From dc3ff29e295d5fdaa3756e49c8c13905281d8233 Mon Sep 17 00:00:00 2001 From: Hoang-Hai Dang <haidang@mpi-sws.org> Date: Wed, 6 Mar 2019 22:46:57 +0100 Subject: [PATCH] fix merge + bump gpfsl --- opam | 2 +- theories/lang/adequacy.v | 32 -- theories/lang/heap.v | 548 ------------------------------- theories/lang/lang.v | 660 -------------------------------------- theories/lang/lifting.v | 377 ---------------------- theories/lang/proofmode.v | 259 --------------- theories/lang/spawn.v | 2 +- 7 files changed, 2 insertions(+), 1878 deletions(-) delete mode 100644 theories/lang/adequacy.v delete mode 100644 theories/lang/heap.v delete mode 100644 theories/lang/lang.v delete mode 100644 theories/lang/lifting.v delete mode 100644 theories/lang/proofmode.v diff --git a/opam b/opam index 9027351e..15107505 100644 --- a/opam +++ b/opam @@ -10,5 +10,5 @@ build: [make "-j%{jobs}%"] install: [make "install"] remove: [ "sh" "-c" "rm -rf '%{lib}%/coq/user-contrib/lrust'" ] depends: [ - "coq-gpfsl" { (= "dev.2019-03-04.0.5f34e857") | (= "dev") } + "coq-gpfsl" { (= "dev.2019-03-06.1.8f1c2d76") | (= "dev") } ] diff --git a/theories/lang/adequacy.v b/theories/lang/adequacy.v deleted file mode 100644 index 05315b8c..00000000 --- a/theories/lang/adequacy.v +++ /dev/null @@ -1,32 +0,0 @@ -From iris.program_logic Require Export adequacy weakestpre. -From iris.algebra Require Import auth. -From lrust.lang Require Export heap. -From lrust.lang Require Import proofmode notation. -Set Default Proof Using "Type". - -Class lrustPreG Σ := HeapPreG { - lrust_preG_irig :> invPreG Σ; - lrust_preG_heap :> inG Σ (authR heapUR); - lrust_preG_heap_freeable :> inG Σ (authR heap_freeableUR) -}. - -Definition lrustΣ : gFunctors := - #[invΣ; - GFunctor (constRF (authR heapUR)); - GFunctor (constRF (authR heap_freeableUR))]. -Instance subG_heapPreG {Σ} : subG lrustΣ Σ → lrustPreG Σ. -Proof. solve_inG. Qed. - -Definition lrust_adequacy Σ `{!lrustPreG Σ} e σ φ : - (∀ `{!lrustG Σ}, True ⊢ WP e {{ v, ⌜φ v⌝ }}) → - adequate NotStuck e σ (λ v _, φ v). -Proof. - intros Hwp; eapply (wp_adequacy _ _); iIntros (??). - iMod (own_alloc (● to_heap σ)) as (vγ) "Hvγ". - { apply (auth_auth_valid (to_heap _)), to_heap_valid. } - iMod (own_alloc (● (∅ : heap_freeableUR))) as (fγ) "Hfγ"; first done. - set (Hheap := HeapG _ _ _ vγ fγ). - iModIntro. iExists (λ σ _, heap_ctx σ). iSplitL. - { iExists ∅. by iFrame. } - by iApply (Hwp (LRustG _ _ Hheap)). -Qed. diff --git a/theories/lang/heap.v b/theories/lang/heap.v deleted file mode 100644 index 38b14062..00000000 --- a/theories/lang/heap.v +++ /dev/null @@ -1,548 +0,0 @@ -From Coq Require Import Min. -From stdpp Require Import coPset. -From iris.algebra Require Import big_op gmap frac agree. -From iris.algebra Require Import csum excl auth cmra_big_op. -From iris.bi Require Import fractional. -From iris.base_logic Require Export lib.own. -From iris.proofmode Require Export tactics. -From lrust.lang Require Export lang. -Set Default Proof Using "Type". -Import uPred. - -Definition lock_stateR : cmraT := - csumR (exclR unitC) natR. - -Definition heapUR : ucmraT := - gmapUR loc (prodR (prodR fracR lock_stateR) (agreeR valC)). - -Definition heap_freeableUR : ucmraT := - gmapUR block (prodR fracR (gmapR Z (exclR unitC))). - -Class heapG Σ := HeapG { - heap_inG :> inG Σ (authR heapUR); - heap_freeable_inG :> inG Σ (authR heap_freeableUR); - heap_name : gname; - heap_freeable_name : gname -}. - -Definition to_lock_stateR (x : lock_state) : lock_stateR := - match x with RSt n => Cinr n | WSt => Cinl (Excl ()) end. -Definition to_heap : state → heapUR := - fmap (λ v, (1%Qp, to_lock_stateR (v.1), to_agree (v.2))). -Definition heap_freeable_rel (σ : state) (hF : heap_freeableUR) : Prop := - ∀ blk qs, hF !! blk = Some qs → - qs.2 ≠ ∅ ∧ ∀ i, is_Some (σ !! (blk, i)) ↔ is_Some (qs.2 !! i). - -Section definitions. - Context `{!heapG Σ}. - - Definition heap_mapsto_st (st : lock_state) - (l : loc) (q : Qp) (v: val) : iProp Σ := - own heap_name (◯ {[ l := (q, to_lock_stateR st, to_agree v) ]}). - - Definition heap_mapsto_def (l : loc) (q : Qp) (v: val) : iProp Σ := - heap_mapsto_st (RSt 0) l q v. - Definition heap_mapsto_aux : seal (@heap_mapsto_def). by eexists. Qed. - Definition heap_mapsto := unseal heap_mapsto_aux. - Definition heap_mapsto_eq : @heap_mapsto = @heap_mapsto_def := - seal_eq heap_mapsto_aux. - - Definition heap_mapsto_vec (l : loc) (q : Qp) (vl : list val) : iProp Σ := - ([∗ list] i ↦ v ∈ vl, heap_mapsto (l +ₗ i) q v)%I. - - Fixpoint inter (i0 : Z) (n : nat) : gmapR Z (exclR unitC) := - match n with O => ∅ | S n => <[i0 := Excl ()]>(inter (i0+1) n) end. - - Definition heap_freeable_def (l : loc) (q : Qp) (n: nat) : iProp Σ := - own heap_freeable_name (◯ {[ l.1 := (q, inter (l.2) n) ]}). - Definition heap_freeable_aux : seal (@heap_freeable_def). by eexists. Qed. - Definition heap_freeable := unseal heap_freeable_aux. - Definition heap_freeable_eq : @heap_freeable = @heap_freeable_def := - seal_eq heap_freeable_aux. - - Definition heap_ctx (σ:state) : iProp Σ := - (∃ hF, own heap_name (● to_heap σ) - ∗ own heap_freeable_name (● hF) - ∗ ⌜heap_freeable_rel σ hF⌝)%I. -End definitions. - -Typeclasses Opaque heap_mapsto heap_freeable heap_mapsto_vec. -Instance: Params (@heap_mapsto) 4 := {}. -Instance: Params (@heap_freeable) 5 := {}. - -Notation "l ↦{ q } v" := (heap_mapsto l q v) - (at level 20, q at level 50, format "l ↦{ q } v") : bi_scope. -Notation "l ↦ v" := (heap_mapsto l 1 v) (at level 20) : bi_scope. - -Notation "l ↦∗{ q } vl" := (heap_mapsto_vec l q vl) - (at level 20, q at level 50, format "l ↦∗{ q } vl") : bi_scope. -Notation "l ↦∗ vl" := (heap_mapsto_vec l 1 vl) (at level 20) : bi_scope. - -Notation "l ↦∗{ q }: P" := (∃ vl, l ↦∗{ q } vl ∗ P vl)%I - (at level 20, q at level 50, format "l ↦∗{ q }: P") : bi_scope. -Notation "l ↦∗: P " := (∃ vl, l ↦∗ vl ∗ P vl)%I - (at level 20, format "l ↦∗: P") : bi_scope. - -Notation "†{ q } l … n" := (heap_freeable l q n) - (at level 20, q at level 50, format "†{ q } l … n") : bi_scope. -Notation "† l … n" := (heap_freeable l 1 n) (at level 20) : bi_scope. - -Section to_heap. - Implicit Types σ : state. - - Lemma to_heap_valid σ : ✓ to_heap σ. - Proof. intros l. rewrite lookup_fmap. case (σ !! l)=> [[[|n] v]|] //=. Qed. - - Lemma lookup_to_heap_None σ l : σ !! l = None → to_heap σ !! l = None. - Proof. by rewrite /to_heap lookup_fmap=> ->. Qed. - - Lemma to_heap_insert σ l x v : - to_heap (<[l:=(x, v)]> σ) - = <[l:=(1%Qp, to_lock_stateR x, to_agree v)]> (to_heap σ). - Proof. by rewrite /to_heap fmap_insert. Qed. - - Lemma to_heap_delete σ l : to_heap (delete l σ) = delete l (to_heap σ). - Proof. by rewrite /to_heap fmap_delete. Qed. -End to_heap. - -Section heap. - Context `{!heapG Σ}. - Implicit Types P Q : iProp Σ. - Implicit Types σ : state. - Implicit Types E : coPset. - - (** General properties of mapsto and freeable *) - Global Instance heap_mapsto_timeless l q v : Timeless (l↦{q}v). - Proof. rewrite heap_mapsto_eq /heap_mapsto_def. apply _. Qed. - - Global Instance heap_mapsto_fractional l v: Fractional (λ q, l ↦{q} v)%I. - Proof. - intros p q. - by rewrite heap_mapsto_eq -own_op -auth_frag_op op_singleton pair_op agree_idemp. - Qed. - Global Instance heap_mapsto_as_fractional l q v: - AsFractional (l ↦{q} v) (λ q, l ↦{q} v)%I q. - Proof. split. done. apply _. Qed. - - Global Instance heap_mapsto_vec_timeless l q vl : Timeless (l ↦∗{q} vl). - Proof. rewrite /heap_mapsto_vec. apply _. Qed. - - Global Instance heap_mapsto_vec_fractional l vl: Fractional (λ q, l ↦∗{q} vl)%I. - Proof. - intros p q. rewrite /heap_mapsto_vec -big_sepL_sepL. - by setoid_rewrite (fractional (Φ := λ q, _ ↦{q} _)%I). - Qed. - Global Instance heap_mapsto_vec_as_fractional l q vl: - AsFractional (l ↦∗{q} vl) (λ q, l ↦∗{q} vl)%I q. - Proof. split. done. apply _. Qed. - - Global Instance heap_freeable_timeless q l n : Timeless (†{q}l…n). - Proof. rewrite heap_freeable_eq /heap_freeable_def. apply _. Qed. - - Lemma heap_mapsto_agree l q1 q2 v1 v2 : l ↦{q1} v1 ∗ l ↦{q2} v2 ⊢ ⌜v1 = v2⌝. - Proof. - rewrite heap_mapsto_eq -own_op -auth_frag_op own_valid discrete_valid. - eapply pure_elim; [done|]=> /auth_own_valid /=. - rewrite op_singleton pair_op singleton_valid=> -[? /agree_op_invL'->]; eauto. - Qed. - - Lemma heap_mapsto_vec_nil l q : l ↦∗{q} [] ⊣⊢ True. - Proof. by rewrite /heap_mapsto_vec. Qed. - - Lemma heap_mapsto_vec_app l q vl1 vl2 : - l ↦∗{q} (vl1 ++ vl2) ⊣⊢ l ↦∗{q} vl1 ∗ (l +ₗ length vl1) ↦∗{q} vl2. - Proof. - rewrite /heap_mapsto_vec big_sepL_app. - do 2 f_equiv. intros k v. by rewrite shift_loc_assoc_nat. - Qed. - - Lemma heap_mapsto_vec_singleton l q v : l ↦∗{q} [v] ⊣⊢ l ↦{q} v. - Proof. by rewrite /heap_mapsto_vec /= shift_loc_0 right_id. Qed. - - Lemma heap_mapsto_vec_cons l q v vl: - l ↦∗{q} (v :: vl) ⊣⊢ l ↦{q} v ∗ (l +ₗ 1) ↦∗{q} vl. - Proof. - by rewrite (heap_mapsto_vec_app l q [v] vl) heap_mapsto_vec_singleton. - Qed. - - Lemma heap_mapsto_vec_op l q1 q2 vl1 vl2 : - length vl1 = length vl2 → - l ↦∗{q1} vl1 ∗ l ↦∗{q2} vl2 ⊣⊢ ⌜vl1 = vl2⌝ ∧ l ↦∗{q1+q2} vl1. - Proof. - intros Hlen%Forall2_same_length. apply (anti_symm (⊢)). - - revert l. induction Hlen as [|v1 v2 vl1 vl2 _ _ IH]=> l. - { rewrite !heap_mapsto_vec_nil. iIntros "_"; auto. } - rewrite !heap_mapsto_vec_cons. iIntros "[[Hv1 Hvl1] [Hv2 Hvl2]]". - iDestruct (IH (l +ₗ 1) with "[$Hvl1 $Hvl2]") as "[% $]"; subst. - rewrite (inj_iff (:: vl2)). - iDestruct (heap_mapsto_agree with "[$Hv1 $Hv2]") as %<-. - iSplit; first done. iFrame. - - by iIntros "[% [$ Hl2]]"; subst. - Qed. - - Lemma heap_mapsto_pred_op l q1 q2 n (Φ : list val → iProp Σ) : - (∀ vl, Φ vl -∗ ⌜length vl = n⌝) → - l ↦∗{q1}: Φ ∗ l ↦∗{q2}: (λ vl, ⌜length vl = n⌝) ⊣⊢ l ↦∗{q1+q2}: Φ. - Proof. - intros Hlen. iSplit. - - iIntros "[Hmt1 Hmt2]". - iDestruct "Hmt1" as (vl) "[Hmt1 Hown]". iDestruct "Hmt2" as (vl') "[Hmt2 %]". - iDestruct (Hlen with "Hown") as %?. - iCombine "Hmt1" "Hmt2" as "Hmt". rewrite heap_mapsto_vec_op; last congruence. - iDestruct "Hmt" as "[_ Hmt]". iExists vl. by iFrame. - - iIntros "Hmt". iDestruct "Hmt" as (vl) "[[Hmt1 Hmt2] Hown]". - iDestruct (Hlen with "Hown") as %?. - iSplitL "Hmt1 Hown"; iExists _; by iFrame. - Qed. - - Lemma heap_mapsto_pred_wand l q Φ1 Φ2 : - l ↦∗{q}: Φ1 -∗ (∀ vl, Φ1 vl -∗ Φ2 vl) -∗ l ↦∗{q}: Φ2. - Proof. - iIntros "Hm Hwand". iDestruct "Hm" as (vl) "[Hm HΦ]". iExists vl. - iFrame "Hm". by iApply "Hwand". - Qed. - - Lemma heap_mapsto_pred_iff_proper l q Φ1 Φ2 : - □ (∀ vl, Φ1 vl ↔ Φ2 vl) -∗ □ (l ↦∗{q}: Φ1 ↔ l ↦∗{q}: Φ2). - Proof. - iIntros "#HΦ !