From ec4c621363e9dcd3398ef2d1488f2620b624b443 Mon Sep 17 00:00:00 2001 From: Jacques-Henri Jourdan <jacques-henri.jourdan@normalesup.org> Date: Mon, 23 Jan 2017 14:08:13 +0100 Subject: [PATCH] Idem for derived kinds of borrows. --- theories/lifetime/frac_borrow.v | 104 +++++++++++++++++--------------- theories/lifetime/na_borrow.v | 15 +++-- theories/lifetime/shr_borrow.v | 6 ++ theories/typing/unsafe/cell.v | 36 +++++------ 4 files changed, 86 insertions(+), 75 deletions(-) diff --git a/theories/lifetime/frac_borrow.v b/theories/lifetime/frac_borrow.v index c07510ec..d144e141 100644 --- a/theories/lifetime/frac_borrow.v +++ b/theories/lifetime/frac_borrow.v @@ -7,14 +7,14 @@ Set Default Proof Using "Type". Class frac_borG Σ := frac_borG_inG :> inG Σ fracR. -Definition frac_bor `{invG Σ, lftG Σ, frac_borG Σ} κ (Φ : Qp → iProp Σ) := - (∃ γ κ', κ ⊑ κ' ∗ &shr{κ'} ∃ q, Φ q ∗ own γ q ∗ +Definition frac_bor `{invG Σ, lftG Σ, frac_borG Σ} κ (φ : Qp → iProp Σ) := + (∃ γ κ', κ ⊑ κ' ∗ &shr{κ'} ∃ q, φ q ∗ own γ q ∗ (⌜q = 1%Qp⌠∨ ∃ q', ⌜(q + q' = 1)%Qp⌠∗ q'.[κ']))%I. Notation "&frac{ κ } P" := (frac_bor κ P) (format "&frac{ κ } P", at level 20, right associativity) : uPred_scope. Section frac_bor. - Context `{invG Σ, lftG Σ, frac_borG Σ}. + Context `{invG Σ, lftG Σ, frac_borG Σ} (φ : Qp → iProp Σ). Implicit Types E : coPset. Global Instance frac_bor_contractive κ n : @@ -26,9 +26,17 @@ Section frac_bor. Global Instance frac_bor_proper κ : Proper (pointwise_relation _ (⊣⊢) ==> (⊣⊢)) (frac_bor κ). Proof. solve_proper. Qed. - Global Instance frac_bor_persistent κ : PersistentP (&frac{κ}Φ) := _. + Lemma frac_bor_iff_proper κ φ' : + ▷ □ (∀ q, φ q ↔ φ' q) -∗ &frac{κ} φ -∗ &frac{κ} φ'. + Proof. + iIntros "#Hφφ' H". iDestruct "H" as (γ κ') "[? Hφ]". iExists γ, κ'. iFrame. + iApply (shr_bor_iff_proper with "[Hφφ'] Hφ"). iNext. iAlways. + iSplit; iIntros "H"; iDestruct "H" as (q) "[H ?]"; iExists q; iFrame; by iApply "Hφφ'". + Qed. - Lemma bor_fracture φ E κ : + Global Instance frac_bor_persistent κ : PersistentP (&frac{κ}φ) := _. + + Lemma bor_fracture E κ : ↑lftN ⊆ E → lft_ctx -∗ &{κ}(φ 1%Qp) ={E}=∗ &frac{κ}φ. Proof. iIntros (?) "#LFT Hφ". iMod (own_alloc 1%Qp) as (γ) "?". done. @@ -36,7 +44,7 @@ Section frac_bor. - iDestruct "H" as (κ') "(#Hκκ' & Hφ & Hclose)". iMod ("Hclose" with "*[-] []") as "Hφ"; last first. { iExists γ, κ'. iFrame "#". iApply (bor_share with "Hφ"). done. } - { iIntros "!>HΦ H†!>". iNext. iDestruct "HΦ" as (q') "(HΦ & _ & [%|Hκ])". by subst. + { iIntros "!>Hφ H†!