diff --git a/opam.pins b/opam.pins index eac978961c9f0d61cf9020abe751911b92b0691b..63a5acc47dd361597b7b33e3e4fb47d9f6c91772 100644 --- a/opam.pins +++ b/opam.pins @@ -1 +1 @@ -coq-iris https://gitlab.mpi-sws.org/FP/iris-coq 15be3526bf8e9cff9a8cf7b97973367e0f697b6e +coq-iris https://gitlab.mpi-sws.org/FP/iris-coq 6456f1f92fa1fc40b823535dedd8b3989827fd06 diff --git a/theories/typing/fixpoint.v b/theories/typing/fixpoint.v index a248f6d5c1dff2e8f2b67fb9a0b7fffa0199152a..bfe1304145495e02fec2d60814e00c865db71049 100644 --- a/theories/typing/fixpoint.v +++ b/theories/typing/fixpoint.v @@ -1,63 +1,73 @@ From lrust.lang Require Import proofmode. From lrust.typing Require Export lft_contexts type bool. Set Default Proof Using "Type". +Import uPred. -Section fixpoint. +Section fixpoint_def. Context `{typeG Σ}. + Context (T : type → type) {HT: TypeContractive T}. Global Instance type_inhabited : Inhabited type := populate bool. + + Local Instance type_2_contractive : Contractive (Nat.iter 2 T). + Proof using Type*. + intros n ? **. simpl. + by apply dist_later_dist, type_dist2_dist_later, HT, HT, type_later_dist2_later. + Qed. + + Definition type_fixpoint : type := fixpointK 2 T. +End fixpoint_def. - Context (T : type → type) `{Contractive T}. +Section fixpoint. + Context `{typeG Σ}. + Context (T : type → type) {HT: TypeContractive T}. Global Instance fixpoint_copy : - (∀ `(!Copy ty), Copy (T ty)) → Copy (fixpoint T). + (∀ `(!Copy ty), Copy (T ty)) → Copy (type_fixpoint T). Proof. - intros ?. apply fixpoint_ind. - - intros ??[EQsz%leibniz_equiv EQown EQshr]. - specialize (λ tid vl, EQown tid vl). specialize (λ κ tid l, EQshr κ tid l). - simpl in *=>-[Hp Hsh]; (split; [intros ??|intros ???]). - + revert Hp. by rewrite /PersistentP -EQown. - + intros F l q. rewrite -EQsz -EQshr. setoid_rewrite <-EQown. auto. + intros ?. unfold type_fixpoint. apply fixpointK_ind. + - apply type_contractive_ne, _. + - apply copy_equiv. - exists bool. apply _. - done. - - intros c Hc. split. - + intros tid vl. apply uPred.equiv_entails, equiv_dist=>n. - by rewrite conv_compl uPred.always_always. - + intros κ tid E F l q ? ?. - apply uPred.entails_equiv_and, equiv_dist=>n. etrans. - { apply equiv_dist, uPred.entails_equiv_and, (copy_shr_acc κ tid E F)=>//. - by rewrite -conv_compl. } - symmetry. - do 2 f_equiv; first by rewrite conv_compl. set (cn:=c n). - repeat (apply (conv_compl n c) || f_contractive || f_equiv); - by rewrite conv_compl. (* slow, FIXME *) + - (* If Copy was an Iris assertion, this would be trivial -- we'd just + use entails_lim once. However, on the Coq side, it is more convenient + as a record -- so this is where we pay. *) + intros c Hc. split. + + intros tid vl. rewrite /PersistentP. entails_lim c; [solve_proper..