#". iSplit; iIntros; iApply (heap_mapsto_pred_wand with "[-]"); try done; [|]; - iIntros; by iApply "HΦ". - Qed. - - Lemma heap_mapsto_vec_combine l q vl : - vl ≠ [] → - l ↦∗{q} vl ⊣⊢ own heap_name (◯ [^op list] i ↦ v ∈ vl, - {[l +ₗ i := (q, Cinr 0%nat, to_agree v)]}). - Proof. - rewrite /heap_mapsto_vec heap_mapsto_eq /heap_mapsto_def /heap_mapsto_st=>?. - by rewrite (big_opL_commute (Auth None)) big_opL_commute1 //. - Qed. - - Global Instance heap_mapsto_pred_fractional l (P : list val → iProp Σ): - (∀ vl, Persistent (P vl)) → Fractional (λ q, l ↦∗{q}: P)%I. - Proof. - intros p q q'. iSplit. - - iIntros "H". iDestruct "H" as (vl) "[[Hown1 Hown2] #HP]". - iSplitL "Hown1"; eauto. - - iIntros "[H1 H2]". iDestruct "H1" as (vl1) "[Hown1 #HP1]". - iDestruct "H2" as (vl2) "[Hown2 #HP2]". - set (ll := min (length vl1) (length vl2)). - rewrite -[vl1](firstn_skipn ll) -[vl2](firstn_skipn ll) 2!heap_mapsto_vec_app. - iDestruct "Hown1" as "[Hown1 _]". iDestruct "Hown2" as "[Hown2 _]". - iCombine "Hown1" "Hown2" as "Hown". rewrite heap_mapsto_vec_op; last first. - { rewrite !firstn_length. subst ll. - rewrite -!min_assoc min_idempotent min_comm -min_assoc min_idempotent min_comm. done. } - iDestruct "Hown" as "[H Hown]". iDestruct "H" as %Hl. iExists (take ll vl1). iFrame. - destruct (min_spec (length vl1) (length vl2)) as [[Hne Heq]|[Hne Heq]]. - + iClear "HP2". rewrite take_ge; last first. - { rewrite -Heq /ll. done. } - rewrite drop_ge; first by rewrite app_nil_r. by rewrite -Heq. - + iClear "HP1". rewrite Hl take_ge; last first. - { rewrite -Heq /ll. done. } - rewrite drop_ge; first by rewrite app_nil_r. by rewrite -Heq. - Qed. - Global Instance heap_mapsto_pred_as_fractional l q (P : list val → iProp Σ): - (∀ vl, Persistent (P vl)) → AsFractional (l ↦∗{q}: P) (λ q, l ↦∗{q}: P)%I q. - Proof. split. done. apply _. Qed. - - Lemma inter_lookup_Some i j (n : nat): - i ≤ j < i+n → inter i n !! j = Excl' (). - Proof. - revert i. induction n as [|n IH]=>/= i; first lia. - rewrite lookup_insert_Some. destruct (decide (i = j)); naive_solver lia. - Qed. - Lemma inter_lookup_None i j (n : nat): - j < i ∨ i+n ≤ j → inter i n !! j = None. - Proof. - revert i. induction n as [|n IH]=>/= i; first by rewrite lookup_empty. - rewrite lookup_insert_None. naive_solver lia. - Qed. - Lemma inter_op i n n' : inter i n ⋅ inter (i+n) n' ≡ inter i (n+n'). - Proof. - intros j. rewrite lookup_op. - destruct (decide (i ≤ j < i+n)); last destruct (decide (i+n ≤ j < i+n+n')). - - by rewrite (inter_lookup_None (i+n) j n') ?inter_lookup_Some; try lia. - - by rewrite (inter_lookup_None i j n) ?inter_lookup_Some; try lia. - - by rewrite !inter_lookup_None; try lia. - Qed. - Lemma inter_valid i n : ✓ inter i n. - Proof. revert i. induction n as [|n IH]=>i. done. by apply insert_valid. Qed. - - Lemma heap_freeable_op_eq l q1 q2 n n' : - †{q1}l…n ∗ †{q2}l+ₗn … n' ⊣⊢ †{q1+q2}l…(n+n'). - Proof. - by rewrite heap_freeable_eq /heap_freeable_def -own_op -auth_frag_op - op_singleton pair_op inter_op. - Qed. - - (** Properties about heap_freeable_rel and heap_freeable *) - Lemma heap_freeable_rel_None σ l hF : - (∀ m : Z, σ !! (l +ₗ m) = None) → heap_freeable_rel σ hF → - hF !! l.1 = None. - Proof. - intros FRESH REL. apply eq_None_not_Some. intros [[q s] [Hsne REL']%REL]. - destruct (map_choose s) as [i []%REL'%not_eq_None_Some]; first done. - move: (FRESH (i - l.2)). by rewrite /shift_loc Zplus_minus. - Qed. - - Lemma heap_freeable_is_Some σ hF l n i : - heap_freeable_rel σ hF → - hF !! l.1 = Some (1%Qp, inter (l.2) n) → - is_Some (σ !! (l +ₗ i)) ↔ 0 ≤ i ∧ i < n. - Proof. - destruct l as [b j]; rewrite /shift_loc /=. intros REL Hl. - destruct (REL b (1%Qp, inter j n)) as [_ ->]; simpl in *; auto. - destruct (decide (0 ≤ i ∧ i < n)). - - rewrite is_Some_alt inter_lookup_Some; lia. - - rewrite is_Some_alt inter_lookup_None; lia. - Qed. - - Lemma heap_freeable_rel_init_mem l h n σ: - n ≠ O → - (∀ m : Z, σ !! (l +ₗ m) = None) → - heap_freeable_rel σ h → - heap_freeable_rel (init_mem l n σ) - (<[l.1 := (1%Qp, inter (l.2) n)]> h). - Proof. - move=> Hvlnil FRESH REL blk qs /lookup_insert_Some [[<- <-]|[??]]. - - split. - { destruct n as [|n]; simpl in *; [done|]. apply: insert_non_empty. } - intros i. destruct (decide (l.2 ≤ i ∧ i < l.2 + n)). - + rewrite inter_lookup_Some // lookup_init_mem; naive_solver. - + rewrite inter_lookup_None; last lia. rewrite lookup_init_mem_ne /=; last lia. - replace (l.1,i) with (l +ₗ (i - l.2)) by (rewrite /shift_loc; f_equal; lia). - by rewrite FRESH !is_Some_alt. - - destruct (REL blk qs) as [? Hs]; auto. - split; [done|]=> i. by rewrite -Hs lookup_init_mem_ne; last auto. - Qed. - - Lemma heap_freeable_rel_free_mem σ hF n l : - hF !! l.1 = Some (1%Qp, inter (l.2) n) → - heap_freeable_rel σ hF → - heap_freeable_rel (free_mem l n σ) (delete (l.1) hF). - Proof. - intros Hl REL b qs; rewrite lookup_delete_Some=> -[NEQ ?]. - destruct (REL b qs) as [? REL']; auto. - split; [done|]=> i. by rewrite -REL' lookup_free_mem_ne. - Qed. - - Lemma heap_freeable_rel_stable σ h l p : - heap_freeable_rel σ h → is_Some (σ !! l) → - heap_freeable_rel (<[l := p]>σ) h. - Proof. - intros REL Hσ blk qs Hqs. destruct (REL blk qs) as [? REL']; first done. - split; [done|]=> i. rewrite -REL' lookup_insert_is_Some. - destruct (decide (l = (blk, i))); naive_solver. - Qed. - - (** Weakest precondition *) - Lemma heap_alloc_vs σ l n : - (∀ m : Z, σ !! (l +ₗ m) = None) → - own heap_name (● to_heap σ) - ==∗ own heap_name (● to_heap (init_mem l n σ)) - ∗ own heap_name (◯ [^op list] i ↦ v ∈ (repeat (LitV LitPoison) n), - {[l +ₗ i := (1%Qp, Cinr 0%nat, to_agree v)]}). - Proof. - intros FREE. rewrite -own_op. apply own_update, auth_update_alloc. - revert l FREE. induction n as [|n IH]=> l FRESH; [done|]. - rewrite (big_opL_consZ_l (λ k _, _ (_ k) _ )) /=. - etrans; first apply (IH (l +ₗ 1)). - { intros. by rewrite shift_loc_assoc. } - rewrite shift_loc_0 -insert_singleton_op; last first. - { rewrite -equiv_None big_opL_commute equiv_None big_opL_None=> l' v' ?. - rewrite lookup_singleton_None -{2}(shift_loc_0 l). apply not_inj; lia. } - rewrite to_heap_insert. setoid_rewrite shift_loc_assoc. - apply alloc_local_update; last done. apply lookup_to_heap_None. - rewrite lookup_init_mem_ne /=; last lia. by rewrite -(shift_loc_0 l) FRESH. - Qed. - - Lemma heap_alloc σ l n : - 0 < n → - (∀ m, σ !! (l +ₗ m) = None) → - heap_ctx σ ==∗ - heap_ctx (init_mem l (Z.to_nat n) σ) ∗ †l…(Z.to_nat n) ∗ - l ↦∗ repeat (LitV LitPoison) (Z.to_nat n). - Proof. - intros ??; iDestruct 1 as (hF) "(Hvalσ & HhF & %)". - assert (Z.to_nat n ≠ O). { rewrite -(Nat2Z.id 0)=>/Z2Nat.inj. lia. } - iMod (heap_alloc_vs _ _ (Z.to_nat n) with "[$Hvalσ]") as "[Hvalσ Hmapsto]"; first done. - iMod (own_update _ (● hF) with "HhF") as "[HhF Hfreeable]". - { apply auth_update_alloc, - (alloc_singleton_local_update _ (l.1) (1%Qp, inter (l.2) (Z.to_nat n))). - - eauto using heap_freeable_rel_None. - - split. done. apply inter_valid. } - iModIntro. iSplitL "Hvalσ HhF". - { iExists _. iFrame. iPureIntro. - auto using heap_freeable_rel_init_mem. } - rewrite heap_freeable_eq /heap_freeable_def heap_mapsto_vec_combine //. - iFrame. destruct (Z.to_nat n); done. - Qed. - - Lemma heap_free_vs σ l vl : - own heap_name (● to_heap σ) ∗ own heap_name (◯ [^op list] i ↦ v ∈ vl, - {[l +ₗ i := (1%Qp, Cinr 0%nat, to_agree v)]}) - ==∗ own heap_name (● to_heap (free_mem l (length vl) σ)). - Proof. - rewrite -own_op. apply own_update, auth_update_dealloc. - revert σ l. induction vl as [|v vl IH]=> σ l; [done|]. - rewrite (big_opL_consZ_l (λ k _, _ (_ k) _ )) /= shift_loc_0. - apply local_update_total_valid=> _ Hvalid _. - assert (([^op list] k↦y ∈ vl, - {[l +ₗ (1 + k) := (1%Qp, Cinr 0%nat, to_agree y)]} : heapUR) !! l = None). - { move: (Hvalid l). rewrite lookup_op lookup_singleton. - by move=> /(cmra_discrete_valid_iff 0) /exclusiveN_Some_l. } - rewrite -insert_singleton_op //. etrans. - { apply (delete_local_update _ _ l (1%Qp, Cinr 0%nat, to_agree v)). - by rewrite lookup_insert. } - rewrite delete_insert // -to_heap_delete delete_free_mem. - setoid_rewrite <-shift_loc_assoc. apply IH. - Qed. - - Lemma heap_free σ l vl (n : Z) : - n = length vl → - heap_ctx σ -∗ l ↦∗ vl -∗ †l…(length vl) - ==∗ ⌜0 < n⌝ ∗ ⌜∀ m, is_Some (σ !! (l +ₗ m)) ↔ (0 ≤ m < n)⌝ ∗ - heap_ctx (free_mem l (Z.to_nat n) σ). - Proof. - iDestruct 1 as (hF) "(Hvalσ & HhF & REL)"; iDestruct "REL" as %REL. - iIntros "Hmt Hf". rewrite heap_freeable_eq /heap_freeable_def. - iDestruct (own_valid_2 with "HhF Hf") as % [Hl Hv]%auth_valid_discrete_2. - move: Hl=> /singleton_included [[q qs] [/leibniz_equiv_iff Hl Hq]]. - apply (Some_included_exclusive _ _) in Hq as [=<-<-]%leibniz_equiv; last first. - { move: (Hv (l.1)). rewrite Hl. by intros [??]