diff --git a/opam b/opam index 535a6fcd5a95cd678f0aee3c94fa70131e90eb4d..f80f88503e3777c2dab6b5ebca0da3d5804447a3 100644 --- a/opam +++ b/opam @@ -16,7 +16,7 @@ This branch uses a proper weak memory model. """ depends: [ - "coq-gpfsl" { (= "dev.2020-03-13.1.a3c28a3c") | (= "dev") } + "coq-gpfsl" { (= "dev.2020-03-16.0.43b7c428") | (= "dev") } ] build: [make "-j%{jobs}%"] diff --git a/theories/lang/arc.v b/theories/lang/arc.v index 426e806aa56510f446ff2011e3386e4db57fccd7..a93cc90988be6577da1bfcebbc06b2078751e6bc 100644 --- a/theories/lang/arc.v +++ b/theories/lang/arc.v @@ -340,7 +340,7 @@ Section arc. Qed. Lemma SeenActs_join γ l Mt Mt' : - ((SeenActs γ l Mt ∗ SeenActs γ l Mt') ∗-∗ SeenActs γ l (Mt ∪ Mt'))%I. + ⊢ (SeenActs γ l Mt ∗ SeenActs γ l Mt') ∗-∗ SeenActs γ l (Mt ∪ Mt'). Proof. iSplit. - iIntros "[S1 S2]". iDestruct "S1" as (t1 v1) "[R1 MAX1]". diff --git a/theories/lifetime/lifetime.v b/theories/lifetime/lifetime.v index 0564a8e7c8c40e622712bc28cc2f87487f10c2e4..cef8a16d0b60b026feb692d510e7301055556f2c 100644 --- a/theories/lifetime/lifetime.v +++ b/theories/lifetime/lifetime.v @@ -223,14 +223,14 @@ Proof. iApply lft_incl_trans; [|done]. iApply lft_intersect_incl_r. Qed. -Lemma lft_incl_static κ : (κ ⊑ static)%I. +Lemma lft_incl_static κ : ⊢ κ ⊑ static. Proof. iApply lft_incl_intro. iIntros "!#" (q) "$". iExists 1%Qp. iSplitR; [|auto]. by iApply lft_tok_static. Qed. Lemma lft_intersect_list_elem_of_incl κs κ : - κ ∈ κs → (lft_intersect_list κs ⊑ κ)%I. + κ ∈ κs → ⊢ lft_intersect_list κs ⊑ κ. Proof. induction 1 as [|???? IH]. - iApply lft_intersect_incl_l. diff --git a/theories/lifetime/lifetime_sig.v b/theories/lifetime/lifetime_sig.v index 9a15a20daab4a7b62c286cce7a9ea059c4733485..859c948cbb7e2d1345ef550b2497eba3f5a22bcd 100644 --- a/theories/lifetime/lifetime_sig.v +++ b/theories/lifetime/lifetime_sig.v @@ -105,7 +105,7 @@ Module Type lifetime_sig. ∀ `{LatBottom Lat} q1 q2 κ, (q1 + q2).[κ] -∗ q1.[κ] ∗ <obj> q2.[κ]. Parameter lft_dead_or : ∀ κ1 κ2, [†κ1] ∨ [†κ2] ⊣⊢ [†κ1 ⊓ κ2]. Parameter lft_tok_dead : ∀ q κ, q.[κ] -∗ [†κ] -∗ False. - Parameter lft_tok_static : ∀ q, (q.[static])%I. + Parameter lft_tok_static : ∀ q, ⊢ q.[static]. Parameter lft_dead_static : [†static] -∗ False. Parameter lft_create : ∀ `{LatBottom Lat} E, ↑lftN ⊆ E → @@ -174,9 +174,9 @@ Module Type lifetime_sig. (both here and in model.primitive) *) Parameter lft_intersect_acc : ∀ κ κ' q q', q.[κ] -∗ q'.[κ'] -∗ ∃ q'', q''.[κ ⊓ κ'] ∗ (q''.[κ ⊓ κ'] -∗ q.[κ] ∗ q'.[κ']). - Parameter lft_intersect_incl_l : ∀ κ κ', (κ ⊓ κ' ⊑ κ)%I. - Parameter lft_intersect_incl_r : ∀ κ κ', (κ ⊓ κ' ⊑ κ')%I. - Parameter lft_incl_refl : ∀ κ, (κ ⊑ κ)%I. + Parameter lft_intersect_incl_l : ∀ κ κ', ⊢ κ ⊓ κ' ⊑ κ. + Parameter lft_intersect_incl_r : ∀ κ κ', ⊢ κ ⊓ κ' ⊑ κ'. + Parameter lft_incl_refl : ∀ κ, ⊢ κ ⊑ κ. Parameter lft_incl_trans : ∀ κ κ' κ'', κ ⊑ κ' -∗ κ' ⊑ κ'' -∗ κ ⊑ κ''. Parameter lft_incl_glb : ∀ κ κ' κ'', κ ⊑ κ' -∗ κ ⊑ κ'' -∗ κ ⊑ κ' ⊓ κ''. Parameter lft_intersect_mono : ∀ κ1 κ1' κ2 κ2', @@ -193,5 +193,5 @@ Module Type lifetime_sig. Parameter lft_init : ∀ `{!invG Σ, !lftPreG Lat Σ} E E0, ↑lftN ⊆ E → ↑lftN ## E0 → - (|={E}=> ∃ _ : lftG Lat E0 Σ, lft_ctx)%I. + ⊢ |={E}=> ∃ _ : lftG Lat E0 Σ, lft_ctx. End lifetime_sig. diff --git a/theories/lifetime/model/boxes.v b/theories/lifetime/model/boxes.v index 7cae15f0a04060045eab648a654d944e7f46df44..3e04130fa38184500b25daa51b2d942cca8206d3 100644 --- a/theories/lifetime/model/boxes.v +++ b/theories/lifetime/model/boxes.v @@ -114,7 +114,7 @@ Proof. iApply iProp_unfold_equivI. rewrite discrete_fun_equivI. iNext. iApply "HQ". Qed. -Lemma box_alloc : box N ∅ True%I. +Lemma box_alloc : ⊢ box N ∅ True. Proof. iIntros. iExists (λ _, True%I); iSplit; [|done]. by rewrite big_sepM_empty True_emp. Qed. diff --git a/theories/lifetime/model/primitive.v b/theories/lifetime/model/primitive.v index 9e0a64e1d35666f07d420a79181fb45fa0f2c356..70ee6c2cbedbc471ea4572ad9902a31ec459f0b4 100644 --- a/theories/lifetime/model/primitive.v +++ b/theories/lifetime/model/primitive.v @@ -6,7 +6,7 @@ Set Default Proof Using "Type". Import uPred. Lemma lft_init `{!invG Σ, !lftPreG Lat Σ} E E0 : - ↑lftN ⊆ E → ↑lftN ## E0 → (|={E}=> ∃ _ : lftG Lat E0 Σ, lft_ctx)%I. + ↑lftN ⊆ E → ↑lftN ## E0 → ⊢ |={E}=> ∃ _ : lftG Lat E0 Σ, lft_ctx. Proof. iIntros (? HE0). rewrite /lft_ctx. iMod (own_alloc (◠∅ : authR (alftUR Lat))) as (γa) "Ha"; first by apply auth_auth_valid. @@ -292,8 +292,8 @@ Proof. move: Hvalid=> /auth_frag_valid /=; by rewrite op_singleton singleton_valid. Qed. -Lemma lft_tok_static q : (q.[static])%I. -Proof. by rewrite /lft_tok /= big_sepMS_empty. Qed. +Lemma lft_tok_static q : ⊢ q.[static]. +Proof. by rewrite /lft_tok big_sepMS_empty. Qed. Lemma lft_dead_static : [†static] -∗ False. Proof. rewrite /lft_dead. iDestruct 1 as (Λ V') "[% H']". set_solver. Qed. @@ -343,16 +343,16 @@ Lemma lft_incl_intro κ κ' : -∗ κ ⊑ κ'. Proof. reflexivity. Qed. -Lemma lft_intersect_incl_l κ κ' : (κ ⊓ κ' ⊑ κ)%I. +Lemma lft_intersect_incl_l κ κ' : ⊢ κ ⊓ κ' ⊑ κ. Proof. unfold lft_incl. iIntros "!#" (q). rewrite <-lft_tok_sep. iIntros "[H Hf]". iExists q. iIntros "{$H} !> Hf'". rewrite <-lft_tok_sep. by iFrame. Qed. -Lemma lft_intersect_incl_r κ κ' : (κ ⊓ κ' ⊑ κ')%I. +Lemma lft_intersect_incl_r κ κ' : ⊢ κ ⊓ κ' ⊑ κ'. Proof. rewrite comm. apply lft_intersect_incl_l. Qed. -Lemma lft_incl_refl κ : (κ ⊑ κ)%I. +Lemma lft_incl_refl κ : ⊢ κ ⊑ κ. Proof. unfold lft_incl. iIntros "!#"; auto 10 with iFrame. Qed. Lemma lft_incl_trans κ κ' κ'' : (κ ⊑ κ') -∗ (κ' ⊑ κ'') -∗ (κ ⊑ κ''). diff --git a/theories/typing/borrow.v b/theories/typing/borrow.v index 64007b0c797b477fb3a22ce34d68960b50ca58b5..46a453127be5601e5e1c89d8784b4d58024aee20 100644 --- a/theories/typing/borrow.v +++ b/theories/typing/borrow.v @@ -84,7 +84,7 @@ Section borrow. Lemma type_deref_uniq_own_instr {E L} κ p n ty : lctx_lft_alive E L κ → - typed_instruction_ty E L [p â— &uniq{κ}(own_ptr n ty)] (!p) (&uniq{κ} ty). + ⊢ typed_instruction_ty E L [p â— &uniq{κ}(own_ptr n ty)] (!p) (&uniq{κ} ty). Proof. iIntros (Hκ tid) "#LFT HE $ HL Hp". rewrite tctx_interp_singleton. @@ -114,7 +114,7 @@ Section borrow. Lemma type_deref_shr_own_instr {E L} κ p n ty : lctx_lft_alive E L κ → - typed_instruction_ty E L [p â— &shr{κ}(own_ptr n ty)] (!p) (&shr{κ} ty). + ⊢ typed_instruction_ty E L [p â— &shr{κ}(own_ptr n ty)] (!p) (&shr{κ} ty). Proof. iIntros (Hκ tid) "#LFT HE $ HL Hp". rewrite tctx_interp_singleton. @@ -140,7 +140,7 @@ Section borrow. Lemma type_deref_uniq_uniq_instr {E L} κ κ' p ty : lctx_lft_alive E L κ → lctx_lft_incl E L κ κ' → - typed_instruction_ty E L [p â— &uniq{κ}(&uniq{κ'}ty)] (!p) (&uniq{κ} ty). + ⊢ typed_instruction_ty E L [p â— &uniq{κ}(&uniq{κ'}ty)] (!p) (&uniq{κ} ty). Proof. iIntros (Hκ Hincl tid) "#LFT #HE $ HL Hp". rewrite tctx_interp_singleton. @@ -172,7 +172,7 @@ Section borrow. Lemma