|]. + intros. apply (Hc n). + + intros κ tid E F l q ? ?. entails_lim c; first solve_proper. + * solve_proper_core ltac:(fun _ => eapply ty_size_ne || f_equiv). + * intros n. apply (Hc n); first done. erewrite ty_size_ne; first done. + rewrite conv_compl. done. Qed. Global Instance fixpoint_send : - (∀ `(!Send ty), Send (T ty)) → Send (fixpoint T). + (∀ `(!Send ty), Send (T ty)) → Send (type_fixpoint T). Proof. - intros ?. apply fixpoint_ind. - - intros ?? EQ ????. by rewrite -EQ. + intros ?. unfold type_fixpoint. apply fixpointK_ind. + - apply type_contractive_ne, _. + - apply send_equiv. - exists bool. apply _. - done. - - intros c Hc ???. apply uPred.entails_equiv_and, equiv_dist=>n. - rewrite conv_compl. apply equiv_dist, uPred.entails_equiv_and; apply Hc. + - intros c Hc ???. entails_lim c; [solve_proper..|]. intros n. apply Hc. Qed. Global Instance fixpoint_sync : - (∀ `(!Sync ty), Sync (T ty)) → Sync (fixpoint T). + (∀ `(!Sync ty), Sync (T ty)) → Sync (type_fixpoint T). Proof. - intros ?. apply fixpoint_ind. - - intros ?? EQ ?????. by rewrite -EQ. + intros ?. unfold type_fixpoint. apply fixpointK_ind. + - apply type_contractive_ne, _. + - apply sync_equiv. - exists bool. apply _. - done. - - intros c Hc ????. apply uPred.entails_equiv_and, equiv_dist=>n. - rewrite conv_compl. apply equiv_dist, uPred.entails_equiv_and; apply Hc. + - intros c Hc ????. entails_lim c; [solve_proper..|]. intros n. apply Hc. Qed. - Lemma fixpoint_unfold_eqtype E L : eqtype E L (fixpoint T) (T (fixpoint T)). + Lemma fixpoint_unfold_eqtype E L : eqtype E L (type_fixpoint T) (T (type_fixpoint T)). Proof. - unfold eqtype, subtype, type_incl. setoid_rewrite <-fixpoint_unfold. + unfold eqtype, subtype, type_incl. + setoid_rewrite <-fixpointK_unfold; [| by apply type_contractive_ne, _..]. split; iIntros "_ _"; (iSplit; first done); iSplit; iIntros "!#*$". Qed. End fixpoint. @@ -66,87 +76,44 @@ Section subtyping. Context `{typeG Σ} (E : elctx) (L : llctx). (* TODO : is there a way to declare these as a [Proper] instances ? *) - Lemma fixpoint_mono T1 `{Contractive T1} T2 `{Contractive T2} : + Lemma fixpoint_mono T1 `{!TypeContractive T1} T2 `{!TypeContractive T2} : (∀ ty1 ty2, subtype E L ty1 ty2 → subtype E L (T1 ty1) (T2 ty2)) → - subtype E L (fixpoint T1) (fixpoint T2). + subtype E L (type_fixpoint T1) (type_fixpoint T2). Proof. - intros H12. apply fixpoint_ind. + intros H12. rewrite /type_fixpoint. apply fixpointK_ind. + - apply type_contractive_ne, _. - intros ?? EQ ?. etrans; last done. by apply equiv_subtype. - by eexists _. - - intros. rewrite (fixpoint_unfold_eqtype T2). by apply H12. - - intros c Hc. - assert (Hsz : lft_contexts.elctx_interp_0 E -∗ - ⌜lft_contexts.llctx_interp_0 L⌠-∗ - ⌜(compl c).(ty_size) = (fixpoint T2).(ty_size)âŒ). - { iIntros "HE HL". rewrite (conv_compl 0 c) /=. - iDestruct (Hc 0%nat with "HE HL") as "[$ _]". } - assert (Hown : lft_contexts.elctx_interp_0 E -∗ - ⌜lft_contexts.llctx_interp_0 L⌠-∗ - â–¡ (∀ tid vl, (compl c).(ty_own) tid vl -∗ (fixpoint T2).(ty_own) tid vl)). - { apply uPred.entails_equiv_and, equiv_dist=>n. - destruct (conv_compl (S n) c) as [_ Heq _]; simpl in *. setoid_rewrite Heq. - apply equiv_dist, uPred.entails_equiv_and. iIntros "HE HL". - iDestruct (Hc (S n) with "HE HL") as "[_ [$ _]]". } - assert (Hshr : lft_contexts.elctx_interp_0 E -∗ - ⌜lft_contexts.llctx_interp_0 L⌠-∗ - â–¡ (∀ κ tid l, - (compl c).(ty_shr) κ tid l -∗ (fixpoint T2).