. } - assert (vl ≠ []). - { intros ->. by destruct (REL (l.1) (1%Qp, ∅)) as [[] ?]. } - assert (0 < n) by (subst n; by destruct vl). - iMod (heap_free_vs with "[Hmt Hvalσ]") as "Hvalσ". - { rewrite heap_mapsto_vec_combine //. iFrame. } - iMod (own_update_2 with "HhF Hf") as "HhF". - { apply auth_update_dealloc, (delete_singleton_local_update _ _ _). } - iModIntro; subst. repeat iSplit; eauto using heap_freeable_is_Some. - iExists _. subst. rewrite Nat2Z.id. iFrame. - eauto using heap_freeable_rel_free_mem. - Qed. - - Lemma heap_mapsto_lookup σ l ls q v : - own heap_name (● to_heap σ) -∗ - own heap_name (◯ {[ l := (q, to_lock_stateR ls, to_agree v) ]}) -∗ - ⌜∃ n' : nat, - σ !! l = Some (match ls with RSt n => RSt (n+n') | WSt => WSt end, v)⌝. - Proof. - iIntros "H● H◯". - iDestruct (own_valid_2 with "H● H◯") as %[Hl?]%auth_valid_discrete_2. - iPureIntro. move: Hl=> /singleton_included [[[q' ls'] dv]]. - rewrite /to_heap lookup_fmap fmap_Some_equiv. - move=> [[[ls'' v'] [?[[/=??]->]]]]; simplify_eq. - move=> /Some_pair_included_total_2 - [/Some_pair_included [_ Hincl] /to_agree_included->]. - destruct ls as [|n], ls'' as [|n''], - Hincl as [[[|n'|]|] [=]%leibniz_equiv]; subst. - by exists O. eauto. exists O. by rewrite Nat.add_0_r. - Qed. - - Lemma heap_mapsto_lookup_1 σ l ls v : - own heap_name (● to_heap σ) -∗ - own heap_name (◯ {[ l := (1%Qp, to_lock_stateR ls, to_agree v) ]}) -∗ - ⌜σ !! l = Some (ls, v)⌝. - Proof. - iIntros "H● H◯". - iDestruct (own_valid_2 with "H● H◯") as %[Hl?]%auth_valid_discrete_2. - iPureIntro. move: Hl=> /singleton_included [[[q' ls'] dv]]. - rewrite /to_heap lookup_fmap fmap_Some_equiv. - move=> [[[ls'' v'] [?[[/=??]->]]] Hincl]; simplify_eq. - apply (Some_included_exclusive _ _) in Hincl as [? Hval]; last by destruct ls''. - apply (inj to_agree) in Hval. fold_leibniz. subst. - destruct ls, ls''; rewrite ?Nat.add_0_r; naive_solver. - Qed. - - Lemma heap_read_vs σ n1 n2 nf l q v: - σ !! l = Some (RSt (n1 + nf), v) → - own heap_name (● to_heap σ) -∗ heap_mapsto_st (RSt n1) l q v - ==∗ own heap_name (● to_heap (<[l:=(RSt (n2 + nf), v)]> σ)) - ∗ heap_mapsto_st (RSt n2) l q v. - Proof. - intros Hσv. apply wand_intro_r. rewrite -!own_op to_heap_insert. - eapply own_update, auth_update, singleton_local_update. - { by rewrite /to_heap lookup_fmap Hσv. } - apply prod_local_update_1, prod_local_update_2, csum_local_update_r. - apply nat_local_update; lia. - Qed. - - Lemma heap_read σ l q v : - heap_ctx σ -∗ l ↦{q} v -∗ ∃ n, ⌜σ !! l = Some (RSt n, v)⌝. - Proof. - iDestruct 1 as (hF) "(Hσ & HhF & REL)". iIntros "Hmt". - rewrite heap_mapsto_eq. - iDestruct (heap_mapsto_lookup with "Hσ Hmt") as %[n Hσl]; eauto. - Qed. - - Lemma heap_read_1 σ l v : - heap_ctx σ -∗ l ↦ v -∗ ⌜σ !! l = Some (RSt 0, v)⌝. - Proof. - iDestruct 1 as (hF) "(Hσ & HhF & REL)". iIntros "Hmt". - rewrite heap_mapsto_eq. - iDestruct (heap_mapsto_lookup_1 with "Hσ Hmt") as %?; auto. - Qed. - - Lemma heap_read_na σ l q v : - heap_ctx σ -∗ l ↦{q} v ==∗ ∃ n, - ⌜σ !! l = Some (RSt n, v)⌝ ∗ - heap_ctx (<[l:=(RSt (S n), v)]> σ) ∗ - ∀ σ2, heap_ctx σ2 ==∗ ∃ n2, ⌜σ2 !! l = Some (RSt (S n2), v)⌝ ∗ - heap_ctx (<[l:=(RSt n2, v)]> σ2) ∗ l ↦{q} v. - Proof. - iDestruct 1 as (hF) "(Hσ & HhF & %)"; iIntros "Hmt". - rewrite heap_mapsto_eq. - iDestruct (heap_mapsto_lookup with "Hσ Hmt") as %[n Hσl]; eauto. - iMod (heap_read_vs _ 0 1 with "Hσ Hmt") as "[Hσ Hmt]"; first done. - iModIntro. iExists n; iSplit; [done|]. iSplitL "HhF Hσ". - { iExists hF. iFrame. eauto using heap_freeable_rel_stable. } - clear dependent n σ hF. iIntros (σ2). iDestruct 1 as (hF) "(Hσ & HhF & %)". - iDestruct (heap_mapsto_lookup with "Hσ Hmt") as %[n Hσl]; eauto. - iMod (heap_read_vs _ 1 0 with "Hσ Hmt") as "[Hσ Hmt]"; first done. - iExists n; iModIntro; iSplit; [done|]. iFrame "Hmt". - iExists hF. iFrame. eauto using heap_freeable_rel_stable. - Qed. - - Lemma heap_write_vs σ st1 st2 l v v': - σ !! l = Some (st1, v) → - own heap_name (● to_heap σ) -∗ heap_mapsto_st st1 l 1%Qp v - ==∗ own heap_name (● to_heap (<[l:=(st2, v')]> σ)) - ∗ heap_mapsto_st st2 l 1%Qp v'. - Proof. - intros Hσv. apply wand_intro_r. rewrite -!own_op to_heap_insert. - eapply own_update, auth_update, singleton_local_update. - { by rewrite /to_heap lookup_fmap Hσv. } - apply exclusive_local_update. by destruct st2. - Qed. - - Lemma heap_write σ l v v' : - heap_ctx σ -∗ l ↦ v ==∗ heap_ctx (<[l:=(RSt 0, v')]> σ) ∗ l ↦ v'. - Proof. - iDestruct 1 as (hF) "(Hσ & HhF & %)". iIntros "Hmt". - rewrite heap_mapsto_eq. - iDestruct (heap_mapsto_lookup_1 with "Hσ Hmt") as %?; auto. - iMod (heap_write_vs with "Hσ Hmt") as "[Hσ $]"; first done. - iModIntro. iExists _. iFrame. eauto using heap_freeable_rel_stable. - Qed. - - Lemma heap_write_na σ l v v' : - heap_ctx σ -∗ l ↦ v ==∗ - ⌜σ !! l = Some (RSt 0, v)⌝ ∗ - heap_ctx (<[l:=(WSt, v)]> σ) ∗ - ∀ σ2, heap_ctx σ2 ==∗ ⌜σ2 !! l = Some (WSt, v)⌝ ∗ - heap_ctx (<[l:=(RSt 0, v')]> σ2) ∗ l ↦ v'. - Proof. - iDestruct 1 as (hF) "(Hσ & HhF & %)"; iIntros "Hmt". - rewrite heap_mapsto_eq. - iDestruct (heap_mapsto_lookup_1 with "Hσ Hmt") as %?; eauto. - iMod (heap_write_vs with "Hσ Hmt") as "[Hσ Hmt]"; first done. - iModIntro. iSplit; [done|]. iSplitL "HhF Hσ". - { iExists hF. iFrame. eauto using heap_freeable_rel_stable. } - clear dependent σ hF. iIntros (σ2). iDestruct 1 as (hF) "(Hσ & HhF & %)". - iDestruct (heap_mapsto_lookup with "Hσ Hmt") as %[n Hσl]; eauto. - iMod (heap_write_vs with "Hσ Hmt") as "[Hσ Hmt]"; first done. - iModIntro; iSplit; [done|]. iFrame "Hmt". - iExists hF. iFrame. eauto using heap_freeable_rel_stable. - Qed. -End heap. diff --git a/theories/lang/lang.v b/theories/lang/lang.v deleted file mode 100644 index c302a1c3..00000000 --- a/theories/lang/lang.v +++ /dev/null @@ -1,660 +0,0 @@ -From iris.program_logic Require Export language ectx_language ectxi_language. -From stdpp Require Export strings. -From stdpp Require Import gmap. -Set Default Proof Using "Type". - -Open Scope Z_scope. - -(** Expressions and vals. *) -Definition block : Set := positive. -Definition loc : Set := block * Z. - -Bind Scope loc_scope with loc. -Delimit Scope loc_scope with L. -Open Scope loc_scope. - -Inductive base_lit : Set := -| LitPoison | LitLoc (l : loc) | LitInt (n : Z). -Inductive bin_op : Set := -| PlusOp | MinusOp | LeOp | EqOp | OffsetOp. -Inductive order : Set := -| ScOrd | Na1Ord | Na2Ord. - -Inductive binder := BAnon | BNamed : string → binder. -Delimit Scope lrust_binder_scope with RustB. -Bind Scope lrust_binder_scope with binder. - -Notation "[ ]" := (@nil binder) : lrust_binder_scope. -Notation "a :: b" := (@cons binder a%RustB b%RustB) - (at level 60, right associativity) : lrust_binder_scope. -Notation "[ x1 ; x2 ; .. ; xn ]" := - (@cons binder x1%RustB (@cons binder x2%RustB - (..(@cons binder xn%RustB (@nil binder))..))) : lrust_binder_scope. -Notation "[ x ]" := (@cons binder x%RustB (@nil binder)) : lrust_binder_scope. - -Definition cons_binder (mx : binder) (X : list string) : list string := - match mx with BAnon => X | BNamed x => x :: X end. -Infix ":b:" := cons_binder (at level 60, right associativity). -Fixpoint app_binder (mxl : list binder) (X : list string) : list string := - match mxl with [] => X | b :: mxl => b :b: app_binder mxl X end. -Infix "+b+" := app_binder (at level 60, right associativity). -Instance binder_dec_eq : EqDecision binder. -Proof. solve_decision. Defined. - -Instance set_unfold_cons_binder x mx X P : - SetUnfold (x ∈ X) P → SetUnfold (x ∈ mx :b: X) (BNamed x = mx ∨ P). -Proof. - constructor. rewrite -(set_unfold (x ∈ X) P). - destruct mx; rewrite /= ?elem_of_cons; naive_solver. -Qed. -Instance set_unfold_app_binder x mxl X P : - SetUnfold (x ∈ X) P → SetUnfold (x ∈ mxl +b+ X) (BNamed x ∈ mxl ∨ P). -Proof. - constructor. rewrite -(set_unfold (x ∈ X) P). - induction mxl as [|?? IH]; set_solver. -Qed. - -Inductive expr := -| Var (x : string) -| Lit (l : base_lit) -| Rec (f : binder) (xl : list binder) (e : expr) -| BinOp (op : bin_op) (e1 e2 : expr) -| App (e : expr) (el : list expr) -| Read (o : order) (e : expr) -| Write (o : order) (e1 e2: expr) -| CAS (e0 e1 e2 : expr) -| Alloc (e : expr) -| Free (e1 e2 : expr) -| Case (e : expr) (el : list expr) -| Fork (e : expr). - -Arguments App _%E _%E. -Arguments Case _%E _%E. - -Fixpoint is_closed (X : list string) (e : expr) : bool := - match e with - | Var x => bool_decide (x ∈ X) - | Lit _ => true - | Rec f xl e => is_closed (f :b: xl +b+ X) e - | BinOp _ e1 e2 | Write _ e1 e2 | Free e1 e2 => - is_closed X e1 && is_closed X e2 - | App e el | Case e el => is_closed X e && forallb (is_closed X) el - | Read _ e | Alloc e | Fork e => is_closed X e - | CAS e0 e1 e2 => is_closed X e0 && is_closed X e1 && is_closed X e2 - end. - -Class Closed (X : list string) (e : expr) := closed : is_closed X e. -Instance closed_proof_irrel env e : ProofIrrel (Closed env e). -Proof. rewrite /Closed. apply _. Qed. -Instance closed_decision env e : Decision (Closed env e). -Proof. rewrite /Closed. apply _. Qed. - -Inductive val := -| LitV (l : base_lit) -| RecV (f : binder) (xl : list binder) (e : expr) `{!Closed (f :b: xl +b+ []) e}. - -Bind Scope val_scope with val. - -Definition of_val (v : val) : expr := - match v with - | RecV f x e => Rec f x e - | LitV l => Lit l - end. - -Definition to_val (e : expr) : option val := - match e with - | Rec f xl e => - if decide (Closed (f :b: xl +b+ []) e) then Some (RecV f xl e) else None - | Lit l => Some (LitV l) - | _ => None - end. - -(** The state: heaps of vals*lockstate. *) -Inductive lock_state := -| WSt | RSt (n : nat). -Definition state := gmap loc (lock_state * val). - -(** Evaluation contexts *) -Inductive ectx_item := -| BinOpLCtx (op : bin_op) (e2 : expr) -| BinOpRCtx (op : bin_op) (v1 : val) -| AppLCtx (e2 : list expr) -| AppRCtx (v : val) (vl : list val) (el : list expr) -| ReadCtx (o : order) -| WriteLCtx (o : order) (e2 : expr) -| WriteRCtx (o : order) (v1 : val) -| CasLCtx (e1 e2: expr) -| CasMCtx (v0 : val) (e2 : expr) -| CasRCtx (v0 : val) (v1 : val) -| AllocCtx -| FreeLCtx (e2 : expr) -| FreeRCtx (v1 : val) -| CaseCtx (el : list expr). - -Definition fill_item (Ki : ectx_item) (e : expr) : expr := - match Ki with - | BinOpLCtx op e2 => BinOp op e e2 - | BinOpRCtx op v1 => BinOp op (of_val v1) e - | AppLCtx e2 => App e e2 - | AppRCtx v vl el => App (of_val v) ((of_val <$> vl) ++ e :: el) - | ReadCtx o => Read o e - | WriteLCtx o e2 => Write o e e2 - | WriteRCtx o v1 => Write o (of_val v1) e - | CasLCtx e1 e2 => CAS e e1 e2 - | CasMCtx v0 e2 => CAS (of_val v0) e e2 - | CasRCtx v0 v1 => CAS (of_val v0) (of_val v1) e - | AllocCtx => Alloc e - | FreeLCtx e2 => Free e e2 - | FreeRCtx v1 => Free (of_val v1) e - | CaseCtx el => Case e el - end. - -(** Substitution *) -Fixpoint subst (x : string) (es : expr) (e : expr) : expr := - match e with - | Var y => if bool_decide (y = x) then es else Var y - | Lit l => Lit l - | Rec f xl e => - Rec f xl $ if bool_decide (BNamed x ≠ f ∧ BNamed x ∉ xl) then subst x es e else e - | BinOp op e1 e2 => BinOp op (subst x es e1) (subst x es e2) - | App e el => App (subst x es e) (map (subst x es) el) - | Read o e => Read o (subst x es e) - | Write o e1 e2 => Write o (subst x es e1) (subst x es e2) - | CAS e0 e1 e2 => CAS (subst x es e0) (subst x es e1) (subst x es e2) - | Alloc e => Alloc (subst x es e) - | Free e1 e2 => Free (subst x es e1) (subst x es e2) - | Case e el => Case (subst x es e) (map (subst x es) el) - | Fork e => Fork (subst x es e) - end. - -Definition subst' (mx : binder) (es : expr) : expr → expr := - match mx with BNamed x => subst x es | BAnon => id end. - -Fixpoint subst_l (xl : list binder) (esl : list expr) (e : expr) : option expr := - match xl, esl with - | [], [] => Some e - | x::xl, es::esl => subst' x es <$> subst_l xl esl e - | _, _ => None - end. -Arguments subst_l _%RustB _ _%E. - -Definition subst_v (xl : list binder) (vsl : vec val (length xl)) - (e : expr) : expr := - Vector.fold_right2 (λ b, subst' b ∘ of_val) e _ (list_to_vec xl) vsl. -Arguments subst_v _%RustB _ _%E. - -Lemma subst_v_eq (xl : list binder) (vsl : vec val (length xl)) e : - Some $ subst_v xl vsl e = subst_l xl (of_val <$> vec_to_list vsl) e. -Proof. - revert vsl. induction xl=>/= vsl; inv_vec vsl=>//=v vsl. by rewrite -IHxl. -Qed. - -(** The stepping relation *) -(* Be careful to make sure that poison is always stuck when used for anything - except for reading from or writing to memory! *) -Definition Z_of_bool (b : bool) : Z := - if b then 1 else 0. - -Definition lit_of_bool (b : bool) : base_lit := - LitInt $ Z_of_bool b. - -Definition shift_loc (l : loc) (z : Z) : loc := (l.1, l.2 + z). - -Notation "l +ₗ z" := (shift_loc l%L z%Z) - (at level 50, left associativity) : loc_scope. - -Fixpoint init_mem (l:loc) (n:nat) (σ:state) : state := - match n with - | O => σ - | S n => <[l:=(RSt 0, LitV LitPoison)]>(init_mem (l +ₗ 1) n σ) - end. - -Fixpoint free_mem (l:loc) (n:nat) (σ:state) : state := - match n with - | O => σ - | S n => delete l (free_mem (l +ₗ 1) n σ) - end. - -Inductive lit_eq (σ : state) : base_lit → base_lit → Prop := -(* No refl case for poison *) -| IntRefl z : lit_eq σ (LitInt z) (LitInt z) -| LocRefl l : lit_eq σ (LitLoc l) (LitLoc l) -(* Comparing unallocated pointers can non-deterministically say they are equal - even if they are not. Given that our `free` actually makes addresses - re-usable, this may not be strictly necessary, but it is the most - conservative choice that avoids UB (and we cannot use UB as this operation is - possible in safe Rust). See - <https://internals.rust-lang.org/t/comparing-dangling-pointers/3019> for some - more background. *) -| LocUnallocL l1 l2 : - σ !! l1 = None → - lit_eq σ (LitLoc l1) (LitLoc l2) -| LocUnallocR l1 l2 : - σ !! l2 = None → - lit_eq σ (LitLoc l1) (LitLoc l2). - -Inductive lit_neq : base_lit → base_lit → Prop := -| IntNeq z1 z2 : - z1 ≠ z2 → lit_neq (LitInt z1) (LitInt z2) -| LocNeq l1 l2 : - l1 ≠ l2 → lit_neq (LitLoc l1) (LitLoc l2) -| LocNeqNullR l : - lit_neq (LitLoc l) (LitInt 0) -| LocNeqNullL l : - lit_neq (LitInt 0) (LitLoc l). - -Inductive bin_op_eval (σ : state) : bin_op → base_lit → base_lit → base_lit → Prop := -| BinOpPlus z1 z2 : - bin_op_eval σ PlusOp (LitInt z1) (LitInt z2) (LitInt (z1 + z2)) -| BinOpMinus z1 z2 : - bin_op_eval σ MinusOp (LitInt z1) (LitInt z2) (LitInt (z1 - z2)) -| BinOpLe z1 z2 : - bin_op_eval σ LeOp (LitInt z1) (LitInt z2) (lit_of_bool $ bool_decide (z1 ≤ z2)) -| BinOpEqTrue l1 l2 : - lit_eq σ l1 l2 → bin_op_eval σ EqOp l1 l2 (lit_of_bool true) -| BinOpEqFalse l1 l2 : - lit_neq l1 l2 → bin_op_eval σ EqOp l1 l2 (lit_of_bool false) -| BinOpOffset l z : - bin_op_eval σ OffsetOp (LitLoc l) (LitInt z) (LitLoc $ l +ₗ z). - -Definition stuck_term := App (Lit $ LitInt 0) []. - -Inductive head_step : expr → state → list Empty_set → expr → state → list expr → Prop := -| BinOpS op l1 l2 l' σ : - bin_op_eval σ op l1 l2 l' → - head_step (BinOp op (Lit l1) (Lit l2)) σ [] (Lit l') σ [] -| BetaS f xl e e' el σ: - Forall (λ ei, is_Some (to_val ei)) el → - Closed (f :b: xl +b+ []) e → - subst_l (f::xl) (Rec f xl e :: el) e = Some e' → - head_step (App (Rec f xl e) el) σ [] e' σ [] -| ReadScS l n v σ: - σ !! l = Some (RSt n, v) → - head_step (Read ScOrd (Lit $ LitLoc l)) σ [] (of_val v) σ [] -| ReadNa1S l n v σ: - σ !! l = Some (RSt n, v) → - head_step (Read Na1Ord (Lit $ LitLoc l)) σ - [] - (Read Na2Ord (Lit $ LitLoc l)) (<[l:=(RSt $ S n, v)]>σ) - [] -| ReadNa2S l n v σ: - σ !! l = Some (RSt $ S n, v) → - head_step (Read Na2Ord (Lit $ LitLoc l)) σ - [] - (of_val v) (<[l:=(RSt n, v)]>σ) - [] -| WriteScS l e v v' σ: - to_val e = Some v → - σ !! l = Some (RSt 0, v') → - head_step (Write ScOrd (Lit $ LitLoc l) e) σ - [] - (Lit LitPoison) (<[l:=(RSt 0, v)]>σ) - [] -| WriteNa1S l e v v' σ: - to_val e = Some v → - σ !! l = Some (RSt 0, v') → - head_step (Write Na1Ord (Lit $ LitLoc l) e) σ - [] - (Write Na2Ord (Lit $ LitLoc l) e) (<[l:=(WSt, v')]>σ) - [] -| WriteNa2S l e v v' σ: - to_val e = Some v → - σ !! l = Some (WSt, v') → - head_step (Write Na2Ord (Lit $ LitLoc l) e) σ - [] - (Lit LitPoison) (<[l:=(RSt 0, v)]>σ) - [] -| CasFailS l n e1 lit1 e2 lit2 litl σ : - to_val e1 = Some $ LitV lit1 → to_val e2 = Some $ LitV lit2 → - σ !! l = Some (RSt n, LitV litl) → - lit_neq lit1 litl → - head_step (CAS (Lit $ LitLoc l) e1 e2) σ [] (Lit $ lit_of_bool false) σ [] -| CasSucS l e1 lit1 e2 lit2 litl σ : - to_val e1 = Some $ LitV lit1 → to_val e2 = Some $ LitV lit2 → - σ !! l = Some (RSt 0, LitV litl) → - lit_eq σ lit1 litl → - head_step (CAS (Lit $ LitLoc l) e1 e2) σ - [] - (Lit $ lit_of_bool true) (<[l:=(RSt 0, LitV lit2)]>σ) - [] -(* A succeeding CAS has to detect concurrent non-atomic read accesses, and - trigger UB if there is one. In lambdaRust, succeeding and failing CAS are - not mutually exclusive, so it could happen that a CAS can both fail (and - hence not be stuck) but also succeed (and hence be racing with a concurrent - non-atomic read). In that case, we have to explicitly reduce to a stuck - state; due to the possibility of failing CAS, we cannot rely on the current - state being stuck like we could in a language where failing and succeeding - CAS are mutually exclusive. - - This means that CAS is atomic (it always reducs to an irreducible - expression), but not strongly atomic (it does not always reduce to a value). - - If there is a concurrent non-atomic write, the CAS itself is stuck: All its - reductions are blocked. *) -| CasStuckS l n e1 lit1 e2 lit2 litl σ : - to_val e1 = Some $ LitV lit1 → to_val e2 = Some $ LitV lit2 → - σ !! l = Some (RSt n, LitV litl) → 0 < n → - lit_eq σ lit1 litl → - head_step (CAS (Lit $ LitLoc l) e1 e2) σ - [] - stuck_term σ - [] -| AllocS n l σ : - 0 < n → - (∀ m, σ !! (l +ₗ m) = None) → - head_step (Alloc $ Lit $ LitInt n) σ - [] - (Lit $ LitLoc l) (init_mem l (Z.to_nat n) σ) - [] -| FreeS n l σ : - 0 < n → - (∀ m, is_Some (σ !! (l +ₗ m)) ↔ 0 ≤ m < n) → - head_step (Free (Lit $ LitInt n) (Lit $ LitLoc l)) σ - [] - (Lit LitPoison) (free_mem l (Z.to_nat n) σ) - [] -| CaseS i el e σ : - 0 ≤ i → - el !! (Z.to_nat i) = Some e → - head_step (Case (Lit $ LitInt i) el) σ [] e σ [] -| ForkS e σ: - head_step (Fork e) σ [] (Lit LitPoison) σ [e]. - -(** Basic properties about the language *) -Lemma to_of_val v : to_val (of_val v) = Some v. -Proof. - by induction v; simplify_option_eq; repeat f_equal; try apply (proof_irrel _). -Qed. - -Lemma of_to_val e v : to_val e = Some v → of_val v = e. -Proof. - revert v; induction e; intros v ?; simplify_option_eq; auto with f_equal. -Qed. - -Instance of_val_inj : Inj (=) (=) of_val. -Proof. by intros ?? Hv; apply (inj Some); rewrite -!to_of_val Hv. Qed. - -Instance fill_item_inj Ki : Inj (=) (=) (fill_item Ki). -Proof. destruct Ki; intros ???; simplify_eq/=; auto with f_equal. Qed. - -Lemma fill_item_val Ki e : - is_Some (to_val (fill_item Ki e)) → is_Some (to_val e). -Proof. intros [v ?]