>". iNext. iDestruct "Hφ" as (q') "(Hφ & _ & [%|Hκ])". by subst. iDestruct "Hκ" as (q'') "[_ Hκ]". iDestruct (lft_tok_dead with "Hκ H†") as "[]". } iExists 1%Qp. iFrame. eauto. @@ -45,7 +53,7 @@ Section frac_bor. iMod (bor_fake with "LFT H†"). done. by iApply bor_share. Qed. - Lemma frac_bor_atomic_acc E κ φ : + Lemma frac_bor_atomic_acc E κ : ↑lftN ⊆ E → lft_ctx -∗ &frac{κ}φ ={E,E∖↑lftN}=∗ (∃ q, ▷ φ q ∗ (▷ φ q ={E∖↑lftN,E}=∗ True)) ∨ [†κ] ∗ |={E∖↑lftN,E}=> True. @@ -58,85 +66,85 @@ Section frac_bor. iApply fupd_intro_mask. set_solver. done. Qed. - Lemma frac_bor_acc' E q κ Φ: + Lemma frac_bor_acc' E q κ : ↑lftN ⊆ E → - lft_ctx -∗ □ (∀ q1 q2, Φ (q1+q2)%Qp ↔ Φ q1 ∗ Φ q2) -∗ - &frac{κ}Φ -∗ q.[κ] ={E}=∗ ∃ q', ▷ Φ q' ∗ (▷ Φ q' ={E}=∗ q.[κ]). + lft_ctx -∗ □ (∀ q1 q2, φ (q1+q2)%Qp ↔ φ q1 ∗ φ q2) -∗ + &frac{κ}φ -∗ q.[κ] ={E}=∗ ∃ q', ▷ φ q' ∗ (▷ φ q' ={E}=∗ q.[κ]). Proof. - iIntros (?) "#LFT #HΦ Hfrac Hκ". unfold frac_bor. + iIntros (?) "#LFT #Hφ Hfrac Hκ". unfold frac_bor. iDestruct "Hfrac" as (γ κ') "#[#Hκκ' Hshr]". iMod (lft_incl_acc with "Hκκ' Hκ") as (qκ') "[[Hκ1 Hκ2] Hclose]". done. iMod (shr_bor_acc_tok with "LFT Hshr Hκ1") as "[H Hclose']". done. - iDestruct "H" as (qΦ) "(HΦqΦ & >Hown & Hq)". - destruct (Qp_lower_bound (qκ'/2) (qΦ/2)) as (qq & qκ'0 & qΦ0 & Hqκ' & HqΦ). + iDestruct "H" as (qφ) "(Hφqφ & >Hown & Hq)". + destruct (Qp_lower_bound (qκ'/2) (qφ/2)) as (qq & qκ'0 & qφ0 & Hqκ' & Hqφ). iExists qq. - iAssert (▷ Φ qq ∗ ▷ Φ (qΦ0 + qΦ / 2))%Qp%I with "[HΦqΦ]" as "[$ HqΦ]". - { iNext. rewrite -{1}(Qp_div_2 qΦ) {1}HqΦ. iApply "HΦ". by rewrite assoc. } - rewrite -{1}(Qp_div_2 qΦ) {1}HqΦ -assoc {1}Hqκ'. + iAssert (▷ φ qq ∗ ▷ φ (qφ0 + qφ / 2))%Qp%I with "[Hφqφ]" as "[$ Hqφ]". + { iNext. rewrite -{1}(Qp_div_2 qφ) {1}Hqφ. iApply "Hφ". by rewrite assoc. } + rewrite -{1}(Qp_div_2 qφ) {1}Hqφ -assoc {1}Hqκ'. iDestruct "Hκ2" as "[Hκq Hκqκ0]". iDestruct "Hown" as "[Hownq Hown]". - iMod ("Hclose'" with "[HqΦ Hq Hown Hκq]") as "Hκ1". + iMod ("Hclose'" with "[Hqφ Hq Hown Hκq]") as "Hκ1". { iNext. iExists _. iFrame. iRight. iDestruct "Hq" as "[%|Hq]". - subst. iExists qq. iIntros "{$Hκq}!%". - by rewrite (comm _ qΦ0) -assoc (comm _ qΦ0) -HqΦ Qp_div_2. + by rewrite (comm _ qφ0) -assoc (comm _ qφ0) -Hqφ Qp_div_2. - iDestruct "Hq" as (q') "[% Hq'κ]". iExists (qq + q')%Qp. - iIntros "{$Hκq $Hq'κ}!%". by rewrite assoc (comm _ _ qq) assoc -HqΦ Qp_div_2. } - clear HqΦ qΦ qΦ0. iIntros "!>HqΦ". + iIntros "{$Hκq $Hq'κ}!%". by rewrite assoc (comm _ _ qq) assoc -Hqφ Qp_div_2. } + clear Hqφ qφ qφ0. iIntros "!