(ty_shr) κ tid l)). - { apply uPred.entails_equiv_and, equiv_dist=>n. - destruct (conv_compl n c) as [_ _ Heq]; simpl in *. setoid_rewrite Heq. - apply equiv_dist, uPred.entails_equiv_and. iIntros "HE HL". - iDestruct (Hc n with "HE HL") as "[_ [_ $]]". } - iIntros "HE HL". iSplit; [|iSplit]. - + iApply (Hsz with "HE HL"). - + iApply (Hown with "HE HL"). - + iApply (Hshr with "HE HL"). + - intros. setoid_rewrite (fixpoint_unfold_eqtype T2). by apply H12. + - intros c Hc. rewrite /subtype. entails_lim c; [solve_proper..|]. + intros n. apply Hc. Qed. - Lemma fixpoint_proper T1 `{Contractive T1} T2 `{Contractive T2} : + Lemma fixpoint_proper T1 `{TypeContractive T1} T2 `{TypeContractive T2} : (∀ ty1 ty2, eqtype E L ty1 ty2 → eqtype E L (T1 ty1) (T2 ty2)) → - eqtype E L (fixpoint T1) (fixpoint T2). + eqtype E L (type_fixpoint T1) (type_fixpoint T2). Proof. - intros H12. apply fixpoint_ind. + intros H12. rewrite /type_fixpoint. apply fixpointK_ind. + - apply type_contractive_ne, _. - intros ?? EQ ?. etrans; last done. by apply equiv_eqtype. - by eexists _. - - intros. rewrite (fixpoint_unfold_eqtype T2). by apply H12. - - intros c Hc. setoid_rewrite eqtype_unfold in Hc. rewrite eqtype_unfold. - assert (Hsz : lft_contexts.elctx_interp_0 E -∗ - ⌜lft_contexts.llctx_interp_0 L⌠-∗ - ⌜(compl c).(ty_size) = (fixpoint T2).(ty_size)âŒ). - { iIntros "HE HL". rewrite (conv_compl 0 c) /=. - iDestruct (Hc 0%nat with "HE HL") as "[$ _]". } - assert (Hown : lft_contexts.elctx_interp_0 E -∗ - ⌜lft_contexts.llctx_interp_0 L⌠-∗ - â–¡ (∀ tid vl, (compl c).(ty_own) tid vl ↔ (fixpoint T2).(ty_own) tid vl)). - { apply uPred.entails_equiv_and, equiv_dist=>n. - destruct (conv_compl (S n) c) as [_ Heq _]; simpl in *. setoid_rewrite Heq. - apply equiv_dist, uPred.entails_equiv_and. iIntros "HE HL". - iDestruct (Hc (S n) with "HE HL") as "[_ [$ _]]". } - assert (Hshr : lft_contexts.elctx_interp_0 E -∗ - ⌜lft_contexts.llctx_interp_0 L⌠-∗ - â–¡ (∀ κ tid l, - (compl c).(ty_shr) κ tid l ↔ (fixpoint T2).(ty_shr) κ tid l)). - { apply uPred.entails_equiv_and, equiv_dist=>n. - destruct (conv_compl n c) as [_ _ Heq]. setoid_rewrite Heq. - apply equiv_dist, uPred.entails_equiv_and. iIntros "HE HL". - iDestruct (Hc n with "HE HL") as "[_ [_ $]]". } - iIntros "HE HL". iSplit; [|iSplit]. - + iApply (Hsz with "HE HL"). - + iApply (Hown with "HE HL"). - + iApply (Hshr with "HE HL"). + - intros. setoid_rewrite (fixpoint_unfold_eqtype T2). by apply H12. + - intros c Hc. split; rewrite /subtype; (entails_lim c; [solve_proper..|]); + intros n; apply Hc. Qed. - Lemma fixpoint_unfold_subtype_l ty T `{Contractive T} : - subtype E L ty (T (fixpoint T)) → subtype E L ty (fixpoint T). + (* FIXME: Some rewrites here are slower than one would expect. *) + Lemma fixpoint_unfold_subtype_l ty T `{TypeContractive T} : + subtype E L ty (T (type_fixpoint T)) → subtype E L ty (type_fixpoint T). Proof. intros. by rewrite fixpoint_unfold_eqtype. Qed. - Lemma fixpoint_unfold_subtype_r ty T `{Contractive T} : - subtype E L (T (fixpoint T)) ty → subtype E L (fixpoint T) ty. + Lemma fixpoint_unfold_subtype_r ty T `{TypeContractive