #EQ & Hbox)"; first solve_ndisj. - { by rewrite lookup_fmap HB. } + iMod (slice_delete_full _ _ true with "Hislice Hbox") + as (Pb') "(HP & #EQ & Hbox)"; first solve_ndisj. + { by rewrite lookup_fmap HB. } + iDestruct ("HPP'" with "HP") as "HP". iMod (own_bor_update_2 with "HBâ— Hi") as "HBâ—". { apply auth_update_dealloc, delete_singleton_local_update. apply _. } iMod (fupd_intro_mask') as "Hclose'"; last iModIntro; first solve_ndisj. @@ -90,7 +93,7 @@ Proof. [solve_ndisj|exact: gmultiset_union_subseteq_l|done| |]. { (* TODO: Use iRewrite supporting contractive rewriting. *) iApply (lft_vs_cons with "[]"); last done. - iIntros "[$ Hbor]". iModIntro. iNext. by iRewrite "EQ". } + iIntros "[$ [Hbor HPb']]". iModIntro. iNext. iRewrite "EQ". iFrame. by iApply "HPP'". } iMod ("Hclose" with "[-HP]") as "_". { iNext. simpl. rewrite /lfts_inv. iExists A, I. iFrame. rewrite (big_sepS_delete _ (dom _ I) κ''); last by apply elem_of_dom. @@ -99,5 +102,4 @@ Proof. iModIntro. rewrite /bor. iExists κ''. iFrame. subst κ''. by iApply (lft_incl_mono with "Hκ⊑"). Qed. - End reborrow. diff --git a/theories/typing/borrow.v b/theories/typing/borrow.v index 0d04c3ed..cc94d5a1 100644 --- a/theories/typing/borrow.v +++ b/theories/typing/borrow.v @@ -20,8 +20,8 @@ Section borrow. iDestruct "H" as ([[]|]) "[% Hown]"; try iDestruct "Hown" as "[]". iDestruct "Hown" as "[Hmt ?]". iMod (bor_create with "LFT Hmt") as "[Hbor Hext]". done. iModIntro. iSplitL "Hbor". - - iExists _. iSplit. done. iExists _. erewrite <-uPred.iff_refl. eauto. - - iExists _. iSplit. done. iIntros "H†". by iMod ("Hext" with "H†") as "$". + - iExists _. auto. + - iExists _. iSplit. done. by iFrame. Qed. Lemma tctx_extract_hasty_borrow E L p n ty ty' κ T : @@ -51,18 +51,17 @@ Section borrow. rewrite tctx_interp_singleton. iMod (Hκ with "HE HL") as (q) "[Htok Hclose]"; first set_solver. wp_bind p. iApply (wp_hasty with "Hp"). iIntros ([[]|]) "_ Hown"; - (try iDestruct "Hown" as "[]"). iDestruct "Hown" as (P) "[#HPiff HP]". - iMod (bor_iff with "LFT [] HP") as "H↦". set_solver. by eauto. - iMod (bor_acc_cons with "LFT H↦ Htok") as "[H↦ Hclose']". done. + (try iDestruct "Hown" as "[]"). + iMod (bor_acc_cons with "LFT Hown Htok") as "[H↦ Hclose']". done. iDestruct "H↦" as ([|[[|l'|]|][]]) "[>H↦ Hown]"; try iDestruct "Hown" as ">[]". iDestruct "Hown" as "[Hown H†]". rewrite heap_mapsto_vec_singleton. wp_read. - iMod ("Hclose'" with "*[H↦ Hown H†][]") as "[Hbor Htok]"; last 1 first. + iMod ("Hclose'" $! (l↦#l' ∗ freeable_sz n (ty_size ty) l' ∗ _)%I + with "*[H↦ Hown H†][]") as "[Hbor Htok]"; last 1 first. - iMod (bor_sep with "LFT Hbor") as "[_ Hbor]". done. - iMod (bor_sep _ _ _ (l' ↦∗: ty_own ty tid) with "LFT Hbor") as "[_ Hbor]". done. + iMod (bor_sep with "LFT Hbor") as "[_ Hbor]". done. iMod ("Hclose" with "Htok") as "($ & $)". - rewrite tctx_interp_singleton tctx_hasty_val' //. iExists _. - erewrite <-uPred.iff_refl. auto. - - iFrame "H↦ H†Hown". + by rewrite tctx_interp_singleton tctx_hasty_val' //=. + - iFrame. - iIntros "!