>Hqφ". iMod (shr_bor_acc_tok with "LFT Hshr Hκ1") as "[H Hclose']". done. - iDestruct "H" as (qΦ) "(HΦqΦ & >Hown & >[%|Hq])". + iDestruct "H" as (qφ) "(Hφqφ & >Hown & >[%|Hq])". { subst. iCombine "Hown" "Hownq" as "Hown". by iDestruct (own_valid with "Hown") as %Hval%Qp_not_plus_q_ge_1. } - iDestruct "Hq" as (q') "[HqΦq' Hq'κ]". iCombine "Hown" "Hownq" as "Hown". - iDestruct (own_valid with "Hown") as %Hval. iDestruct "HqΦq'" as %HqΦq'. + iDestruct "Hq" as (q') "[Hqφq' Hq'κ]". iCombine "Hown" "Hownq" as "Hown". + iDestruct (own_valid with "Hown") as %Hval. iDestruct "Hqφq'" as %Hqφq'. assert (0 < q'-qq ∨ qq = q')%Qc as [Hq'q|<-]. - { change (qΦ + qq ≤ 1)%Qc in Hval. apply Qp_eq in HqΦq'. simpl in Hval, HqΦq'. - rewrite <-HqΦq', <-Qcplus_le_mono_l in Hval. apply Qcle_lt_or_eq in Hval. + { change (qφ + qq ≤ 1)%Qc in Hval. apply Qp_eq in Hqφq'. simpl in Hval, Hqφq'. + rewrite <-Hqφq', <-Qcplus_le_mono_l in Hval. apply Qcle_lt_or_eq in Hval. destruct Hval as [Hval|Hval]. by left; apply ->Qclt_minus_iff. right; apply Qp_eq, Qc_is_canon. by rewrite Hval. } - assert (q' = mk_Qp _ Hq'q + qq)%Qp as ->. { apply Qp_eq. simpl. ring. } iDestruct "Hq'κ" as "[Hq'qκ Hqκ]". - iMod ("Hclose'" with "[HqΦ HΦqΦ Hown Hq'qκ]") as "Hqκ2". - { iNext. iExists (qΦ + qq)%Qp. iFrame. iSplitR "Hq'qκ". by iApply "HΦ"; iFrame. + iMod ("Hclose'" with "[Hqφ Hφqφ Hown Hq'qκ]") as "Hqκ2". + { iNext. iExists (qφ + qq)%Qp. iFrame. iSplitR "Hq'qκ". by iApply "Hφ"; iFrame. iRight. iExists _. iIntros "{$Hq'qκ}!%". - revert HqΦq'. rewrite !Qp_eq. move=>/=<-. ring. } + revert Hqφq'. rewrite !Qp_eq. move=>/=<-. ring. } iApply "Hclose". iFrame. rewrite Hqκ'. by iFrame. - - iMod ("Hclose'" with "[HqΦ HΦqΦ Hown]") as "Hqκ2". - { iNext. iExists (qΦ ⋅ qq)%Qp. iFrame. iSplitL. by iApply "HΦ"; iFrame. auto. } + - iMod ("Hclose'" with "[Hqφ Hφqφ Hown]") as "Hqκ2". + { iNext. iExists (qφ ⋅ qq)%Qp. iFrame. iSplitL. by iApply "Hφ"; iFrame. auto. } iApply "Hclose". iFrame. rewrite Hqκ'. by iFrame. Qed. - Lemma frac_bor_acc E q κ `{Fractional _ Φ} : + Lemma frac_bor_acc E q κ `{Fractional _ φ} : ↑lftN ⊆ E → - lft_ctx -∗ &frac{κ}Φ -∗ q.[κ] ={E}=∗ ∃ q', ▷ Φ q' ∗ (▷ Φ q' ={E}=∗ q.[κ]). + lft_ctx -∗ &frac{κ}φ -∗ q.[κ] ={E}=∗ ∃ q', ▷ φ q' ∗ (▷ φ q' ={E}=∗ q.[κ]). Proof. iIntros (?) "LFT". iApply (frac_bor_acc' with "LFT"). done. iIntros "!#*". rewrite fractional. iSplit; auto. Qed. - Lemma frac_bor_shorten κ κ' Φ: κ ⊑ κ' -∗ &frac{κ'}Φ -∗ &frac{κ}Φ. + Lemma frac_bor_shorten κ κ' : κ ⊑ κ' -∗ &frac{κ'}φ -∗ &frac{κ}φ. Proof. iIntros "Hκκ' H". iDestruct "H" as (γ κ0) "[#H⊑ ?]". iExists γ, κ0. iFrame. iApply (lft_incl_trans with "Hκκ' []"). auto. Qed. - Lemma frac_bor_fake E κ Φ: - ↑lftN ⊆ E → lft_ctx -∗ [†κ] ={E}=∗ &frac{κ}Φ. + Lemma frac_bor_fake E κ : + ↑lftN ⊆ E → lft_ctx -∗ [†κ] ={E}=∗ &frac{κ}φ. Proof. iIntros (?) "#LFT#H†". iApply (bor_fracture with "LFT >"). done. by iApply (bor_fake with "LFT"). Qed. - - Lemma frac_bor_lft_incl κ κ' q: - lft_ctx -∗ &frac{κ}(λ q', (q * q').