type_deref_shr_uniq_instr {E L} κ κ' p ty : lctx_lft_alive E L κ → lctx_lft_incl E L κ κ' → - typed_instruction_ty E L [p â— &shr{κ}(&uniq{κ'}ty)] (!p) (&shr{κ}ty). + ⊢ typed_instruction_ty E L [p â— &shr{κ}(&uniq{κ'}ty)] (!p) (&shr{κ}ty). Proof. iIntros (Hκ Hincl tid) "#LFT HE $ HL Hp". rewrite tctx_interp_singleton. iDestruct (Hincl with "HL HE") as "#Hincl". diff --git a/theories/typing/cont.v b/theories/typing/cont.v index 23036e9161169fa6bbb5aba40ff9b20eb5cbaedb..edb597f958cf71b6b0a398bc78125d4a981f6503 100644 --- a/theories/typing/cont.v +++ b/theories/typing/cont.v @@ -13,7 +13,7 @@ Section typing. Forall2 (λ a av, to_val a = Some av ∨ a = of_val av) args argsv → k â—cont(L, T') ∈ C → tctx_incl E L T (T' (list_to_vec argsv)) → - typed_body E L C T (k args). + ⊢ typed_body E L C T (k args). Proof. iIntros (Hargs HC Hincl tid) "#LFT #HE Hna HL HC HT". iMod (Hincl with "LFT HE HL HT") as "(HL & HT)". diff --git a/theories/typing/function.v b/theories/typing/function.v index 46c8d61c31ab5505a6b6f6019711a4fa3ae3e309..87da1e721a91f9e4fb48acc7b76dabd78f63a171 100644 --- a/theories/typing/function.v +++ b/theories/typing/function.v @@ -323,7 +323,7 @@ Section typing. {A} (fp : A → fn_params (length ps)) (k : val) x : Forall (lctx_lft_alive E L) κs → (∀ Ï, elctx_sat (((λ κ, Ï âŠ‘â‚‘ κ) <$> κs) ++ E) L ((fp x).(fp_E) Ï)) → - typed_body E L [k â—cont(L, λ v : vec _ 1, ((v!!!0%fin:val) â— box (fp x).(fp_ty)) :: T)] + ⊢ typed_body E L [k â—cont(L, λ v : vec _ 1, ((v!!!0%fin:val) â— box (fp x).(fp_ty)) :: T)] ((p â— fn fp) :: zip_with TCtx_hasty ps (box <$> vec_to_list (fp x).(fp_tys)) ++ T) @@ -349,7 +349,7 @@ Section typing. (box <$> vec_to_list (fp x).(fp_tys))) T T' → k â—cont(L, T'') ∈ C → (∀ ret : val, tctx_incl E L ((ret â— box (fp x).(fp_ty))::T') (T'' [# ret])) → - typed_body E L C T (call: p ps → k). + ⊢ typed_body E L C T (call: p ps → k). Proof. intros Hfn HL HE HTT' HC HT'T''. rewrite -typed_body_mono /flip; last done; first by eapply type_call'. diff --git a/theories/typing/int.v b/theories/typing/int.v index e2eb19b7adfffec4fad080ca32fb3208e1aac0f2..3290bd6354ada60d990fee46e01f1c811afb0dc7 100644 --- a/theories/typing/int.v +++ b/theories/typing/int.v @@ -37,7 +37,7 @@ Section typing. Proof. iIntros. iApply type_let; [apply type_int_instr|solve_typing|done]. Qed. Lemma type_plus_instr E L p1 p2 : - typed_instruction_ty E L [p1 â— int; p2 â— int] (p1 + p2) int. + ⊢ typed_instruction_ty E L [p1 â— int; p2 â— int] (p1 + p2) int. Proof. iIntros (tid) "_ _ $ $ [Hp1 [Hp2 _]]". wp_apply (wp_hasty with "Hp1"); [done|]. iIntros ([[]|]) "_ H1"; try done. @@ -53,7 +53,7 @@ Section typing. Proof. iIntros. iApply type_let; [iApply type_plus_instr|solve_typing|done]. Qed. Lemma type_minus_instr E L p1 p2 : - typed_instruction_ty E L [p1 â— int; p2 â— int] (p1 - p2) int. + ⊢ typed_instruction_ty E L [p1 â— int; p2 â— int] (p1 - p2) int. Proof. iIntros (tid) "_ _ $ $ [Hp1 [Hp2 _]]". wp_apply (wp_hasty with "Hp1"); [done|]. iIntros ([[]|]) "_ H1"; try done. @@ -69,7 +69,7 @@ Section typing. Proof. iIntros. iApply type_let; [apply type_minus_instr|solve_typing|done]. Qed. Lemma type_le_instr E L p1 p2 : - typed_instruction_ty E L [p1 â— int; p2 â— int] (p1 ≤ p2) bool. + ⊢ typed_instruction_ty E L [p1 â— int; p2 â— int] (p1 ≤ p2) bool. Proof. iIntros (tid) "_ _ $ $ [Hp1 [Hp2 _]]". wp_apply (wp_hasty with "Hp1"); [done|]. iIntros ([[]|]) "_ H1"; try done. diff --git a/theories/typing/own.v b/theories/typing/own.v index 3bed184b91ecdd5755bc3b213338f0e9811b6478..cfad9eb1059c9764de8e91dbcdcb37be8d559aed 100644 --- a/theories/typing/own.v +++ b/theories/typing/own.v @@ -220,7 +220,7 @@ Section typing. (** Typing *) Lemma write_own {E L} ty ty' n : - ty.