>(?&?&?)!>". iNext. iExists _. rewrite -heap_mapsto_vec_singleton. iFrame. by iFrame. Qed. @@ -115,15 +114,11 @@ Section borrow. { by iApply elctx_interp_persist. } { by iApply llctx_interp_persist. } iMod (Hκ with "HE HL") as (q) "[Htok Hclose]"; first set_solver. wp_bind p. iApply (wp_hasty with "Hp"). iIntros ([[]|]) "_ Hown"; - try iDestruct "Hown" as "[]". iDestruct "Hown" as (P) "[#HPiff HP]". - iMod (bor_iff with "LFT [] HP") as "H↦". set_solver. by eauto. - iMod (bor_exists with "LFT H↦") as (vl) "Hbor". done. + try iDestruct "Hown" as "[]". + iMod (bor_exists with "LFT Hown") as (vl) "Hbor". done. iMod (bor_sep with "LFT Hbor") as "[H↦ Hbor]". done. destruct vl as [|[[]|][]]; try by iMod (bor_persistent_tok with "LFT Hbor Htok") as "[>[] _]". - iMod (bor_exists with "LFT Hbor") as (P') "Hbor". done. - iMod (bor_sep with "LFT Hbor") as "[H Hbor]". done. - iMod (bor_persistent_tok with "LFT H Htok") as "[#HP'iff Htok]". done. iMod (bor_acc with "LFT H↦ Htok") as "[>H↦ Hclose']". done. rewrite heap_mapsto_vec_singleton. iApply (wp_fupd_step _ (⊤∖↑lftN) with "[Hbor]"); try done. @@ -132,7 +127,7 @@ Section borrow. iMod ("Hclose'" with "[H↦]") as "[H↦ Htok]"; first by auto. iMod ("Hclose" with "Htok") as "($ & $)". rewrite tctx_interp_singleton tctx_hasty_val' //. - iExists _. iSplitR; first by auto. iApply (bor_shorten with "[] Hbor"). + iApply (bor_shorten with "[] Hbor"). iApply (lft_incl_glb with "Hincl"). iApply lft_incl_refl. Qed. diff --git a/theories/typing/lft_contexts.v b/theories/typing/lft_contexts.v index 23c75dd3..7f91f578 100644 --- a/theories/typing/lft_contexts.v +++ b/theories/typing/lft_contexts.v @@ -158,7 +158,8 @@ Section lft_contexts. Proof. iIntros "#LFT Hκ". rewrite /llctx_elt_interp /=. (* TODO: Why is this unfold necessary? *) iDestruct "Hκ" as (κ) "(% & Hκ & _)". - iMod (bor_create _ κ2 with "LFT [Hκ]") as "[Hκ _]"; first done; first by iFrame. + iMod (bor_create _ κ2 (qL).[κ] with "LFT [Hκ]") as "[Hκ _]"; + first done; first by iFrame. iMod (bor_fracture (λ q, (qL * q).[_])%I with "LFT [Hκ]") as "#Hκ"; first done. { rewrite Qp_mult_1_r. done. } iModIntro. subst κ1. iSplit. diff --git a/theories/typing/product_split.v b/theories/typing/product_split.v index fc08cf18..a47facfe 100644 --- a/theories/typing/product_split.v +++ b/theories/typing/product_split.v @@ -146,12 +146,9 @@ Section product_split. iIntros (tid q1 q2) "#LFT $ $ H". rewrite tctx_interp_singleton tctx_interp_cons tctx_interp_singleton. iDestruct "H" as ([[]|]) "[Hp H]"; try iDestruct "H" as "[]". iDestruct "Hp" as %Hp. - iDestruct "H" as (P) "[#HPiff HP]". - iMod (bor_iff with "LFT [] HP") as "Hown". set_solver. by eauto. - rewrite /= split_prod_mt. iMod (bor_sep with "LFT Hown") as "[H1 H2]". + rewrite /= split_prod_mt. iMod (bor_sep with "LFT H") as "[H1 H2]". set_solver. rewrite /tctx_elt_interp /=. - iSplitL "H1"; iExists _; (iSplitR; first by rewrite Hp); - iExists _; erewrite <-uPred.iff_refl; auto. + iSplitL "H1"; iExists _; (iSplitR; first by rewrite Hp); auto. Qed. Lemma tctx_merge_uniq_prod2 E L p κ ty1 ty2 : @@ -162,13 +159,9 @@ Section product_split. rewrite tctx_interp_singleton tctx_interp_cons tctx_interp_singleton. iDestruct "H" as "[H1 H2]". iDestruct "H1" as ([[]|]) "[Hp1 H1]"; try iDestruct "H1" as "[]". iDestruct "Hp1" as %Hp1. - iDestruct "H1" as (P) "[#HPiff HP]". - iMod (bor_iff with "LFT [] HP") as "Hown1". set_solver. by eauto. iDestruct "H2" as (v2) "(Hp2 & H2)". rewrite /= Hp1. iDestruct "Hp2" as %[=<-]. - iDestruct "H2" as (Q) "[#HQiff HQ]". - iMod (bor_iff with "LFT [] HQ") as "Hown2". set_solver. by eauto. - iExists #l. iFrame "%". iExists _. erewrite <-uPred.iff_refl; auto. iSplitR. done. - rewrite split_prod_mt. iApply (bor_combine with "LFT Hown1 Hown2"). set_solver. + iExists #l. iFrame "%". iMod (bor_combine with "LFT H1 H2") as "H". set_solver. + by rewrite /= split_prod_mt. Qed. Lemma uniq_is_ptr κ ty tid (vl : list val) : diff --git a/theories/typing/type_sum.v b/theories/typing/type_sum.v index 419447bb..2d21fb76 100644 --- a/theories/typing/type_sum.v +++ b/theories/typing/type_sum.v @@ -66,9 +66,8 @@ Section case. iIntros (Halive Hel) "!#". iIntros (tid qE) "#HEAP #LFT Hna HE HL HC HT". wp_bind p. rewrite tctx_interp_cons. iDestruct "HT" as "[Hp HT]". iApply (wp_hasty with "Hp"). iIntros ([[]|] Hv) "Hp"; try iDestruct "Hp" as "[]". - iDestruct "Hp" as (P) "[HP Hb]". iMod (bor_iff with "LFT HP Hb") as "Hb". done. iMod (Halive with "HE HL") as (q) "[Htok Hclose]". done. - iMod (bor_acc_cons with "LFT Hb Htok") as "[H↦ Hclose']". done. + iMod (bor_acc_cons with "LFT Hp Htok") as "[H↦ Hclose']". done. iDestruct "H↦" as (vl) "[H↦ Hown]". iDestruct "Hown" as (i vl' vl'') "(>% & >EQlen & Hown)". subst. iDestruct "EQlen" as %[=EQlen]. @@ -90,8 +89,7 @@ Section case. rewrite /= -EQlen !app_length EQlenvl' EQlenvl'2 nth_lookup EQty /=. auto. } iMod ("Hclose" with "Htok") as "[HE HL]". iApply (Hety with "HEAP LFT Hna HE HL HC"). - rewrite !tctx_interp_cons !tctx_hasty_val' /= ?Hv //. iFrame "HT". - iExists _. erewrite <-uPred.iff_refl. auto. + rewrite !tctx_interp_cons !tctx_hasty_val' /= ?Hv //. iFrame. - iMod ("Hclose'" with "* [H↦i H↦vl' H↦vl'' Hown] []") as "[Hb Htok]"; [|by iIntros "!