[κ']) -∗ κ ⊑ κ'. - Proof. - iIntros "#LFT#Hbor". iApply lft_incl_intro. iAlways. iSplitR. - - iIntros (q') "Hκ'". - iMod (frac_bor_acc with "LFT Hbor Hκ'") as (q'') "[>? Hclose]". done. - iExists _. iFrame. iIntros "!>Hκ'". iApply "Hclose". auto. - - iIntros "H†'". - iMod (frac_bor_atomic_acc with "LFT Hbor") as "[H|[$ $]]". done. - iDestruct "H" as (q') "[>Hκ' _]". - iDestruct (lft_tok_dead with "Hκ' H†'") as "[]". - Qed. End frac_bor. +Lemma frac_bor_lft_incl `{invG Σ, lftG Σ, frac_borG Σ} κ κ' q: + lft_ctx -∗ &frac{κ}(λ q', (q * q').[κ']) -∗ κ ⊑ κ'. +Proof. + iIntros "#LFT#Hbor". iApply lft_incl_intro. iAlways. iSplitR. + - iIntros (q') "Hκ'". + iMod (frac_bor_acc with "LFT Hbor Hκ'") as (q'') "[>? Hclose]". done. + iExists _. iFrame. iIntros "!>Hκ'". iApply "Hclose". auto. + - iIntros "H†'". + iMod (frac_bor_atomic_acc with "LFT Hbor") as "[H|[$ $]]". done. + iDestruct "H" as (q') "[>Hκ' _]". + iDestruct (lft_tok_dead with "Hκ' H†'") as "[]". +Qed. + Typeclasses Opaque frac_bor. diff --git a/theories/lifetime/na_borrow.v b/theories/lifetime/na_borrow.v index 3e7940eb..0c59478b 100644 --- a/theories/lifetime/na_borrow.v +++ b/theories/lifetime/na_borrow.v @@ -14,14 +14,19 @@ Section na_bor. Context `{invG Σ, lftG Σ, na_invG Σ} (tid : na_inv_pool_name) (N : namespace) (P : iProp Σ). - Global Instance na_bor_ne κ tid N n : - Proper (dist n ==> dist n) (na_bor κ tid N). + Global Instance na_bor_ne κ n : Proper (dist n ==> dist n) (na_bor κ tid N). Proof. solve_proper. Qed. - Global Instance na_bor_contractive κ tid N : Contractive (na_bor κ tid N). + Global Instance na_bor_contractive κ : Contractive (na_bor κ tid N). Proof. solve_contractive. Qed. - Global Instance na_bor_proper κ tid N : - Proper ((⊣⊢) ==> (⊣⊢)) (na_bor κ tid N). + Global Instance na_bor_proper κ : Proper ((⊣⊢) ==> (⊣⊢)) (na_bor κ tid N). Proof. solve_proper. Qed. + Lemma na_bor_iff_proper κ P' : + ▷ □ (P ↔ P') -∗ &na{κ, tid, N} P -∗ &na{κ, tid, N} P'. + Proof. + iIntros "HPP' H". iDestruct "H" as (i) "[HP ?]". iExists i. iFrame. + iApply (idx_bor_iff_proper with "HPP' HP"). + Qed. + Global Instance na_bor_persistent κ : PersistentP (&na{κ,tid,N} P) := _. Lemma bor_na κ E : ↑lftN ⊆ E → &{κ}P ={E}=∗ &na{κ,tid,N}P. diff --git a/theories/lifetime/shr_borrow.v b/theories/lifetime/shr_borrow.v index 56a23e07..d4984e20 100644 --- a/theories/lifetime/shr_borrow.v +++ b/theories/lifetime/shr_borrow.v @@ -18,6 +18,12 @@ Section shared_bors. Proof. solve_contractive. Qed. Global Instance shr_bor_proper : Proper ((⊣⊢) ==> (⊣⊢)) (shr_bor κ). Proof. solve_proper. Qed. + Lemma shr_bor_iff_proper κ P' : ▷ □ (P ↔ P') -∗ &shr{κ} P -∗ &shr{κ} P'. + Proof. + iIntros "HPP' H". iDestruct "H" as (i) "[HP ?]". iExists i. iFrame. + iApply (idx_bor_iff_proper with "HPP' HP"). + Qed. + Global Instance shr_bor_persistent : PersistentP (&shr{κ} P) := _. Lemma bor_share E κ : ↑lftN ⊆ E → &{κ}P ={E}=∗ &shr{κ}P. diff --git a/theories/typing/unsafe/cell.v b/theories/typing/unsafe/cell.v index f01a36be..b656ebd8 100644 --- a/theories/typing/unsafe/cell.v +++ b/theories/typing/unsafe/cell.v @@ -13,16 +13,13 @@ Section cell. Program Definition cell (ty : type) := {| ty_size := ty.(ty_size); ty_own := ty.(ty_own); - ty_shr κ tid l := - (∃ P, ▷ □ (P ↔ l ↦∗: ty.(ty_own) tid) ∗ &na{κ, tid, shrN.@l}P)%I |}. + ty_shr κ tid l := (&na{κ, tid, shrN.@l}l ↦∗: ty.(ty_own) tid)%I |}. Next Obligation. apply ty_size_eq. Qed. Next Obligation. - iIntros (ty E κ l tid q ?) "#LFT Hown $". iExists _. - iMod (bor_na with "Hown") as "$". set_solver. iIntros "!>!>!#". iSplit; auto. + iIntros (ty E κ l tid q ?) "#LFT Hown $". by iApply (bor_na with "Hown"). Qed. Next Obligation. - iIntros (ty ?? tid l) "#LFT #H⊑ H". iDestruct "H" as (P) "[??]". - iExists _. iFrame. by iApply (na_bor_shorten with "H⊑"). + iIntros (ty ?? tid l) "#LFT #H⊑ H". by iApply (na_bor_shorten with "H⊑"). Qed. Global Instance cell_ne n : Proper (dist n ==> dist n) cell. @@ -37,9 +34,8 @@ Section cell. iDestruct (EQ with "LFT HE HL") as "(% & #Hown & #Hshr)". iSplit; [done|iSplit; iIntros "!# * H"]. - iApply ("Hown" with "H"). - - iDestruct "H" as (P) "[#HP H]". iExists P. iFrame. iSplit; iNext; iIntros "!# H". - + iDestruct ("HP" with "H") as (vl) "[??]". iExists vl. iFrame. by iApply "Hown". - + iApply "HP". iDestruct "H" as (vl) "[??]". iExists vl. iFrame. by iApply "Hown". + - iApply (na_bor_iff_proper with "[] H"). iSplit; iIntros "!>!# H"; + iDestruct "H" as (vl) "[??]"; iExists vl; iFrame; by iApply "Hown". Qed. Lemma cell_mono' E L ty1 ty2 : eqtype E L ty1 ty2 → subtype E L (cell ty1) (cell ty2). Proof. eapply cell_mono. Qed. @@ -53,25 +49,23 @@ Section cell. Proof. intros ty Hcopy. split; first by intros; simpl; apply _. iIntros (κ tid E F l q ??) "#LFT #Hshr Htl Htok". iExists 1%Qp. simpl in *. - iDestruct "Hshr" as (P) "[HP Hshr]". (* Size 0 needs a special case as we can't keep the thread-local invariant open. *) destruct (ty_size ty) as [|sz] eqn:Hsz. { iMod (na_bor_acc with "LFT Hshr Htok Htl") as "(Hown & Htl & Hclose)"; [solve_ndisj..