T} : + subtype E L (T (type_fixpoint T)) ty → subtype E L (type_fixpoint T) ty. Proof. intros. by rewrite fixpoint_unfold_eqtype. Qed. - Lemma fixpoint_unfold_eqtype_l ty T `{Contractive T} : - eqtype E L ty (T (fixpoint T)) → eqtype E L ty (fixpoint T). + Lemma fixpoint_unfold_eqtype_l ty T `{TypeContractive T} : + eqtype E L ty (T (type_fixpoint T)) → eqtype E L ty (type_fixpoint T). Proof. intros. by rewrite fixpoint_unfold_eqtype. Qed. - Lemma fixpoint_unfold_eqtype_r ty T `{Contractive T} : - eqtype E L (T (fixpoint T)) ty → eqtype E L (fixpoint T) ty. + Lemma fixpoint_unfold_eqtype_r ty T `{TypeContractive T} : + eqtype E L (T (type_fixpoint T)) ty → eqtype E L (type_fixpoint T) ty. Proof. intros. by rewrite fixpoint_unfold_eqtype. Qed. End subtyping. diff --git a/theories/typing/function.v b/theories/typing/function.v index 2ac03c240b9d194dcd7ff6d26ea946cbfd1fadce..6786f64eda20e21c7a0f1bbe7f73f7a51e0525a6 100644 --- a/theories/typing/function.v +++ b/theories/typing/function.v @@ -25,20 +25,25 @@ Section fn. Global Instance fn_send E tys ty : Send (fn E tys ty). Proof. iIntros (tid1 tid2 vl). done. Qed. - Lemma fn_contractive n' E : - Proper (pointwise_relation A (dist_later n') ==> - pointwise_relation A (dist_later n') ==> dist n') (fn E). + Lemma fn_type_contractive n' E : + Proper (pointwise_relation A (B := vec type n) (Forall2 (type_dist2_later n')) ==> + pointwise_relation A (type_dist2_later n') ==> type_dist2 n') (fn E). Proof. - intros ?? Htys ?? Hty. apply ty_of_st_ne; constructor. - intros tid vl. destruct n' as [|n']; simpl; [done|]. unfold typed_body. + intros ?? Htys ?? Hty. apply ty_of_st_type_ne. destruct n'; first done. + constructor; simpl. + (* TODO: 'f_equiv' is slow here because reflexivity is slow. *) + (* The clean way to do this would be to have a metric on type contexts. Oh well. *) + intros tid vl. unfold typed_body. do 12 f_equiv. f_contractive. do 17 f_equiv. - rewrite !cctx_interp_singleton /=. do 5 f_equiv. rewrite !tctx_interp_singleton /tctx_elt_interp /=. repeat (apply Hty || f_equiv). - rewrite /tctx_interp !big_sepL_zip_with /=. do 3 f_equiv. - cut (∀ n tid p i, Proper (dist (S n) ==> dist n) + cut (∀ n tid p i, Proper (dist n ==> dist n) (λ (l : list _), ∀ ty, ⌜l !! i = Some ty⌠→ tctx_elt_interp tid (p â— ty))%I). - { intros Hprop. apply Hprop, list_fmap_ne, Htys. intros ty1 ty2 Hty12. - rewrite (ty_size_ne _ _ _ Hty12). by rewrite Hty12. } + { intros Hprop. apply Hprop, list_fmap_ne; last first. + - eapply Forall2_impl; first exact: Htys. intros. + apply dist_later_dist, type_dist2_dist_later. done. + - intros ty1 ty2 Hty12. rewrite (ty_size_ne _ _ _ Hty12). by rewrite Hty12. } clear. intros n tid p i x y. rewrite list_dist_lookup=>Hxy. specialize (Hxy i). destruct (x !! i) as [tyx|], (y !! i) as [tyy|]; inversion_clear Hxy; last done. @@ -52,15 +57,17 @@ Section fn. * iIntros "H". by iApply "H". * iIntros "H * #EQ". by iDestruct "EQ" as %[=->]. Qed. - Global Existing Instance fn_contractive. + Global Existing Instance fn_type_contractive. Global Instance fn_ne n' E : Proper (pointwise_relation A (dist n') ==> pointwise_relation A (dist n') ==> dist n') (fn E). Proof. - intros ?? H1 ?? H2. - apply fn_contractive=>u; (destruct n'; [done|apply dist_S]); - [apply (H1 u)|apply (H2 u)]. + intros ?? H1 ?? H2. apply dist_later_dist, type_dist2_dist_later. + apply fn_type_contractive=>u; simpl. + - eapply Forall2_impl; first exact: H1. intros. simpl. + apply type_dist_dist2. done. + - apply type_dist_dist2. apply H2. Qed. End fn. diff --git a/theories/typing/own.v b/theories/typing/own.v index 42a811c8841819345de222fcccb9cb08cdfa6b7d..25eba634ea8fad570bf9ac2019548fc6bd75a123 100644 --- a/theories/typing/own.v +++ b/theories/typing/own.v @@ -129,15 +129,11 @@ Section own. eqtype E L (own_ptr n1 ty1) (own_ptr n2 ty2). Proof. intros. by apply own_proper. Qed. - Global Instance own_contractive n : Contractive (own_ptr n). - Proof. - intros m ?? EQ. constructor; simpl. - - done. - - destruct m=>// tid vl /=. repeat (apply EQ || f_contractive || f_equiv). - - intros κ tid l. repeat (apply EQ || f_contractive || f_equiv). - Qed. - Global Instance own_ne n m : Proper (dist m ==> dist m) (own_ptr n). - Proof. apply contractive_ne, _. Qed. + Global Instance own_type_contractive n : TypeContractive (own_ptr n). + Proof. solve_type_proper. Qed. + + Global Instance own_ne n : NonExpansive (own_ptr n). + Proof. apply type_contractive_ne, _. Qed. Global Instance own_send n ty : Send ty → Send (own_ptr n ty). @@ -157,6 +153,7 @@ Section own. Qed. End own. +(* TODO: Make box a proper type with subtyping, contractivity, ... *) Notation box ty := (own_ptr ty.(ty_size) ty). Section typing. diff --git a/theories/typing/product.v b/theories/typing/product.v index 6e7d11215165dbb721d740f8b6770a34c975f9e0..86916b7e57b38da8ccfd11d31fa594d7fa750d56 100644 --- a/theories/typing/product.v +++ b/theories/typing/product.v @@ -67,14 +67,9 @@ Section product. iSplitL "H1"; by iApply (ty_shr_mono with "H⊑"). Qed. - Global Instance product2_ne n: - Proper (dist n ==> dist n ==> dist n) product2. - Proof. - intros ?? EQ1 ?? EQ2. constructor; simpl. - - by rewrite EQ1 EQ2. - - intros tid vs. destruct n as [|n]=>//=. by setoid_rewrite EQ1; setoid_rewrite EQ2. - - intros ???. by rewrite EQ1 EQ2. (* slow, FIXME *) - Qed. + Global Instance product2_type_ne n: + Proper (type_dist2 n ==> type_dist2 n ==> type_dist2 n) product2. + Proof. solve_type_proper. Qed. Global Instance product2_mono E L: Proper (subtype E L ==> subtype E L ==> subtype E L) product2. @@ -144,7 +139,7 @@ Section product. Definition product := foldr product2 unit0. Definition unit := product []. - Global Instance product_ne n: Proper (dist n ==> dist n) product. + Global Instance product_type_ne n: Proper (Forall2 (type_dist2 n) ==> type_dist2 n) product. Proof. intros ??. induction 1=>//=. by f_equiv. Qed. Global Instance product_mono E L: Proper (Forall2 (subtype E L) ==> subtype E L) product. diff --git a/theories/typing/shr_bor.v b/theories/typing/shr_bor.v index 87e26d67154483b2c69b8fe5b6b7da8d7c2b2af0..678aeb85dbddceeb66eab7eff5b04920c07ad68e 100644 --- a/theories/typing/shr_bor.v +++ b/theories/typing/shr_bor.v @@ -32,13 +32,14 @@ Section shr_bor. Proper (lctx_lft_eq E L ==> eqtype E L ==> eqtype E L) shr_bor. Proof. intros ??