>$"|]. { iExists (#i::vl'++vl''). @@ -99,8 +97,7 @@ Section case. iExists i, vl', vl''. rewrite nth_lookup EQty. auto. } iMod ("Hclose" with "Htok") as "[HE HL]". iApply (Hety with "HEAP LFT Hna HE HL HC"). - rewrite !tctx_interp_cons !tctx_hasty_val' /= ?Hv //. iFrame "HT". - iExists _. erewrite <-uPred.iff_refl. auto. + rewrite !tctx_interp_cons !tctx_hasty_val' /= ?Hv //. iFrame. Qed. Lemma type_case_uniq E L C T T' p κ tyl el : diff --git a/theories/typing/uniq_bor.v b/theories/typing/uniq_bor.v index 5a40d780..e9292f81 100644 --- a/theories/typing/uniq_bor.v +++ b/theories/typing/uniq_bor.v @@ -11,17 +11,9 @@ Section uniq_bor. Program Definition uniq_bor (κ:lft) (ty:type) := {| ty_size := 1; - (* We quantify over [P]s so that the Proper lemma - (wrt. subtyping) works without an update. - - An obvious alternative definition would be to allow - an update in the ownership here, i.e. `|={lftE}=> &{κ} P`. - The trouble with this definition is that bor_unnest as proven is too - weak. The original unnesting with open borrows was strong enough. *) ty_own tid vl := match vl return _ with - | [ #(LitLoc l) ] => - ∃ P, â–· â–¡ (P ↔ l ↦∗: ty.(ty_own) tid) ∗ &{κ} P + | [ #(LitLoc l) ] => &{κ} l ↦∗: ty.(ty_own) tid | _ => False end%I; ty_shr κ' tid l := @@ -37,21 +29,16 @@ Section uniq_bor. iMod (bor_exists with "LFT Hshr") as ([|[[|l'|]|][]]) "Hb"; first set_solver; (iMod (bor_sep with "LFT Hb") as "[Hb1 Hb2]"; first set_solver); try (iMod (bor_persistent_tok with "LFT Hb2 Htok") as "[>[] _]"; set_solver). - iMod (bor_exists with "LFT Hb2") as (P) "Hb2". set_solver. - iMod (bor_sep with "LFT Hb2") as "[H Hb2]". set_solver. - iMod (bor_persistent_tok with "LFT H Htok") as "[#HPiff $]". set_solver. - iExists l'. subst. rewrite heap_mapsto_vec_singleton. + iFrame. iExists l'. subst. rewrite heap_mapsto_vec_singleton. iMod (bor_fracture (λ q, l ↦{q} #l')%I with "LFT Hb1") as "$". set_solver. rewrite {1}bor_unfold_idx. iDestruct "Hb2" as (i) "[#Hpb Hpbown]". iMod (inv_alloc shrN _ (idx_bor_own 1 i ∨ ty_shr ty (κ∪κ') tid l')%I with "[Hpbown]") as "#Hinv"; first by eauto. iIntros "!> !# * % Htok". iMod (inv_open with "Hinv") as "[INV Hclose]". set_solver. iDestruct "INV" as "[>Hbtok|#Hshr]". - - iMod (bor_unnest _ _ _ P with "LFT [Hbtok]") as "Hb". solve_ndisj. + - iMod (bor_unnest with "LFT [Hbtok]") as "Hb". solve_ndisj. { iApply bor_unfold_idx. eauto. } iModIntro. iNext. iMod "Hb". - iMod (bor_iff with "LFT [] Hb") as "Hb". solve_ndisj. - { by eauto. } iMod (ty.(ty_share) with "LFT Hb Htok") as "[#Hshr $]". solve_ndisj. iMod ("Hclose" with "[]") as "_"; auto. - iMod ("Hclose" with "[]") as "_". by eauto. @@ -76,17 +63,13 @@ Section uniq_bor. Global Instance uniq_mono E L : Proper (flip (lctx_lft_incl E L) ==> eqtype E L ==> subtype E L) uniq_bor. Proof. - intros κ1 κ2 Hκ ty1 ty2 [Hty1 Hty2]. iIntros. iSplit; first done. - iDestruct (Hty1 with "* [] [] []") as "(_ & #Ho1 & #Hs1)"; [done..|clear Hty1]. - iDestruct (Hty2 with "* [] [] []") as "(_ & #Ho2 & #Hs2)"; [done..|clear Hty2]. - iDestruct (Hκ with "[] []") as "#Hκ"; [done..