|]. - iDestruct ("HP" with "Hown") as (vl) "[H↦ #Hown]". + iDestruct "Hown" as (vl) "[H↦ #Hown]". simpl. assert (F ∖ ∅ = F) as -> by set_solver+. iDestruct (ty_size_eq with "Hown") as "#>%". rewrite ->Hsz in *. iMod ("Hclose" with "[H↦] Htl") as "[$ $]". - { iApply "HP". iExists vl. by iFrame. } + { iExists vl. by iFrame. } iModIntro. iSplitL "". { iNext. iExists vl. destruct vl; last done. iFrame "Hown". by iApply heap_mapsto_vec_nil. } by iIntros "$ _". } (* Now we are in the non-0 case. *) - iMod (na_bor_acc with "LFT Hshr Htok Htl") as "(H & Htl & Hclose)"; [solve_ndisj..|]. - iDestruct ("HP" with "H") as "$". + iMod (na_bor_acc with "LFT Hshr Htok Htl") as "($ & Htl & Hclose)"; [solve_ndisj..|]. iDestruct (na_own_acc with "Htl") as "($ & Hclose')"; first by set_solver. iIntros "!> Htl Hown". iPoseProof ("Hclose'" with "Htl") as "Htl". - iMod ("Hclose" with "[Hown] Htl") as "[$ $]"; last done. by iApply "HP". + by iMod ("Hclose" with "Hown Htl") as "[$ $]". Qed. Global Instance cell_send : @@ -147,22 +141,20 @@ Section typing. { (* The core of the proof: Showing that the assignment is safe. *) iAlways. iIntros (tid qE) "#HEAP #LFT Htl HE $". rewrite tctx_interp_cons tctx_interp_singleton !tctx_hasty_val. - iIntros "[Hd Hx]". rewrite {1}/elctx_interp big_opL_singleton /=. - destruct d as [[]|]; try iDestruct "Hd" as "[]". iDestruct "Hd" as (P) "[#HP #Hshr]". + iIntros "[#Hshr Hx]". rewrite {1}/elctx_interp big_opL_singleton /=. + destruct d as [[]|]; try iDestruct "Hshr" as "[]". destruct x as [[]|]; try iDestruct "Hx" as "[]". iDestruct "Hx" as "[Hown >H†]". iDestruct "Hown" as (vl') "[>H↦' Hown']". iMod (na_bor_acc with "LFT Hshr HE Htl") as "(Hown & Htl & Hclose)"; [solve_ndisj..|]. - iDestruct ("HP" with "Hown") as (vl) "[>H↦ Hown]". + iDestruct ("Hown") as (vl) "[>H↦ Hown]". iDestruct (ty_size_eq with "Hown") as "#>%". iDestruct (ty_size_eq with "Hown'") as "#>%". iApply wp_fupd. iApply (wp_memcpy with "[$HEAP $H↦ $H↦']"); [done..|]. iNext. iIntros "[H↦ H↦']". rewrite {1}/elctx_interp big_opL_singleton /=. iMod ("Hclose" with "[H↦ Hown'] Htl") as "[$ $]". - { iApply "HP". iExists vl'. by iFrame. } + { iExists vl'. by iFrame. } rewrite tctx_interp_cons tctx_interp_singleton !tctx_hasty_val' //. - iSplitR; iModIntro. - - iExists _. simpl. eauto. - - iFrame. iExists _. iFrame. rewrite uninit_own. auto. } + iFrame "∗#". iExists _. iFrame. rewrite uninit_own. auto. } intros v. simpl_subst. clear v. eapply type_new; [solve_typing..|]. intros r. simpl_subst. -- GitLab