. destruct Ki; simplify_option_eq; eauto. Qed. - -Lemma val_stuck e1 σ1 κ e2 σ2 ef : - head_step e1 σ1 κ e2 σ2 ef → to_val e1 = None. -Proof. destruct 1; naive_solver. Qed. - -Lemma head_ctx_step_val Ki e σ1 κ e2 σ2 ef : - head_step (fill_item Ki e) σ1 κ e2 σ2 ef → is_Some (to_val e). -Proof. - destruct Ki; inversion_clear 1; decompose_Forall_hyps; - simplify_option_eq; by eauto. -Qed. - -Lemma list_expr_val_eq_inv vl1 vl2 e1 e2 el1 el2 : - to_val e1 = None → to_val e2 = None → - map of_val vl1 ++ e1 :: el1 = map of_val vl2 ++ e2 :: el2 → - vl1 = vl2 ∧ el1 = el2. -Proof. - revert vl2; induction vl1; destruct vl2; intros H1 H2; inversion 1. - - done. - - subst. by rewrite to_of_val in H1. - - subst. by rewrite to_of_val in H2. - - destruct (IHvl1 vl2); auto. split; f_equal; auto. by apply (inj of_val). -Qed. - -Lemma fill_item_no_val_inj Ki1 Ki2 e1 e2 : - to_val e1 = None → to_val e2 = None → - fill_item Ki1 e1 = fill_item Ki2 e2 → Ki1 = Ki2. -Proof. - destruct Ki1 as [| | |v1 vl1 el1| | | | | | | | | |], - Ki2 as [| | |v2 vl2 el2| | | | | | | | | |]; - intros He1 He2 EQ; try discriminate; simplify_eq/=; - repeat match goal with - | H : to_val (of_val _) = None |- _ => by rewrite to_of_val in H - end; auto. - destruct (list_expr_val_eq_inv vl1 vl2 e1 e2 el1 el2); auto. congruence. -Qed. - -Lemma shift_loc_assoc l n n' : l +ₗ n +ₗ n' = l +ₗ (n + n'). -Proof. rewrite /shift_loc /=. f_equal. lia. Qed. -Lemma shift_loc_0 l : l +ₗ 0 = l. -Proof. destruct l as [b o]. rewrite /shift_loc /=. f_equal. lia. Qed. - -Lemma shift_loc_assoc_nat l (n n' : nat) : l +ₗ n +ₗ n' = l +ₗ (n + n')%nat. -Proof. rewrite /shift_loc /=. f_equal. lia. Qed. -Lemma shift_loc_0_nat l : l +ₗ 0%nat = l. -Proof. destruct l as [b o]. rewrite /shift_loc /=. f_equal. lia. Qed. - -Instance shift_loc_inj l : Inj (=) (=) (shift_loc l). -Proof. destruct l as [b o]; intros n n' [=?]; lia. Qed. - -Lemma shift_loc_block l n : (l +ₗ n).1 = l.1. -Proof. done. Qed. - -Lemma lookup_init_mem σ (l l' : loc) (n : nat) : - l.1 = l'.1 → l.2 ≤ l'.2 < l.2 + n → - init_mem l n σ !! l' = Some (RSt 0, LitV LitPoison). -Proof. - intros ?. destruct l' as [? l']; simplify_eq/=. - revert l. induction n as [|n IH]=> /= l Hl; [lia|]. - assert (l' = l.2 ∨ l.2 + 1 ≤ l') as [->|?] by lia. - { by rewrite -surjective_pairing lookup_insert. } - rewrite lookup_insert_ne; last by destruct l; intros ?; simplify_eq/=; lia. - rewrite -(shift_loc_block l 1) IH /=; last lia. done. -Qed. - -Lemma lookup_init_mem_ne σ (l l' : loc) (n : nat) : - l.1 ≠ l'.1 ∨ l'.2 < l.2 ∨ l.2 + n ≤ l'.2 → - init_mem l n σ !! l' = σ !! l'. -Proof. - revert l. induction n as [|n IH]=> /= l Hl; auto. - rewrite -(IH (l +ₗ 1)); last (simpl; intuition lia). - apply lookup_insert_ne. intros ->; intuition lia. -Qed. - -Definition fresh_block (σ : state) : block := - let loclst : list loc := elements (dom _ σ : gset loc) in - let blockset : gset block := foldr (λ l, ({[l.1]} ∪)) ∅ loclst in - fresh blockset. - -Lemma is_fresh_block σ i : σ !! (fresh_block σ,i) = None. -Proof. - assert (∀ (l : loc) ls (X : gset block), - l ∈ ls → l.1 ∈ foldr (λ l, ({[l.1]} ∪)) X ls) as help. - { induction 1; set_solver. } - rewrite /fresh_block /shift_loc /= -(not_elem_of_dom (D := gset loc)) -elem_of_elements. - move=> /(help _ _ ∅) /=. apply is_fresh. -Qed. - -Lemma alloc_fresh n σ : - let l := (fresh_block σ, 0) in - let init := repeat (LitV $ LitInt 0) (Z.to_nat n) in - 0 < n → - head_step (Alloc $ Lit $ LitInt n) σ [] (Lit $ LitLoc l) (init_mem l (Z.to_nat n) σ) []. -Proof. - intros l init Hn. apply AllocS. auto. - - intros i. apply (is_fresh_block _ i). -Qed. - -Lemma lookup_free_mem_ne σ l l' n : l.1 ≠ l'.1 → free_mem l n σ !! l' = σ !! l'. -Proof. - revert l. induction n as [|n IH]=> l ? //=. - rewrite lookup_delete_ne; last congruence. - apply IH. by rewrite shift_loc_block. -Qed. - -Lemma delete_free_mem σ l l' n : - delete l (free_mem l' n σ) = free_mem l' n (delete l σ). -Proof. - revert l'. induction n as [|n IH]=> l' //=. by rewrite delete_commute IH. -Qed. - -(** Closed expressions *) -Lemma is_closed_weaken X Y e : is_closed X e → X ⊆ Y → is_closed Y e. -Proof. - revert e X Y. fix FIX 1; destruct e=>X Y/=; try naive_solver. - - naive_solver set_solver. - - rewrite !andb_True. intros [He Hel] HXY. split. by eauto. - induction el=>/=; naive_solver. - - rewrite !andb_True. intros [He Hel] HXY. split. by eauto. - induction el=>/=; naive_solver. -Qed. - -Lemma is_closed_weaken_nil X e : is_closed [] e → is_closed X e. -Proof. intros. by apply is_closed_weaken with [], list_subseteq_nil. Qed. - -Lemma is_closed_subst X e x es : is_closed X e → x ∉ X → subst x es e = e. -Proof. - revert e X. fix FIX 1; destruct e=> X /=; rewrite ?bool_decide_spec ?andb_True=> He ?; - repeat case_bool_decide; simplify_eq/=; f_equal; - try by intuition eauto with set_solver. - - case He=> _. clear He. induction el=>//=. rewrite andb_True=>?. - f_equal; intuition eauto with set_solver. - - case He=> _. clear He. induction el=>//=. rewrite andb_True=>?. - f_equal; intuition eauto with set_solver. -Qed. - -Lemma is_closed_nil_subst e x es : is_closed [] e → subst x es e = e. -Proof. intros. apply is_closed_subst with []; set_solver. Qed. - -Lemma is_closed_of_val X v : is_closed X (of_val v). -Proof. apply is_closed_weaken_nil. induction v; simpl; auto. Qed. - -Lemma is_closed_to_val X e v : to_val e = Some v → is_closed X e. -Proof. intros <-%of_to_val. apply is_closed_of_val. Qed. - -Lemma subst_is_closed X x es e : - is_closed X es → is_closed (x::X) e → is_closed X (subst x es e). -Proof. - revert e X. fix FIX 1; destruct e=>X //=; repeat (case_bool_decide=>//=); - try naive_solver; rewrite ?andb_True; intros. - - set_solver. - - eauto using is_closed_weaken with set_solver. - - eapply is_closed_weaken; first done. - destruct (decide (BNamed x = f)), (decide (BNamed x ∈ xl)); set_solver. - - split; first naive_solver. induction el; naive_solver. - - split; first naive_solver. induction el; naive_solver. -Qed. - -Lemma subst'_is_closed X b es e : - is_closed X es → is_closed (b:b:X) e → is_closed X (subst' b es e). -Proof. destruct b; first done. apply subst_is_closed. Qed. - -(* Operations on literals *) -Lemma lit_eq_state σ1 σ2 l1 l2 : - (∀ l, σ1 !! l = None ↔ σ2 !! l = None) → - lit_eq σ1 l1 l2 → lit_eq σ2 l1 l2. -Proof. intros Heq. inversion 1; econstructor; eauto; eapply Heq; done. Qed. - -Lemma bin_op_eval_state σ1 σ2 op l1 l2 l' : - (∀ l, σ1 !! l = None ↔ σ2 !! l = None) → - bin_op_eval σ1 op l1 l2 l' → bin_op_eval σ2 op l1 l2 l'. -Proof. - intros Heq. inversion 1; econstructor; eauto using lit_eq_state. -Qed. - -(* Misc *) -Lemma stuck_not_head_step σ e' κ σ' ef : - ¬head_step stuck_term σ e' κ σ' ef. -Proof. inversion 1. Qed. - -(** Equality and other typeclass stuff *) -Instance base_lit_dec_eq : EqDecision base_lit. -Proof. solve_decision. Defined. -Instance bin_op_dec_eq : EqDecision bin_op. -Proof. solve_decision. Defined. -Instance un_op_dec_eq : EqDecision order. -Proof. solve_decision. Defined. - -Fixpoint expr_beq (e : expr) (e' : expr) : bool := - let fix expr_list_beq el el' := - match el, el' with - | [], [] => true - | eh::eq, eh'::eq' => expr_beq eh eh' && expr_list_beq eq eq' - | _, _ => false - end - in - match e, e' with - | Var x, Var x' => bool_decide (x = x') - | Lit l, Lit l' => bool_decide (l = l') - | Rec f xl e, Rec f' xl' e' => - bool_decide (f = f') && bool_decide (xl = xl') && expr_beq e e' - | BinOp op e1 e2, BinOp op' e1' e2' => - bool_decide (op = op') && expr_beq e1 e1' && expr_beq e2 e2' - | App e el, App e' el' | Case e el, Case e' el' => - expr_beq e e' && expr_list_beq el el' - | Read o e, Read o' e' => bool_decide (o = o') && expr_beq e e' - | Write o e1 e2, Write o' e1' e2' => - bool_decide (o = o') && expr_beq e1 e1' && expr_beq e2 e2' - | CAS e0 e1 e2, CAS e0' e1' e2' => - expr_beq e0 e0' && expr_beq e1 e1' && expr_beq e2 e2' - | Alloc e, Alloc e' | Fork e, Fork e' => expr_beq e e' - | Free e1 e2, Free e1' e2' => expr_beq e1 e1' && expr_beq e2 e2' - | _, _ => false - end. -Lemma expr_beq_correct (e1 e2 : expr) : expr_beq e1 e2 ↔ e1 = e2. -Proof. - revert e1 e2; fix FIX 1. - destruct e1 as [| | | |? el1| | | | | |? el1|], - e2 as [| | | |? el2| | | | | |? el2|]; simpl; try done; - rewrite ?andb_True ?bool_decide_spec ?FIX; - try (split; intro; [destruct_and?