|]. - iSplit; iAlways. + intros κ1 κ2 Hκ ty1 ty2 Hty%eqtype_unfold. iIntros. iSplit; first done. + iDestruct (Hty with "* [] [] []") as "(_ & #Ho & #Hs)"; [done..|clear Hty]. + iDestruct (Hκ with "[] []") as "#Hκ"; [done..|]. iSplit; iAlways. - iIntros (? [|[[]|][]]) "H"; try iDestruct "H" as "[]". - iDestruct "H" as (P) "[#HPiff Hown]". iExists _. - iSplitR; last by iApply (bor_shorten with "Hκ"). iNext. - iIntros "!#". iSplit; iIntros "H". - + iDestruct ("HPiff" with "H") as (vl) "[??]". iExists vl. iFrame. by iApply "Ho1". - + iDestruct "H" as (vl) "[??]". iApply "HPiff". iExists vl. iFrame. by iApply "Ho2". + iApply (bor_shorten with "Hκ"). iApply (bor_iff_proper with "[] H"). + iSplit; iIntros "!>!# H"; iDestruct "H" as (vl) "[??]"; + iExists vl; iFrame; by iApply "Ho". - iIntros (κ ??) "H". iAssert (κ2 ∪ κ ⊑ κ1 ∪ κ)%I as "#Hincl'". { iApply (lft_incl_glb with "[] []"). - iApply (lft_incl_trans with "[] Hκ"). iApply lft_le_incl. @@ -96,7 +79,7 @@ Section uniq_bor. iMod (lft_incl_acc with "Hincl' Htok") as (q') "[Htok Hclose]"; first set_solver. iMod ("Hupd" with "* [%] Htok") as "Hupd'"; try done. iModIntro. iNext. iMod "Hupd'" as "[H Htok]". iMod ("Hclose" with "Htok") as "$". - iApply (ty_shr_mono with "[] Hincl'"); [done..|]. by iApply "Hs1". + iApply (ty_shr_mono with "[] Hincl'"); [done..|]. by iApply "Hs". Qed. Global Instance uniq_mono_flip E L : Proper (lctx_lft_incl E L ==> eqtype E L ==> flip (subtype E L)) uniq_bor. @@ -119,11 +102,8 @@ Section uniq_bor. Send ty → Send (uniq_bor κ ty). Proof. iIntros (Hsend tid1 tid2 [|[[]|][]]) "H"; try iDestruct "H" as "[]". - iDestruct "H" as (P) "[#HPiff H]". iExists _. iFrame. iNext. iAlways. iSplit. - - iIntros "HP". iApply (heap_mapsto_pred_wand with "[HP]"). - { by iApply "HPiff". } { iIntros (vl). by iApply Hsend. } - - iIntros "HP". iApply "HPiff". iApply (heap_mapsto_pred_wand with "HP"). - iIntros (vl). by iApply Hsend. + iApply (bor_iff_proper with "[] H"). iNext. iAlways. iApply uPred.equiv_iff. + do 3 f_equiv. iSplit; iIntros "."; by iApply Hsend. Qed. Global Instance uniq_sync κ ty : @@ -157,9 +137,7 @@ Section typing. iMod (Hκ with "HE HL") as (q) "[Htok Hclose]"; [try done..|]. rewrite !tctx_interp_singleton /=. iDestruct "Huniq" as ([[]|]) "[% Huniq]"; try iDestruct "Huniq" as "[]". - iDestruct "Huniq" as (P) "[#HPiff HP]". - iMod (bor_iff with "LFT [] HP") as "H↦". set_solver. by eauto. - iMod (ty.(ty_share) with "LFT H↦ Htok") as "[Hown Htok]"; [solve_ndisj|]. + iMod (ty.