(ty_size) = ty'.(ty_size) → typed_write E L (own_ptr n ty') ty (own_ptr n ty). + ty.(ty_size) = ty'.(ty_size) → ⊢ typed_write E L (own_ptr n ty') ty (own_ptr n ty). Proof. iIntros (Hsz) "!#". iIntros ([[]|] tid F qL ?) "_ _ $ Hown"; try done. rewrite /= Hsz. iDestruct "Hown" as "[H↦ $]". iDestruct "H↦" as (vl) "[>H↦ Hown]". @@ -228,7 +228,7 @@ Section typing. Qed. Lemma read_own_copy E L ty n : - Copy ty → typed_read E L (own_ptr n ty) ty (own_ptr n ty). + Copy ty → ⊢ typed_read E L (own_ptr n ty) ty (own_ptr n ty). Proof. iIntros (Hsz) "!#". iIntros ([[]|] tid F qL ?) "_ _ $ $ Hown"; try done. iDestruct "Hown" as "[H↦ H†]". iDestruct "H↦" as (vl) "[>H↦ #Hown]". @@ -237,7 +237,7 @@ Section typing. Qed. Lemma read_own_move E L ty n : - typed_read E L (own_ptr n ty) ty (own_ptr n $ uninit ty.(ty_size)). + ⊢ typed_read E L (own_ptr n ty) ty (own_ptr n $ uninit ty.(ty_size)). Proof. iAlways. iIntros ([[]|] tid F qL ?) "_ _ $ $ Hown"; try done. iDestruct "Hown" as "[H↦ H†]". iDestruct "H↦" as (vl) "[>H↦ Hown]". @@ -248,8 +248,8 @@ Section typing. Lemma type_new_instr {E L} (n : Z) : 0 ≤ n → - let n' := Z.to_nat n in - typed_instruction_ty E L [] (new [ #n ]%E) (own_ptr n' (uninit n')). + ⊢ let n' := Z.to_nat n in + typed_instruction_ty E L [] (new [ #n ]%E) (own_ptr n' (uninit n')). Proof. iIntros (? tid) "#LFT #HE $ $ _". iApply wp_new; try done. iModIntro. @@ -282,7 +282,7 @@ Section typing. Lemma type_delete_instr {E L} ty (n : Z) p : Z.of_nat (ty.(ty_size)) = n → - typed_instruction E L [p â— own_ptr ty.(ty_size) ty] (delete [ #n; p])%E (λ _, []). + ⊢ typed_instruction E L [p â— own_ptr ty.(ty_size) ty] (delete [ #n; p])%E (λ _, []). Proof. iIntros (<- tid) "#LFT #HE $ $ Hp". rewrite tctx_interp_singleton. wp_bind p. iApply (wp_hasty with "Hp"); [done|]. iIntros ([[]|]) "_ Hown"; try done. @@ -329,7 +329,7 @@ Section typing. Lemma type_letalloc_n {E L} ty ty1 ty2 C T T' (x : string) p e : Closed [] p → Closed (x :b: []) e → tctx_extract_hasty E L p ty1 T T' → - typed_read E L ty1 ty ty2 → + (⊢ typed_read E L ty1 ty ty2) → (∀ (v : val), typed_body E L C ((v â— own_ptr (ty.(ty_size)) ty)::(p â— ty2)::T') (subst x v e)) -∗ typed_body E L C T (letalloc: x <-{ty.(ty_size)} !p in e). diff --git a/theories/typing/programs.v b/theories/typing/programs.v index 1b3d3a74abdfb5080f3573d25f20eae17e3d50d2..9f2751167d374b23346ccd67dcda98595783e7eb 100644 --- a/theories/typing/programs.v +++ b/theories/typing/programs.v @@ -86,7 +86,7 @@ Definition typed_instruction_ty `{!typeG Σ} (E : elctx) (L : llctx) (T : tctx) Arguments typed_instruction_ty {_ _} _ _ _ _%E _%T. Definition typed_val `{!typeG Σ} (v : val) (ty : type) : Prop := - ∀ E L, typed_instruction_ty E L [] (of_val v) ty. + ∀ E L, ⊢ typed_instruction_ty E L [] (of_val v) ty. Arguments typed_val _ _ _%V _%T. Section typing_rules. @@ -101,8 +101,8 @@ Section typing_rules. (* TODO: Proof a version of this that substitutes into a compatible context... if we really want to do that. *) Lemma type_equivalize_lft E L C T κ1 κ2 e : - typed_body ((κ1 ⊑ₑ κ2) :: (κ2 ⊑ₑ κ1) :: E) L C T e → - typed_body E ((κ1 ⊑ₗ [κ2]) :: L) C T e. + (⊢ typed_body ((κ1 ⊑ₑ κ2) :: (κ2 ⊑ₑ κ1) :: E) L C T e) → + ⊢ typed_body E ((κ1 ⊑ₗ [κ2]) :: L) C T e. Proof. iIntros (He tid) "#LFT #HE Htl [Hκ HL] HC HT". iMod (lctx_equalize_lft with "LFT Hκ") as "[Hκ1 Hκ2]". @@ -131,7 +131,7 @@ Section typing_rules. for the following hypothesis. *) Lemma type_let E L T T' T1 T2 C xb e e' : Closed (xb :b: []) e' → - typed_instruction E L T1 e T2 → + (⊢ typed_instruction E L T1 e T2) → tctx_extract_ctx E L T1 T T' → (∀ v : val, typed_body E L C (T2 v ++ T') (subst' xb v e')) -∗ typed_body E L C T (let: xb := e in e'). @@ -142,7 +142,7 @@ Section typing_rules. Lemma type_seq E L T T' T1 T2 C e e' : Closed [] e' → - typed_instruction E L T1 e (λ _, T2) → + (⊢ typed_instruction E L T1 e (λ _, T2)) → tctx_extract_ctx E L T1 T T' → typed_body E L C (T2 ++ T') e' -∗ typed_body E L C T (e ;; e'). @@ -177,7 +177,7 @@ Section typing_rules. Qed. Lemma type_path_instr {E L} p ty : - typed_instruction_ty E L [p â— ty] p ty. + ⊢ typed_instruction_ty E L [p â— ty] p ty. Proof. iIntros (?) "_ _ $$ [? _]". iApply (wp_hasty with "[-]"); [done..|]. iIntros (v) "_ Hv". @@ -192,8 +192,8 @@ Section typing_rules. Proof. iIntros. iApply type_let; [by apply type_path_instr|solve_typing|done]. Qed. Lemma type_assign_instr {E L} ty ty1 ty1' p1 p2 : - typed_write E L ty1 ty ty1' → - typed_instruction E L [p1 â— ty1; p2 â— ty] (p1 <- p2) (λ _, [p1 â— ty1']). + (⊢ typed_write E L ty1 ty ty1') → + (⊢ typed_instruction E L [p1 â— ty1; p2 â— ty] (p1 <- p2) (λ _, [p1 â— ty1'])). Proof. iIntros (Hwrt tid) "#LFT #HE $ HL". rewrite tctx_interp_cons tctx_interp_singleton. iIntros "[Hp1 Hp2]". @@ -212,14 +212,14 @@ Section typing_rules. Lemma type_assign {E L} ty1 ty ty1' C T T' p1 p2 e: Closed [] e → tctx_extract_ctx E L [p1 â— ty1; p2 â— ty] T T' → - typed_write E L ty1 ty ty1' → + (⊢ typed_write E L ty1 ty ty1') → typed_body E L C ((p1 â— ty1') :: T') e -∗ typed_body E L C T (p1 <- p2 ;; e). Proof. iIntros. by iApply type_seq; first apply type_assign_instr. Qed. Lemma type_deref_instr {E L} ty ty1 ty1' p : - ty.(ty_size) = 1%nat → typed_read E L ty1 ty ty1' → - typed_instruction E L [p â— ty1] (!p) (λ v, [p â— ty1'; v â— ty]). + ty.(ty_size) = 1%nat → (⊢ typed_read E L ty1 ty ty1') → + (⊢ typed_instruction E L [p â— ty1] (!p) (λ v, [p â— ty1'; v â— ty])). Proof. iIntros (Hsz Hread tid) "#LFT #HE Htl HL Hp". rewrite tctx_interp_singleton. wp_bind p. iApply (wp_hasty with "Hp"); [done|]. @@ -237,7 +237,7 @@ Section typing_rules. Lemma type_deref {E L} ty1 C T T' ty ty1' x p e: Closed (x :b: []) e → tctx_extract_hasty E L p ty1 T T' → - typed_read E L ty1 ty ty1' → + (⊢ typed_read E L ty1 ty ty1') → ty.(ty_size) = 1%nat → (∀ (v : val), typed_body E L C ((p â— ty1') :: (v â— ty) :: T') (subst' x v e)) -∗ typed_body E L C T (let: x := !p in e). @@ -270,8 +270,9 @@ Section typing_rules. Lemma type_memcpy_instr {E L} ty ty1 ty1' ty2 ty2' (n : Z) p1 p2 : Z.of_nat (ty.(ty_size)) = n → - typed_write E L ty1 ty ty1' → typed_read E L ty2 ty ty2' → - typed_instruction E L [p1 â— ty1; p2 â— ty2] (p1 <-{n} !p2) + (⊢ typed_write E L ty1 ty ty1') → + (⊢ typed_read E L ty2 ty ty2') → + ⊢ typed_instruction E L [p1 â— ty1; p2 â— ty2] (p1 <-{n} !p2) (λ _, [p1 â— ty1'; p2 â— ty2']). Proof. iIntros (Hsz Hwrt Hread tid) "#LFT #HE Htl HL HT". @@ -285,8 +286,8 @@ Section typing_rules. Lemma type_memcpy {E L} ty ty1 ty2 (n : Z) C T T' ty1' ty2' p1 p2 e: Closed [] e → tctx_extract_ctx E L [p1 â— ty1; p2 â— ty2] T T' → - typed_write E L ty1 ty ty1' → - typed_read E L ty2 ty ty2' → + (⊢ typed_write E L ty1 ty ty1') → + (⊢ typed_read E L ty2 ty ty2') → Z.of_nat (ty.