|split_and?]; congruence). - - match goal with |- context [?F el1 el2] => assert (F el1 el2 ↔ el1 = el2) end. - { revert el2. induction el1 as [|el1h el1q]; destruct el2; try done. - specialize (FIX el1h). naive_solver. } - clear FIX. naive_solver. - - match goal with |- context [?F el1 el2] => assert (F el1 el2 ↔ el1 = el2) end. - { revert el2. induction el1 as [|el1h el1q]; destruct el2; try done. - specialize (FIX el1h). naive_solver. } - clear FIX. naive_solver. -Qed. -Instance expr_dec_eq : EqDecision expr. -Proof. - refine (λ e1 e2, cast_if (decide (expr_beq e1 e2))); by rewrite -expr_beq_correct. -Defined. -Instance val_dec_eq : EqDecision val. -Proof. - refine (λ v1 v2, cast_if (decide (of_val v1 = of_val v2))); abstract naive_solver. -Defined. - -Instance expr_inhabited : Inhabited expr := populate (Lit LitPoison). -Instance val_inhabited : Inhabited val := populate (LitV LitPoison). - -Canonical Structure stateC := leibnizC state. -Canonical Structure valC := leibnizC val. -Canonical Structure exprC := leibnizC expr. - -(** Language *) -Lemma lrust_lang_mixin : EctxiLanguageMixin of_val to_val fill_item head_step. -Proof. - split; apply _ || eauto using to_of_val, of_to_val, - val_stuck, fill_item_val, fill_item_no_val_inj, head_ctx_step_val. -Qed. -Canonical Structure lrust_ectxi_lang := EctxiLanguage lrust_lang_mixin. -Canonical Structure lrust_ectx_lang := EctxLanguageOfEctxi lrust_ectxi_lang. -Canonical Structure lrust_lang := LanguageOfEctx lrust_ectx_lang. - -(* Lemmas about the language. *) -Lemma stuck_irreducible K σ : irreducible (fill K stuck_term) σ. -Proof. - apply: (irreducible_fill (K:=ectx_language.fill K)); first done. - apply prim_head_irreducible; unfold stuck_term. - - inversion 1. - - apply ectxi_language_sub_redexes_are_values. - intros [] ??; simplify_eq/=; eauto; discriminate_list. -Qed. - -(* Define some derived forms *) -Notation Lam xl e := (Rec BAnon xl e) (only parsing). -Notation Let x e1 e2 := (App (Lam [x] e2) [e1]) (only parsing). -Notation Seq e1 e2 := (Let BAnon e1 e2) (only parsing). -Notation LamV xl e := (RecV BAnon xl e) (only parsing). -Notation LetCtx x e2 := (AppRCtx (LamV [x] e2) [] []). -Notation SeqCtx e2 := (LetCtx BAnon e2). -Notation Skip := (Seq (Lit LitPoison) (Lit LitPoison)). -Coercion lit_of_bool : bool >-> base_lit. -Notation If e0 e1 e2 := (Case e0 (@cons expr e2 (@cons expr e1 (@nil expr)))) (only parsing). -Notation Newlft := (Lit LitPoison) (only parsing). -Notation Endlft := Skip (only parsing). diff --git a/theories/lang/lifting.v b/theories/lang/lifting.v deleted file mode 100644 index 4bac7690..00000000 --- a/theories/lang/lifting.v +++ /dev/null @@ -1,377 +0,0 @@ -From iris.program_logic Require Export weakestpre. -From iris.program_logic Require Import ectx_lifting. -From lrust.lang Require Export lang heap. -From lrust.lang Require Import tactics. -From iris.proofmode Require Import tactics. -Set Default Proof Using "Type". -Import uPred. - -Class lrustG Σ := LRustG { - lrustG_invG : invG Σ; - lrustG_gen_heapG :> heapG Σ -}. - -Instance lrustG_irisG `{!lrustG Σ} : irisG lrust_lang Σ := { - iris_invG := lrustG_invG; - state_interp σ κs _ := heap_ctx σ; - fork_post _ := True%I; -}. -Global Opaque iris_invG. - -Ltac inv_lit := - repeat match goal with - | H : lit_eq _ ?x ?y |- _ => inversion H; clear H; simplify_map_eq/= - | H : lit_neq ?x ?y |- _ => inversion H; clear H; simplify_map_eq/= - end. - -Ltac inv_bin_op_eval := - repeat match goal with - | H : bin_op_eval _ ?c _ _ _ |- _ => is_constructor c; inversion H; clear H; simplify_eq/= - end. - -Local Hint Extern 0 (atomic _) => solve_atomic. -Local Hint Extern 0 (head_reducible _ _) => eexists _, _, _, _; simpl. - -Local Hint Constructors head_step bin_op_eval lit_neq lit_eq. -Local Hint Resolve alloc_fresh. -Local Hint Resolve to_of_val. - -Class AsRec (e : expr) (f : binder) (xl : list binder) (erec : expr) := - as_rec : e = Rec f xl erec. -Instance AsRec_rec f xl e : AsRec (Rec f xl e) f xl e := eq_refl. -Instance AsRec_rec_locked_val v f xl e : - AsRec (of_val v) f xl e → AsRec (of_val (locked v)) f xl e. -Proof. by unlock. Qed. - -Class DoSubst (x : binder) (es : expr) (e er : expr) := - do_subst : subst' x es e = er. -Hint Extern 0 (DoSubst _ _ _ _) => - rewrite /DoSubst; simpl_subst; reflexivity : typeclass_instances. - -Class DoSubstL (xl : list binder) (esl : list expr) (e er : expr) := - do_subst_l : subst_l xl esl e = Some er. -Instance do_subst_l_nil e : DoSubstL [] [] e e. -Proof. done. Qed. -Instance do_subst_l_cons x xl es esl e er er' : - DoSubstL xl esl e er' → DoSubst x es er' er → - DoSubstL (x :: xl) (es :: esl) e er. -Proof. rewrite /DoSubstL /DoSubst /= => -> <- //. Qed. -Instance do_subst_vec xl (vsl : vec val (length xl)) e : - DoSubstL xl (of_val <$> vec_to_list vsl) e (subst_v xl vsl e). -Proof. by rewrite /DoSubstL subst_v_eq. Qed. - -Section lifting. -Context `{!lrustG Σ}. -Implicit Types P Q : iProp Σ. -Implicit Types e : expr. -Implicit Types ef : option expr. - -(** Base axioms for core primitives of the language: Stateless reductions *) -Lemma wp_fork E e : - {{{ ▷ WP e {{ _, True }} }}} Fork e @ E {{{ RET LitV LitPoison; True }}}. -Proof. - iIntros (?) "?HΦ". iApply wp_lift_atomic_head_step; [done|]. - iIntros (σ1 κ κs n) "Hσ !>"; iSplit; first by eauto. - iNext; iIntros (v2 σ2 efs Hstep); inv_head_step. iFrame. - iModIntro. by iApply "HΦ". -Qed. - -(** Pure reductions *) -Local Ltac solve_exec_safe := - intros; destruct_and?; subst; do 3 eexists; econstructor; simpl; eauto with lia. -Local Ltac solve_exec_puredet := - simpl; intros; destruct_and?; inv_head_step; inv_bin_op_eval; inv_lit; done. -Local Ltac solve_pure_exec := - intros ?; apply nsteps_once, pure_head_step_pure_step; - constructor; [solve_exec_safe | solve_exec_puredet]. - -Global Instance pure_rec e f xl erec erec' el : - AsRec e f xl erec → - TCForall AsVal el → - Closed (f :b: xl +b+ []) erec → - DoSubstL (f :: xl) (e :: el) erec erec' → - PureExec True 1 (App e el) erec'. -Proof. - rewrite /AsRec /DoSubstL=> -> /TCForall_Forall Hel ??. solve_pure_exec. - eapply Forall_impl; [exact Hel|]. intros e' [v <-]. rewrite to_of_val; eauto. -Qed. - -Global Instance pure_le n1 n2 : - PureExec True 1 (BinOp LeOp (Lit (LitInt n1)) (Lit (LitInt n2))) - (Lit (bool_decide (n1 ≤ n2))). -Proof. solve_pure_exec. Qed. - -Global Instance pure_eq_int n1 n2 : - PureExec True 1 (BinOp EqOp (Lit (LitInt n1)) (Lit (LitInt n2))) (Lit (bool_decide (n1 = n2))). -Proof. case_bool_decide; solve_pure_exec. Qed. - -Global Instance pure_eq_loc_0_r l : - PureExec True 1 (BinOp EqOp (Lit (LitLoc l)) (Lit (LitInt 0))) (Lit false). -Proof. solve_pure_exec. Qed. - -Global Instance pure_eq_loc_0_l l : - PureExec True 1 (BinOp EqOp (Lit (LitInt 0)) (Lit (LitLoc l))) (Lit false). -Proof. solve_pure_exec. Qed. - -Global Instance pure_plus z1 z2 : - PureExec True 1 (BinOp PlusOp (Lit $ LitInt z1) (Lit $ LitInt z2)) (Lit $ LitInt $ z1 + z2). -Proof. solve_pure_exec. Qed. - -Global Instance pure_minus z1 z2 : - PureExec True 1 (BinOp MinusOp (Lit $ LitInt z1) (Lit $ LitInt z2)) (Lit $ LitInt $ z1 - z2). -Proof. solve_pure_exec. Qed. - -Global Instance pure_offset l z : - PureExec True 1 (BinOp OffsetOp (Lit $ LitLoc l) (Lit $ LitInt z)) (Lit $ LitLoc $ l +ₗ z). -Proof. solve_pure_exec. Qed. - -Global Instance pure_case i e el : - PureExec (0 ≤ i ∧ el !! (Z.to_nat i) = Some e) 1 (Case (Lit $ LitInt i) el) e | 10. -Proof. solve_pure_exec. Qed. - -Global Instance pure_if b e1 e2 : - PureExec True 1 (If (Lit (lit_of_bool b)) e1 e2) (if b then e1 else e2) | 1. -Proof. destruct b; solve_pure_exec. Qed. - -(** Heap *) -Lemma wp_alloc E (n : Z) : - 0 < n → - {{{ True }}} Alloc (Lit $ LitInt n) @ E - {{{ l (sz: nat), RET LitV $ LitLoc l; ⌜n = sz⌝ ∗ †l…sz ∗ l ↦∗ repeat (LitV LitPoison) sz }}}. -Proof. - iIntros (? Φ) "_ HΦ". iApply wp_lift_atomic_head_step_no_fork; auto. - iIntros (σ1 ???) "Hσ !>"; iSplit; first by auto. - iNext; iIntros (v2 σ2 efs Hstep); inv_head_step. - iMod (heap_alloc with "Hσ") as "[Hσ Hl]"; [done..|]. - iModIntro; iSplit=> //. iFrame. - iApply ("HΦ" $! _ (Z.to_nat n)). iFrame. iPureIntro. rewrite Z2Nat.id; lia. -Qed. - -Lemma wp_free E (n:Z) l vl : - n = length vl → - {{{ ▷ l ↦∗ vl ∗ ▷ †l…(length vl) }}} - Free (Lit $ LitInt n) (Lit $ LitLoc l) @ E - {{{ RET LitV LitPoison; True }}}. -Proof. - iIntros (? Φ) "[>Hmt >Hf] HΦ". iApply wp_lift_atomic_head_step_no_fork; auto. - iIntros (σ1 ???) "Hσ". - iMod (heap_free _ _ _ n with "Hσ Hmt Hf") as "(% & % & Hσ)"=>//. - iModIntro; iSplit; first by auto. - iNext; iIntros (v2 σ2 efs Hstep); inv_head_step. - iModIntro; iSplit=> //. iFrame. iApply "HΦ"; auto. -Qed. - -Lemma wp_read_sc E l q v : - {{{ ▷ l ↦{q} v }}} Read ScOrd (Lit $ LitLoc l) @ E - {{{ RET v; l ↦{q} v }}}. -Proof. - iIntros (?) ">Hv HΦ". iApply wp_lift_atomic_head_step_no_fork; auto. - iIntros (σ1 ???) "Hσ". iDestruct (heap_read with "Hσ Hv") as %[n ?]. - iModIntro; iSplit; first by eauto. - iNext; iIntros (v2 σ2 efs Hstep); inv_head_step. - iModIntro; iSplit=> //. iFrame. by iApply "HΦ". -Qed. - -Lemma wp_read_na E l q v : - {{{ ▷ l ↦{q} v }}} Read Na1Ord (Lit $ LitLoc l) @ E - {{{ RET v; l ↦{q} v }}}. -Proof. - iIntros (Φ) ">Hv HΦ". iApply wp_lift_head_step; auto. iIntros (σ1 ???) "Hσ". - iMod (heap_read_na with "Hσ Hv") as (n) "(% & Hσ & Hσclose)". - iMod (fupd_intro_mask' _ ∅) as "Hclose"; first set_solver. - iModIntro; iSplit; first by eauto. - iNext; iIntros (e2 σ2 efs Hstep); inv_head_step. iMod "Hclose" as "_". - iModIntro. iFrame "Hσ". iSplit; last done. - clear dependent σ1 n. - iApply wp_lift_atomic_head_step_no_fork; auto. - iIntros (σ1 ???) "Hσ". iMod ("Hσclose" with "Hσ") as (n) "(% & Hσ & Hv)". - iModIntro; iSplit; first by eauto. - iNext; iIntros (e2 σ2 efs Hstep) "!