(ty_share) with "LFT Huniq Htok") as "[Hown Htok]"; [solve_ndisj|]. iMod ("Hclose" with "Htok") as "[$ $]". iExists _. by iFrame "%∗". Qed. @@ -172,13 +150,9 @@ Section typing. iDestruct (llctx_interp_persist with "HL") as "#HL'". iFrame "HE HL". iDestruct (Hκκ' with "HE' HL'") as "Hκκ'". rewrite tctx_interp_singleton tctx_interp_cons tctx_interp_singleton. - iDestruct "H" as ([[]|]) "[% Hown]"; try iDestruct "Hown" as "[]". - iDestruct "Hown" as (P) "[#Hiff Hb]". - iMod (bor_iff with "LFT [] Hb") as "Hb". done. by eauto. - iMod (rebor with "LFT Hκκ' Hb") as "[Hb Hext]". done. iModIntro. iSplitL "Hb". - - iExists _. iSplit. done. iExists _. erewrite <-uPred.iff_refl. eauto. - - iExists _. iSplit. done. iIntros "#H†". iMod ("Hext" with "H†") as "Hb". - iExists _. erewrite <-uPred.iff_refl. eauto. + iDestruct "H" as ([[]|]) "[% Hb]"; try iDestruct "Hb" as "[]". + iMod (rebor with "LFT Hκκ' Hb") as "[Hb Hext]". done. iModIntro. + iSplitL "Hb"; iExists _; auto. Qed. (* When sharing during extraction, we do the (arbitrary) choice of @@ -224,32 +198,28 @@ Section typing. Copy ty → lctx_lft_alive E L κ → typed_read E L (&uniq{κ}ty) ty (&uniq{κ}ty). Proof. iIntros (Hcopy Halive) "!#". iIntros ([[]|] tid F qE qL ?) "#LFT Htl HE HL Hown"; - try iDestruct "Hown" as "[]". iDestruct "Hown" as (P) "[#HP H↦]". + try iDestruct "Hown" as "[]". iMod (Halive with "HE HL") as (q) "[Hκ Hclose]"; first set_solver. - iMod (bor_iff with "LFT [] H↦") as "H↦". set_solver. by eauto. - iMod (bor_acc with "LFT H↦ Hκ") as "[H↦ Hclose']"; first set_solver. + iMod (bor_acc with "LFT Hown Hκ") as "[H↦ Hclose']"; first set_solver. iDestruct "H↦" as (vl) "[>H↦ #Hown]". iDestruct (ty_size_eq with "Hown") as "#>%". iIntros "!>". iExists _, _, _. iSplit; first done. iFrame "∗#". iIntros "H↦". - iMod ("Hclose'" with "[H↦]") as "[H↦ Htok]". by iExists _; iFrame. - iMod ("Hclose" with "Htok") as "($ & $ & $)". - iExists _. erewrite <-uPred.iff_refl. auto. + iMod ("Hclose'" with "[H↦]") as "[$ Htok]". by iExists _; iFrame. + by iMod ("Hclose" with "Htok") as "($ & $ & $)". Qed. Lemma write_uniq E L κ ty : lctx_lft_alive E L κ → typed_write E L (&uniq{κ}ty) ty (&uniq{κ}ty). Proof. iIntros (Halive) "!#". iIntros ([[]|] tid F qE qL ?) "#LFT HE HL Hown"; - try iDestruct "Hown" as "[]". iDestruct "Hown" as (P) "[#HP H↦]". + try iDestruct "Hown" as "[]". iMod (Halive with "HE HL") as (q) "[Htok Hclose]"; first set_solver. - iMod (bor_iff with "LFT [] H↦") as "H↦". set_solver. by eauto. - iMod (bor_acc with "LFT H↦ Htok") as "[H↦ Hclose']". set_solver. + iMod (bor_acc with "LFT Hown Htok") as "[H↦ Hclose']". set_solver. iDestruct "H↦" as (vl) "[>H↦ Hown]". rewrite ty.(ty_size_eq). iDestruct "Hown" as ">%". iModIntro. iExists _, _. iSplit; first done. iFrame. iIntros "Hown". iDestruct "Hown" as (vl') "[H↦ Hown]". - iMod ("Hclose'" with "[H↦ Hown]") as "[Hbor Htok]". by iExists _; iFrame. - iMod ("Hclose" with "Htok") as "($ & $ & $)". - iExists _. erewrite <-uPred.iff_refl. auto. + iMod ("Hclose'" with "[H↦ Hown]") as "[$ Htok]". by iExists _; iFrame. + by iMod ("Hclose" with "Htok") as "($ & $ & $)". Qed. End typing. -- GitLab