(ty_size)) = n → typed_body E L C ((p1 â— ty1') :: (p2 â— ty2') :: T') e -∗ typed_body E L C T (p1 <-{n} !p2;; e). diff --git a/theories/typing/shr_bor.v b/theories/typing/shr_bor.v index 4a4474512df53b38315dc78daf98558ff28f334d..b866efaf24206e3f30774df589945ec786fb48c1 100644 --- a/theories/typing/shr_bor.v +++ b/theories/typing/shr_bor.v @@ -82,7 +82,7 @@ Section typing. Qed. Lemma read_shr E L κ ty : - Copy ty → lctx_lft_alive E L κ → typed_read E L (&shr{κ}ty) ty (&shr{κ}ty). + Copy ty → lctx_lft_alive E L κ → ⊢ typed_read E L (&shr{κ}ty) ty (&shr{κ}ty). Proof. iIntros (Hcopy Halive) "!#". iIntros ([[]|] tid F qL ?) "#LFT #HE Htl HL #Hshr"; try done. diff --git a/theories/typing/type.v b/theories/typing/type.v index cfe937963a089142ca6c1dc4662b0639d0d3dd81..1ed100d0b692a8f3458027a7aa54d28104c0a04a 100644 --- a/theories/typing/type.v +++ b/theories/typing/type.v @@ -549,7 +549,7 @@ Section subtyping. Global Instance type_incl_persistent ty1 ty2 : Persistent (type_incl ty1 ty2) := _. - Lemma type_incl_refl ty : type_incl ty ty. + Lemma type_incl_refl ty : ⊢ type_incl ty ty. Proof. iSplit; first done. iSplit; iAlways; iIntros; done. Qed. Lemma type_incl_trans ty1 ty2 ty3 : diff --git a/theories/typing/type_context.v b/theories/typing/type_context.v index c207d5da8a2a3b03b296b738b95a64be3d3499af..953272265582a26c443ac43083c0a51c7ca5fcc3 100644 --- a/theories/typing/type_context.v +++ b/theories/typing/type_context.v @@ -37,7 +37,7 @@ Section type_context. Proof. destruct v. done. simpl. rewrite (decide_left _). done. Qed. Lemma wp_eval_path E tid p v (SUB : ↑histN ⊆ E) : - eval_path p = Some v → (WP p in tid @ E {{ v', ⌜v' = v⌠}})%I. + eval_path p = Some v → ⊢ WP p in tid @ E {{ v', ⌜v' = v⌠}}. Proof. revert v; induction p; intros v; cbn -[to_val]; try (intros <-%of_to_val; by iApply wp_value). @@ -120,18 +120,18 @@ Section type_context. Proof. intros ???. by apply big_opL_permutation. Qed. Lemma tctx_interp_cons tid x T : - tctx_interp tid (x :: T) ≡ (tctx_elt_interp tid x ∗ tctx_interp tid T)%I. + tctx_interp tid (x :: T) ⊣⊢ (tctx_elt_interp tid x ∗ tctx_interp tid T). Proof. done. Qed. Lemma tctx_interp_app tid T1 T2 : - tctx_interp tid (T1 ++ T2) ≡ (tctx_interp tid T1 ∗ tctx_interp tid T2)%I. + tctx_interp tid (T1 ++ T2) ⊣⊢ (tctx_interp tid T1 ∗ tctx_interp tid T2). Proof. rewrite /tctx_interp big_sepL_app //. Qed. Lemma tctx_interp_nil tid : tctx_interp tid [] ≡ True%I. Proof. by rewrite bi.True_emp. Qed. Lemma tctx_interp_singleton tid x : - tctx_interp tid [x] ≡ tctx_elt_interp tid x. + tctx_interp tid [x] ⊣⊢ tctx_elt_interp tid x. Proof. rewrite /tctx_interp /= right_id //. Qed. (** Copy typing contexts *) diff --git a/theories/typing/type_sum.v b/theories/typing/type_sum.v index 94dc27837858680a9b5556e2e66e449bc3e1bd9b..7de06ac50111453bae22235c292f8cdc6a301b2d 100644 --- a/theories/typing/type_sum.v +++ b/theories/typing/type_sum.v @@ -10,11 +10,12 @@ Section case. (* FIXME : have a iris version of Forall2. *) Lemma type_case_own' E L C T p n tyl el : Forall2 (λ ty e, - typed_body E L C ((p +â‚— #0 â— own_ptr n (uninit 1)) :: (p +â‚— #1 â— own_ptr n ty) :: + (⊢ typed_body E L C ((p +â‚— #0 â— own_ptr n (uninit 1)) :: (p +â‚— #1 â— own_ptr n ty) :: (p +â‚— #(S (ty.