>"; inv_head_step. - iFrame "Hσ". iSplit; [done|]. by iApply "HΦ". -Qed. - -Lemma wp_write_sc E l e v v' : - IntoVal e v → - {{{ ▷ l ↦ v' }}} Write ScOrd (Lit $ LitLoc l) e @ E - {{{ RET LitV LitPoison; l ↦ v }}}. -Proof. - iIntros (<- Φ) ">Hv HΦ". iApply wp_lift_atomic_head_step_no_fork; auto. - iIntros (σ1 ???) "Hσ". iDestruct (heap_read_1 with "Hσ Hv") as %?. - iMod (heap_write _ _ _ v with "Hσ Hv") as "[Hσ Hv]". - iModIntro; iSplit; first by eauto. - iNext; iIntros (v2 σ2 efs Hstep); inv_head_step. - iModIntro; iSplit=> //. iFrame. by iApply "HΦ". -Qed. - -Lemma wp_write_na E l e v v' : - IntoVal e v → - {{{ ▷ l ↦ v' }}} Write Na1Ord (Lit $ LitLoc l) e @ E - {{{ RET LitV LitPoison; l ↦ v }}}. -Proof. - iIntros (<- Φ) ">Hv HΦ". - iApply wp_lift_head_step; auto. iIntros (σ1 ???) "Hσ". - iMod (heap_write_na with "Hσ Hv") as "(% & Hσ & Hσclose)". - iMod (fupd_intro_mask' _ ∅) as "Hclose"; first set_solver. - iModIntro; iSplit; first by eauto. - iNext; iIntros (e2 σ2 efs Hstep); inv_head_step. iMod "Hclose" as "_". - iModIntro. iFrame "Hσ". iSplit; last done. - clear dependent σ1. iApply wp_lift_atomic_head_step_no_fork; auto. - iIntros (σ1 ???) "Hσ". iMod ("Hσclose" with "Hσ") as "(% & Hσ & Hv)". - iModIntro; iSplit; first by eauto. - iNext; iIntros (e2 σ2 efs Hstep) "!>"; inv_head_step. - iFrame "Hσ". iSplit; [done|]. by iApply "HΦ". -Qed. - -Lemma wp_cas_int_fail E l q z1 e2 lit2 zl : - IntoVal e2 (LitV lit2) → z1 ≠ zl → - {{{ ▷ l ↦{q} LitV (LitInt zl) }}} - CAS (Lit $ LitLoc l) (Lit $ LitInt z1) e2 @ E - {{{ RET LitV $ LitInt 0; l ↦{q} LitV (LitInt zl) }}}. -Proof. - iIntros (<- ? Φ) ">Hv HΦ". - iApply wp_lift_atomic_head_step_no_fork; auto. - iIntros (σ1 ???) "Hσ". iDestruct (heap_read with "Hσ Hv") as %[n ?]. - iModIntro; iSplit; first by eauto. - iNext; iIntros (v2 σ2 efs Hstep); inv_head_step; inv_lit. - iModIntro; iSplit=> //. iFrame. by iApply "HΦ". -Qed. - -Lemma wp_cas_suc E l lit1 e2 lit2 : - IntoVal e2 (LitV lit2) → lit1 ≠ LitPoison → - {{{ ▷ l ↦ LitV lit1 }}} - CAS (Lit $ LitLoc l) (Lit lit1) e2 @ E - {{{ RET LitV (LitInt 1); l ↦ LitV lit2 }}}. -Proof. - iIntros (<- ? Φ) ">Hv HΦ". - iApply wp_lift_atomic_head_step_no_fork; auto. - iIntros (σ1 ???) "Hσ". iDestruct (heap_read_1 with "Hσ Hv") as %?. - iModIntro; iSplit; first (destruct lit1; by eauto). - iNext; iIntros (v2 σ2 efs Hstep); inv_head_step; [inv_lit|]. - iMod (heap_write with "Hσ Hv") as "[$ Hv]". - iModIntro; iSplit=> //. iFrame. by iApply "HΦ". -Qed. - -Lemma wp_cas_int_suc E l z1 e2 lit2 : - IntoVal e2 (LitV lit2) → - {{{ ▷ l ↦ LitV (LitInt z1) }}} - CAS (Lit $ LitLoc l) (Lit $ LitInt z1) e2 @ E - {{{ RET LitV (LitInt 1); l ↦ LitV lit2 }}}. -Proof. intros ?. by apply wp_cas_suc. Qed. - -Lemma wp_cas_loc_suc E l l1 e2 lit2 : - IntoVal e2 (LitV lit2) → - {{{ ▷ l ↦ LitV (LitLoc l1) }}} - CAS (Lit $ LitLoc l) (Lit $ LitLoc l1) e2 @ E - {{{ RET LitV (LitInt 1); l ↦ LitV lit2 }}}. -Proof. intros ?. by apply wp_cas_suc. Qed. - -Lemma wp_cas_loc_fail E l q q' q1 l1 v1' e2 lit2 l' vl' : - IntoVal e2 (LitV lit2) → l1 ≠ l' → - {{{ ▷ l ↦{q} LitV (LitLoc l') ∗ ▷ l' ↦{q'} vl' ∗ ▷ l1 ↦{q1} v1' }}} - CAS (Lit $ LitLoc l) (Lit $ LitLoc l1) e2 @ E - {{{ RET LitV (LitInt 0); - l ↦{q} LitV (LitLoc l') ∗ l' ↦{q'} vl' ∗ l1 ↦{q1} v1' }}}. -Proof. - iIntros (<- ? Φ) "(>Hl & >Hl' & >Hl1) HΦ". - iApply wp_lift_atomic_head_step_no_fork; auto. - iIntros (σ1 ???) "Hσ". iDestruct (heap_read with "Hσ Hl") as %[nl ?]. - iDestruct (heap_read with "Hσ Hl'") as %[nl' ?]. - iDestruct (heap_read with "Hσ Hl1") as %[nl1 ?]. - iModIntro; iSplit; first by eauto. - iNext; iIntros (v2 σ2 efs Hstep); inv_head_step; inv_lit. - iModIntro; iSplit=> //. iFrame. iApply "HΦ"; iFrame. -Qed. - -Lemma wp_cas_loc_nondet E l l1 e2 l2 ll : - IntoVal e2 (LitV $ LitLoc l2) → - {{{ ▷ l ↦ LitV (LitLoc ll) }}} - CAS (Lit $ LitLoc l) (Lit $ LitLoc l1) e2 @ E - {{{ b, RET LitV (lit_of_bool b); - if b is true then l ↦ LitV (LitLoc l2) - else ⌜l1 ≠ ll⌝ ∗ l ↦ LitV (LitLoc ll) }}}. -Proof. - iIntros (<- Φ) ">Hv HΦ". - iApply wp_lift_atomic_head_step_no_fork; auto. - iIntros (σ1 ???) "Hσ". iDestruct (heap_read_1 with "Hσ Hv") as %?. - iModIntro; iSplit; first (destruct (decide (ll = l1)) as [->|]; by eauto). - iNext; iIntros (v2 σ2 efs Hstep); inv_head_step; last lia. - - inv_lit. iModIntro; iSplit; [done|]; iFrame "Hσ". - iApply "HΦ"; simpl; auto. - - iMod (heap_write with "Hσ Hv") as "[$ Hv]". - iModIntro; iSplit; [done|]. iApply "HΦ"; iFrame. -Qed. - -Lemma wp_eq_loc E (l1 : loc) (l2: loc) q1 q2 v1 v2 P Φ : - (P -∗ ▷ l1 ↦{q1} v1) → - (P -∗ ▷ l2 ↦{q2} v2) → - (P -∗ ▷ Φ (LitV (bool_decide (l1 = l2)))) → - P -∗ WP BinOp EqOp (Lit (LitLoc l1)) (Lit (LitLoc l2)) @ E {{ Φ }}. -Proof. - iIntros (Hl1 Hl2 Hpost) "HP". - destruct (bool_decide_reflect (l1 = l2)) as [->|]. - - iApply wp_lift_pure_det_head_step_no_fork'; - [done|solve_exec_safe|solve_exec_puredet|]. - iApply wp_value. by iApply Hpost. - - iApply wp_lift_atomic_head_step_no_fork; subst=>//. - iIntros (σ1 ???) "Hσ1". iModIntro. inv_head_step. - iSplitR. - { iPureIntro. repeat eexists. econstructor. eapply BinOpEqFalse. by auto. } - (* We need to do a little gymnastics here to apply Hne now and strip away a - ▷ but also have the ↦s. *) - iAssert ((▷ ∃ q v, l1 ↦{q} v) ∧ (▷ ∃ q v, l2 ↦{q} v) ∧ ▷ Φ (LitV false))%I with "[HP]" as "HP". - { iSplit; last iSplit. - + iExists _, _. by iApply Hl1. - + iExists _, _. by iApply Hl2. - + by iApply Hpost. } - clear Hl1 Hl2. iNext. iIntros (e2 σ2 efs Hs) "!>". - inv_head_step. iSplitR=>//. inv_bin_op_eval; inv_lit. - + iExFalso. iDestruct "HP" as "[Hl1 _]". - iDestruct "Hl1" as (??) "Hl1". - iDestruct (heap_read σ2 with "Hσ1 Hl1") as %[??]; simplify_eq. - + iExFalso. iDestruct "HP" as "[_ [Hl2 _]]". - iDestruct "Hl2" as (??) "Hl2". - iDestruct (heap_read σ2 with "Hσ1 Hl2") as %[??]; simplify_eq. - + iDestruct "HP" as "[_ [_ $]]". done. -Qed. - -(** Proof rules for working on the n-ary argument list. *) -Lemma wp_app_ind E f (el : list expr) (Ql : vec (val → iProp Σ) (length el)) vs Φ : - AsVal f → - ([∗ list] eQ ∈ zip el Ql, WP eQ.1 @ E {{ eQ.2 }}) -∗ - (∀ vl : vec val (length el), ([∗ list] vQ ∈ zip vl Ql, vQ.2 $ vQ.1) -∗ - WP App f (of_val <$> vs ++ vl) @ E {{ Φ }}) -∗ - WP App f ((of_val <$> vs) ++ el) @ E {{ Φ }}. -Proof. - intros [vf <-]. revert vs Ql. - induction el as [|e el IH]=>/= vs Ql; inv_vec Ql; simpl. - - iIntros "_ H". iSpecialize ("H" $! [#]). rewrite !app_nil_r /=. by iApply "H". - - iIntros (Q Ql) "[He Hl] HΦ". - change (App (of_val vf) ((of_val <$> vs) ++ e :: el)) with (fill_item (AppRCtx vf vs el) e). - iApply wp_bind. iApply (wp_wand with "He"). iIntros (v) "HQ /=". - rewrite cons_middle (assoc app) -(fmap_app _ _ [v]). - iApply (IH _ _ with "Hl"). iIntros "* Hvl". rewrite -assoc. - iApply ("HΦ" $! (v:::vl)). iFrame. -Qed. - -Lemma wp_app_vec E f el (Ql : vec (val → iProp Σ) (length el)) Φ : - AsVal f → - ([∗ list] eQ ∈ zip el Ql, WP eQ.1 @ E {{ eQ.2 }}) -∗ - (∀ vl : vec val (length el), ([∗ list] vQ ∈ zip vl Ql, vQ.2 $ vQ.1) -∗ - WP App f (of_val <$> (vl : list val)) @ E {{ Φ }}) -∗ - WP App f el @ E {{ Φ }}. -Proof. iIntros (Hf). by iApply (wp_app_ind _ _ _ _ []). Qed. - -Lemma wp_app (Ql : list (val → iProp Σ)) E f el Φ : - length Ql = length el → AsVal f → - ([∗ list] eQ ∈ zip el Ql, WP eQ.1 @ E {{ eQ.2 }}) -∗ - (∀ vl : list val, ⌜length vl = length el⌝ -∗ - ([∗ list] k ↦ vQ ∈ zip vl Ql, vQ.2 $ vQ.1) -∗ - WP App f (of_val <$> (vl : list val)) @ E {{ Φ }}) -∗ - WP App f el @ E {{ Φ }}. -Proof. - iIntros (Hlen Hf) "Hel HΦ". rewrite -(vec_to_list_of_list Ql). - generalize (list_to_vec Ql). rewrite Hlen. clear Hlen Ql=>Ql. - iApply (wp_app_vec with "Hel"). iIntros (vl) "Hvl". - iApply ("HΦ" with "[%] Hvl"). by rewrite vec_to_list_length. -Qed. -End lifting. diff --git a/theories/lang/proofmode.v b/theories/lang/proofmode.v deleted file mode 100644 index a1b3db3e..00000000 --- a/theories/lang/proofmode.v +++ /dev/null @@ -1,259 +0,0 @@ -From iris.program_logic Require Export weakestpre. -From iris.proofmode Require Import coq_tactics reduction. -From iris.proofmode Require Export tactics. -From lrust.lang Require Export tactics lifting. -From iris.program_logic Require Import lifting. -Set Default Proof Using "Type". -Import uPred. - -Lemma tac_wp_value `{!lrustG Σ} Δ E Φ e v : - IntoVal e v → - envs_entails Δ (Φ v) → envs_entails Δ (WP e @ E {{ Φ }}). -Proof. rewrite envs_entails_eq=> ? ->. by apply wp_value. Qed. - -Ltac wp_value_head := eapply tac_wp_value; [iSolveTC|reduction.pm_prettify]. - -Lemma tac_wp_pure `{!lrustG Σ} K Δ Δ' E e1 e2 φ n Φ : - PureExec φ n e1 e2 → - φ → - MaybeIntoLaterNEnvs n Δ Δ' → - envs_entails Δ' (WP fill K e2 @ E {{ Φ }}) → - envs_entails Δ (WP fill K e1 @ E {{ Φ }}). -Proof. - rewrite envs_entails_eq=> ??? HΔ'. rewrite into_laterN_env_sound /=. - rewrite -wp_bind HΔ' -wp_pure_step_later //. by rewrite -wp_bind_inv. -Qed. - -Tactic Notation "wp_pure" open_constr(efoc) := - iStartProof; - lazymatch goal with - | |- envs_entails _ (wp ?s ?E ?e ?Q) => reshape_expr e ltac:(fun K e' => - unify e' efoc; - eapply (tac_wp_pure K); - [simpl; iSolveTC (* PureExec *) - |try done (* The pure condition for PureExec *) - |iSolveTC (* IntoLaters *) - |simpl_subst; try wp_value_head (* new goal *)]) - || fail "wp_pure: cannot find" efoc "in" e "or" efoc "is not a reduct" - | _ => fail "wp_pure: not a 'wp'" - end. - -Lemma tac_wp_eq_loc `{!lrustG Σ} K Δ Δ' E i1 i2 l1 l2 q1 q2 v1 v2 Φ : - MaybeIntoLaterNEnvs 1 Δ Δ' → - envs_lookup i1 Δ' = Some (false, l1 ↦{q1} v1)%I → - envs_lookup i2 Δ' = Some (false, l2 ↦{q2} v2)%I → - envs_entails Δ' (WP fill K (Lit (bool_decide (l1 = l2))) @ E {{ Φ }}) → - envs_entails Δ (WP fill K (BinOp EqOp (Lit (LitLoc l1)) (Lit (LitLoc l2))) @ E {{ Φ }}). -Proof. - rewrite envs_entails_eq=> ? /envs_lookup_sound /=. rewrite sep_elim_l=> ?. - move /envs_lookup_sound; rewrite sep_elim_l=> ? HΔ. rewrite -wp_bind. - rewrite into_laterN_env_sound /=. eapply wp_eq_loc; eauto using later_mono. -Qed. - -Tactic Notation "wp_eq_loc" := - iStartProof; - lazymatch goal with - | |- envs_entails _ (wp ?s ?E ?e ?Q) => - reshape_expr e ltac:(fun K e' => eapply (tac_wp_eq_loc K)); - [iSolveTC|iAssumptionCore|iAssumptionCore|simpl; try wp_value_head] - | _ => fail "wp_pure: not a 'wp'" - end. - -Tactic Notation "wp_rec" := wp_pure (App _ _). -Tactic Notation "wp_lam" := wp_rec. -Tactic Notation "wp_let" := wp_lam. -Tactic Notation "wp_seq" := wp_let. -Tactic Notation "wp_op" := wp_pure (BinOp _ _ _) || wp_eq_loc. -Tactic Notation "wp_if" := wp_pure (If _ _ _). -Tactic Notation "wp_case" := wp_pure (Case _ _); try wp_value_head. - -Lemma tac_wp_bind `{!lrustG Σ} K Δ E Φ e : - envs_entails Δ (WP e @ E {{ v, WP fill K (of_val v) @ E {{ Φ }} }})%I → - envs_entails Δ (WP fill K e @ E {{ Φ }}). -Proof. rewrite envs_entails_eq=> ->. apply: wp_bind. Qed. - -Ltac wp_bind_core K := - lazymatch eval hnf in K with - | [] => idtac - | _ => apply (tac_wp_bind K); simpl - end. - -Tactic Notation "wp_bind" open_constr(efoc) := - iStartProof; - lazymatch goal with - | |- envs_entails _ (wp ?s ?E ?e ?Q) => reshape_expr e ltac:(fun K e' => - match e' with - | efoc => unify e' efoc; wp_bind_core K - end) || fail "wp_bind: cannot find" efoc "in" e - | _ => fail "wp_bind: not a 'wp'" - end. - -Section heap. -Context `{!lrustG Σ}. -Implicit Types P Q : iProp Σ. -Implicit Types Φ : val → iProp Σ. -Implicit Types Δ : envs (uPredI (iResUR Σ)). - -Lemma tac_wp_alloc K Δ Δ' E j1 j2 n Φ : - 0 < n → - MaybeIntoLaterNEnvs 1 Δ Δ' → - (∀ l (sz: nat), n = sz → ∃ Δ'', - envs_app false (Esnoc (Esnoc Enil j1 (l ↦∗ repeat (LitV LitPoison) sz)) j2 (†l…sz)) Δ' - = Some Δ'' ∧ - envs_entails Δ'' (WP fill K (Lit $ LitLoc l) @ E {{ Φ }})) → - envs_entails Δ (WP fill K (Alloc (Lit $ LitInt n)) @ E {{ Φ }}). -Proof. - rewrite envs_entails_eq=> ?? HΔ. rewrite -wp_bind. - eapply wand_apply; first exact:wp_alloc. - rewrite -persistent_and_sep. apply and_intro; first by auto. - rewrite into_laterN_env_sound; apply later_mono, forall_intro=> l. - apply forall_intro=>sz. apply wand_intro_l. rewrite -assoc. - rewrite sep_and. apply pure_elim_l=> Hn. apply wand_elim_r'. - destruct (HΔ l sz) as (Δ''&?&HΔ'); first done. - rewrite envs_app_sound //; simpl. by rewrite right_id HΔ'. -Qed. - -Lemma tac_wp_free K Δ Δ' Δ'' Δ''' E i1 i2 vl (n : Z) (n' : nat) l Φ : - n = length vl → - MaybeIntoLaterNEnvs 1 Δ Δ' → - envs_lookup i1 Δ' = Some (false, l ↦∗ vl)%I → - envs_delete false i1 false Δ' = Δ'' → - envs_lookup i2 Δ'' = Some (false, †l…n')%I → - envs_delete false i2 false Δ'' = Δ''' → - n' = length vl → - envs_entails Δ''' (WP fill K (Lit LitPoison) @ E {{ Φ }}) → - envs_entails Δ (WP fill K (Free (Lit $ LitInt n) (Lit $ LitLoc l)) @ E {{ Φ }}). -Proof. - rewrite envs_entails_eq; intros -> ?? <- ? <- -> HΔ. rewrite -wp_bind. - eapply wand_apply; first exact:wp_free; simpl. - rewrite into_laterN_env_sound -!later_sep; apply later_mono. - do 2 (rewrite envs_lookup_sound //). by rewrite HΔ True_emp emp_wand -assoc. -Qed. - -Lemma tac_wp_read K Δ Δ' E i l q v o Φ : - o = Na1Ord ∨ o = ScOrd → - MaybeIntoLaterNEnvs 1 Δ Δ' → - envs_lookup i Δ' = Some (false, l ↦{q} v)%I → - envs_entails Δ' (WP fill K (of_val v) @ E {{ Φ }}) → - envs_entails Δ (WP fill K (Read o (Lit $ LitLoc l)) @ E {{ Φ }}). -Proof. - rewrite envs_entails_eq; intros [->| ->] ???. - - rewrite -wp_bind. eapply wand_apply; first exact:wp_read_na. - rewrite into_laterN_env_sound -later_sep envs_lookup_split //; simpl. - by apply later_mono, sep_mono_r, wand_mono. - - rewrite -wp_bind. eapply wand_apply; first exact:wp_read_sc. - rewrite into_laterN_env_sound -later_sep envs_lookup_split //; simpl. - by apply later_mono, sep_mono_r, wand_mono. -Qed. - -Lemma tac_wp_write K Δ Δ' Δ'' E i l v e v' o Φ : - IntoVal e v' → - o = Na1Ord ∨ o = ScOrd → - MaybeIntoLaterNEnvs 1 Δ Δ' → - envs_lookup i Δ' = Some (false, l ↦ v)%I → - envs_simple_replace i false (Esnoc Enil i (l ↦ v')) Δ' = Some Δ'' → - envs_entails Δ'' (WP fill K (Lit LitPoison) @ E {{ Φ }}) → - envs_entails Δ (WP fill K (Write o (Lit $ LitLoc l) e) @ E {{ Φ }}). -Proof. - rewrite envs_entails_eq; intros ? [->| ->] ????. - - rewrite -wp_bind. eapply wand_apply; first by apply wp_write_na. - rewrite into_laterN_env_sound -later_sep envs_simple_replace_sound //; simpl. - rewrite right_id. by apply later_mono, sep_mono_r, wand_mono. - - rewrite -wp_bind. eapply wand_apply; first by apply wp_write_sc. - rewrite into_laterN_env_sound -later_sep envs_simple_replace_sound //; simpl. - rewrite right_id. by apply later_mono, sep_mono_r, wand_mono. -Qed. -End heap. - -Tactic Notation "wp_apply" open_constr(lem) := - iPoseProofCore lem as false true (fun H => - lazymatch goal with - | |- envs_entails _ (wp ?s ?E ?e ?Q) => - reshape_expr e ltac:(fun K e' => - wp_bind_core K; iApplyHyp H; try iNext; simpl) || - lazymatch iTypeOf H with - | Some (_,?P) => fail "wp_apply: cannot apply" P - end - | _ => fail "wp_apply: not a 'wp'" - end). - -Tactic Notation "wp_alloc" ident(l) "as" constr(H) constr(Hf) := - iStartProof; - lazymatch goal with - | |- envs_entails _ (wp ?s ?E ?e ?Q) => - first - [reshape_expr e ltac:(fun K e' => eapply (tac_wp_alloc K _ _ _ H Hf)) - |fail 1 "wp_alloc: cannot find 'Alloc' in" e]; - [try fast_done - |iSolveTC - |let sz := fresh "sz" in let Hsz := fresh "Hsz" in - first [intros l sz Hsz | fail 1 "wp_alloc:" l "not fresh"]; - (* If Hsz is "constant Z = nat", change that to an equation on nat and - potentially substitute away the sz. *) - try (match goal with Hsz : ?x = _ |- _ => rewrite <-(Z2Nat.id x) in Hsz; last done end; - apply Nat2Z.inj in Hsz; - try (cbv [Z.to_nat Pos.to_nat] in Hsz; - simpl in Hsz; - (* Substitute only if we have a literal nat. *) - match goal with Hsz : S _ = _ |- _ => subst sz end)); - eexists; split; - [pm_reflexivity || fail "wp_alloc:" H "or" Hf "not fresh" - |simpl; try wp_value_head]] - | _ => fail "wp_alloc: not a 'wp'" - end. - -Tactic Notation "wp_alloc" ident(l) := - let H := iFresh in let Hf := iFresh in wp_alloc l as H Hf. - -Tactic Notation "wp_free" := - iStartProof; - lazymatch goal with - | |- envs_entails _ (wp ?s ?E ?e ?Q) => - first - [reshape_expr e ltac:(fun K e' => eapply (tac_wp_free K)) - |fail 1 "wp_free: cannot find 'Free' in" e]; - [try fast_done - |iSolveTC - |let l := match goal with |- _ = Some (_, (?l ↦∗ _)%I) => l end in - iAssumptionCore || fail "wp_free: cannot find" l "↦∗ ?" - |pm_reflexivity - |let l := match goal with |- _ = Some (_, († ?l … _)%I) => l end in - iAssumptionCore || fail "wp_free: cannot find †" l "… ?" - |pm_reflexivity - |try fast_done - |simpl; try first [wp_pure (Seq (Lit LitPoison) _)|wp_value_head]] - | _ => fail "wp_free: not a 'wp'" - end. - -Tactic Notation "wp_read" := - iStartProof; - lazymatch goal with - | |- envs_entails _ (wp ?s ?E ?e ?Q) => - first - [reshape_expr e ltac:(fun K e' => eapply (tac_wp_read K)) - |fail 1 "wp_read: cannot find 'Read' in" e]; - [(right; fast_done) || (left; fast_done) || - fail "wp_read: order is neither Na2Ord nor ScOrd" - |iSolveTC - |let l := match goal with |- _ = Some (_, (?l ↦{_} _)%I) => l end in - iAssumptionCore || fail "wp_read: cannot find" l "↦ ?" - |simpl; try wp_value_head] - | _ => fail "wp_read: not a 'wp'" - end. - -Tactic Notation "wp_write" := - iStartProof; - lazymatch goal with - | |- envs_entails _ (wp ?s ?E ?e ?Q) => - first - [reshape_expr e ltac:(fun K e' => eapply (tac_wp_write K); [iSolveTC|..]) - |fail 1 "wp_write: cannot find 'Write' in" e]; - [(right; fast_done) || (left; fast_done) || - fail "wp_write: order is neither Na2Ord nor ScOrd" - |iSolveTC - |let l := match goal with |- _ = Some (_, (?l ↦{_} _)%I) => l end in - iAssumptionCore || fail "wp_write: cannot find" l "↦ ?" - |pm_reflexivity - |simpl; try first [wp_pure (Seq (Lit LitPoison) _)|wp_value_head]] - | _ => fail "wp_write: not a 'wp'" - end. diff --git a/theories/lang/spawn.v b/theories/lang/spawn.v index 360947ef..ff702ed1 100644 --- a/theories/lang/spawn.v +++ b/theories/lang/spawn.v @@ -95,7 +95,7 @@ Proof. iMod (own_alloc (Excl ())) as (γe) "Hγe"; first done. rewrite own_loc_na_vec_cons own_loc_na_vec_singleton. iDestruct "Hl" as "[Hc Hd]". wp_write. - iMod (GPS_vSP_Init N (λ γi, spawn_interp γe γi Ψ) IW _ () with "Hc []") + iMod (GPS_vSP_Init N (λ γi, spawn_interp γe γi Ψ) (λ _, IW) _ () with "Hc []") as (γi γc t) "[[Htok1 Htok2] SW]". { iIntros (???). by iExists false. } iDestruct (GPS_vSP_SWWriter_Reader with "SW") as "#R". wp_apply (wp_fork with "[SW Htok1 Hf Hd]"); [done|..]. -- GitLab