(ty_size))) â— - own_ptr n (uninit (max_list_with ty_size tyl - ty_size ty))) :: T) e ∨ - typed_body E L C ((p â— own_ptr n (sum tyl)) :: T) e) tyl el → - typed_body E L C ((p â— own_ptr n (sum tyl)) :: T) (case: !p of el). + own_ptr n (uninit (max_list_with ty_size tyl - ty_size ty))) :: T) e) ∨ + (⊢ typed_body E L C ((p â— own_ptr n (sum tyl)) :: T) e)) + tyl el → + ⊢ typed_body E L C ((p â— own_ptr n (sum tyl)) :: T) (case: !p of el). Proof. iIntros (Hel tid) "#LFT #HE Hna HL HC HT". wp_bind p. rewrite tctx_interp_cons. iDestruct "HT" as "[Hp HT]". @@ -47,19 +48,20 @@ Section case. Lemma type_case_own E L C T T' p n tyl el : tctx_extract_hasty E L p (own_ptr n (sum tyl)) T T' → Forall2 (λ ty e, - typed_body E L C ((p +â‚— #0 â— own_ptr n (uninit 1)) :: (p +â‚— #1 â— own_ptr n ty) :: + (⊢ typed_body E L C ((p +â‚— #0 â— own_ptr n (uninit 1)) :: (p +â‚— #1 â— own_ptr n ty) :: (p +â‚— #(S (ty.(ty_size))) â— - own_ptr n (uninit (max_list_with ty_size tyl - ty_size ty))) :: T') e ∨ - typed_body E L C ((p â— own_ptr n (sum tyl)) :: T') e) tyl el → - typed_body E L C T (case: !p of el). + own_ptr n (uninit (max_list_with ty_size tyl - ty_size ty))) :: T') e) ∨ + (⊢ typed_body E L C ((p â— own_ptr n (sum tyl)) :: T') e)) + tyl el → + ⊢ typed_body E L C T (case: !p of el). Proof. unfold tctx_extract_hasty=>->. apply type_case_own'. Qed. Lemma type_case_uniq' E L C T p κ tyl el : lctx_lft_alive E L κ → Forall2 (λ ty e, - typed_body E L C ((p +â‚— #1 â— &uniq{κ}ty) :: T) e ∨ - typed_body E L C ((p â— &uniq{κ}(sum tyl)) :: T) e) tyl el → - typed_body E L C ((p â— &uniq{κ}(sum tyl)) :: T) (case: !p of el). + (⊢ typed_body E L C ((p +â‚— #1 â— &uniq{κ}ty) :: T) e) ∨ + (⊢ typed_body E L C ((p â— &uniq{κ}(sum tyl)) :: T) e)) tyl el → + ⊢ typed_body E L C ((p â— &uniq{κ}(sum tyl)) :: T) (case: !p of el). Proof. iIntros (Halive Hel tid) "#LFT #HE Hna HL HC HT". wp_bind p. rewrite tctx_interp_cons. iDestruct "HT" as "[Hp HT]". @@ -103,17 +105,17 @@ Section case. tctx_extract_hasty E L p (&uniq{κ}(sum tyl)) T T' → lctx_lft_alive E L κ → Forall2 (λ ty e, - typed_body E L C ((p +â‚— #1 â— &uniq{κ}ty) :: T') e ∨ - typed_body E L C ((p â— &uniq{κ}(sum tyl)) :: T') e) tyl el → - typed_body E L C T (case: !p of el). + (⊢ typed_body E L C ((p +â‚— #1 â— &uniq{κ}ty) :: T') e) ∨ + (⊢ typed_body E L C ((p â— &uniq{κ}(sum tyl)) :: T') e)) tyl el → + ⊢ typed_body E L C T (case: !p of el). Proof. unfold tctx_extract_hasty=>->. apply type_case_uniq'. Qed. Lemma type_case_shr' E L C T p κ tyl el: lctx_lft_alive E L κ → Forall2 (λ ty e, - typed_body E L C ((p +â‚— #1 â— &shr{κ}ty) :: T) e ∨ - typed_body E L C ((p â— &shr{κ}(sum tyl)) :: T) e) tyl el → - typed_body E L C ((p â— &shr{κ}(sum tyl)) :: T) (case: !p of el). + (⊢ typed_body E L C ((p +â‚— #1 â— &shr{κ}ty) :: T) e) ∨ + (⊢ typed_body E L C ((p â— &shr{κ}(sum tyl)) :: T) e)) tyl el → + ⊢ typed_body E L C ((p â— &shr{κ}(sum tyl)) :: T) (case: !p of el). Proof. iIntros (Halive Hel tid) "#LFT #HE Hna HL HC HT". wp_bind p. rewrite tctx_interp_cons. iDestruct "HT" as "[Hp HT]". @@ -135,8 +137,8 @@ Section case. Lemma type_case_shr E L C T p κ tyl el : p â— &shr{κ}(sum tyl) ∈ T → lctx_lft_alive E L κ → - Forall2 (λ ty e, typed_body E L C ((p +â‚— #1 â— &shr{κ}ty) :: T) e) tyl el → - typed_body E L C T (case: !p of el). + Forall2 (λ ty e, ⊢ typed_body E L C ((p +â‚— #1 â— &shr{κ}ty) :: T) e) tyl el → + ⊢ typed_body E L C T (case: !p of el). Proof. intros. rewrite ->copy_elem_of_tctx_incl; last done; last apply _. apply type_case_shr'; first done. eapply Forall2_impl; first done. auto. @@ -144,8 +146,8 @@ Section case. Lemma type_sum_assign_instr {E L} (i : nat) ty1 tyl ty ty2 p1 p2 : tyl !! i = Some ty → - typed_write E L ty1 (sum tyl) ty2 → - typed_instruction E L [p1 â— ty1; p2 â— ty] (p1 <-{Σ i} p2) (λ _, [p1 â— ty2]). + (⊢ typed_write E L ty1 (sum tyl) ty2) → + ⊢ typed_instruction E L [p1 â— ty1; p2 â— ty] (p1 <-{Σ i} p2) (λ _, [p1 â— ty2]). Proof. iIntros (Hty Hw tid) "#LFT #HE $ HL Hp". rewrite tctx_interp_cons tctx_interp_singleton. @@ -174,7 +176,7 @@ Section case. sty = sum tyl → tctx_extract_ctx E L [p1 â— ty1; p2 â— ty] T T' → tyl !! (Z.to_nat i) = Some ty → - typed_write E L ty1 sty ty1' → + (⊢ typed_write E L ty1 sty ty1') → typed_body E L C ((p1 â— ty1') :: T') e -∗ typed_body E L C T (p1 <-{Σ i} p2 ;; e). Proof. @@ -184,8 +186,8 @@ Section case. Lemma type_sum_unit_instr {E L} (i : nat) tyl ty1 ty2 p : tyl !! i = Some unit → - typed_write E L ty1 (sum tyl) ty2 → - typed_instruction E L [p â— ty1] (p <-{Σ i} ()) (λ _, [p â— ty2]). + (⊢ typed_write E L ty1 (sum tyl) ty2) → + ⊢ typed_instruction E L [p â— ty1] (p <-{Σ i} ()) (λ _, [p â— ty2]). Proof. iIntros (Hty Hw tid) "#LFT #HE $ HL Hp". rewrite tctx_interp_singleton. wp_bind p. iApply (wp_hasty with "Hp"); [done|]. iIntros (v Hv) "Hty". @@ -203,7 +205,7 @@ Section case. sty = sum tyl → tctx_extract_hasty E L p ty1 T T' → tyl !! (Z.to_nat i) = Some unit → - typed_write E L ty1 sty ty1' → + (⊢ typed_write E L ty1 sty ty1') → typed_body E L C ((p â— ty1') :: T') e -∗ typed_body E L C T (p <-{Σ i} () ;; e). Proof. @@ -213,9 +215,9 @@ Section case. Lemma type_sum_memcpy_instr {E L} (i : nat) tyl ty1 ty1' ty2 ty2' ty p1 p2 : tyl !! i = Some ty → - typed_write E L ty1 (sum tyl) ty1' → - typed_read E L ty2 ty ty2' → - typed_instruction E L [p1 â— ty1; p2 â— ty2] + (⊢ typed_write E L ty1 (sum tyl) ty1') → + (⊢ typed_read E L ty2 ty ty2') → + ⊢ typed_instruction E L [p1 â— ty1; p2 â— ty2] (p1 <-{ty.(ty_size),Σ i} !p2) (λ _, [p1 â— ty1'; p2 â— ty2']). Proof. iIntros (Hty Hw Hr tid) "#LFT #HE Htl [HL1 HL2] Hp". @@ -254,8 +256,8 @@ Section case. sty = sum tyl → tctx_extract_ctx E L [p1 â— ty1; p2 â— ty2] T T' → tyl !! (Z.to_nat i) = Some ty → - typed_write E L ty1 sty ty1' → - typed_read E L ty2 ty ty2' → + (⊢ typed_write E L ty1 sty ty1') → + (⊢ typed_read E L ty2 ty ty2') → Z.of_nat (ty.(ty_size)) = n → typed_body E L C ((p1 â— ty1') :: (p2 â— ty2') :: T') e -∗ typed_body E L C T (p1 <-{n,Σ i} !p2 ;; e). diff --git a/theories/typing/uniq_bor.v b/theories/typing/uniq_bor.v index 097df4d72f61f9fb9c2da8887e282df6d687d907..0496a9e79c21bef5a6fa5b7fd12c3319fd0afee6 100644 --- a/theories/typing/uniq_bor.v +++ b/theories/typing/uniq_bor.v @@ -128,7 +128,7 @@ Section typing. Qed. Lemma read_uniq E L κ ty : - Copy ty → lctx_lft_alive E L κ → typed_read E L (&uniq{κ}ty) ty (&uniq{κ}ty). + Copy ty → lctx_lft_alive E L κ → ⊢ typed_read E L (&uniq{κ}ty) ty (&uniq{κ}ty). Proof. iIntros (Hcopy Halive) "!#". iIntros ([[]|] tid F qL ?) "#LFT #HE Htl HL Hown"; try done. @@ -142,7 +142,7 @@ Section typing. Qed. Lemma write_uniq E L κ ty : - lctx_lft_alive E L κ → typed_write E L (&uniq{κ}ty) ty (&uniq{κ}ty). + lctx_lft_alive E L κ → ⊢ typed_write E L (&uniq{κ}ty) ty (&uniq{κ}ty). Proof. iIntros (Halive) "!#". iIntros ([[]|] tid F qL ?) "#LFT HE HL Hown"; try done.