[] ??[]. by split; apply shr_mono. Qed. - Global Instance shr_contractive κ : Contractive (shr_bor κ). + Global Instance shr_type_contractive κ : TypeContractive (shr_bor κ). Proof. - intros n ?? EQ. apply ty_of_st_ne; constructor=> //=. - intros tid vl. destruct n as [n|]=>//=. repeat f_equiv. apply EQ. + intros n ???. apply: ty_of_st_type_ne. destruct n; first done. + solve_type_proper. Qed. - Global Instance shr_ne κ n : Proper (dist n ==> dist n) (shr_bor κ). - Proof. apply contractive_ne, _. Qed. + + Global Instance shr_ne κ : NonExpansive (shr_bor κ). + Proof. apply type_contractive_ne, _. Qed. Global Instance shr_send κ ty : Sync ty → Send (shr_bor κ ty). diff --git a/theories/typing/sum.v b/theories/typing/sum.v index dd77079db48beec264d7e7253f4e4cb1a5326692..0d598a27de6b3e71e486658100814f5408c3f534 100644 --- a/theories/typing/sum.v +++ b/theories/typing/sum.v @@ -95,21 +95,22 @@ Section sum. - iApply ((nth i tyl ∅).(ty_shr_mono) with "Hord"); done. Qed. - Global Instance sum_ne n: Proper (dist n ==> dist n) sum. + Global Instance sum_type_ne n: Proper (Forall2 (type_dist2 n) ==> type_dist2 n) sum. Proof. intros x y EQ. assert (EQmax : list_max (map ty_size x) = list_max (map ty_size y)). { induction EQ as [|???? EQ _ IH]=>//=. rewrite IH. f_equiv. apply EQ. } - assert (EQnth :∀ i, nth i x ∅ ≡{n}≡ nth i y ∅). + (* TODO: If we had the right lemma relating nth, (Forall2 R) and R, we should + be able to make this more automatic. *) + assert (EQnth :∀ i, type_dist2 n (nth i x ∅) (nth i y ∅)). { clear EQmax. induction EQ as [|???? EQ _ IH]=>-[|i] //=. } constructor; simpl. - by rewrite EQmax. - - intros tid vl. destruct n as [|n]=> //=. rewrite EQmax. by setoid_rewrite EQnth. + - intros tid vl. destruct n as [|n]=> //=. rewrite EQmax. + solve_proper_core ltac:(fun _ => exact:EQnth || f_type_equiv || f_equiv). - intros κ tid l. unfold is_pad. rewrite EQmax. - assert (EQsz : ∀ i, (nth i x ∅).(ty_size) = (nth i y ∅).(ty_size)) - by (intros; apply EQnth). - repeat (rewrite EQsz || apply EQnth || f_equiv). + solve_proper_core ltac:(fun _ => exact:EQnth || f_type_equiv || f_equiv). Qed. Global Instance sum_mono E L : diff --git a/theories/typing/type.v b/theories/typing/type.v index 1f69cae8a9700745fecf0eafa9fa6a7438403c1c..c9eb29858752dcb2f4fec7498ebb253ac2126d71 100644 --- a/theories/typing/type.v +++ b/theories/typing/type.v @@ -57,144 +57,30 @@ Record simple_type `{typeG Σ} := Existing Instance st_own_persistent. Instance: Params (@st_own) 2. -Section type. - Context `{typeG Σ}. - - (** Copy types *) - Fixpoint shr_locsE (l : loc) (n : nat) : coPset := - match n with - | 0%nat => ∅ - | S n => ↑shrN.@l ∪ shr_locsE (shift_loc l 1%nat) n - end. - - Lemma shr_locsE_shift l n m : - shr_locsE l (n + m) = shr_locsE l n ∪ shr_locsE (shift_loc l n) m. - Proof. - revert l; induction n; intros l. - - rewrite shift_loc_0. set_solver+. - - rewrite -Nat.add_1_l Nat2Z.inj_add /= IHn shift_loc_assoc. - set_solver+. - Qed. - - Lemma shr_locsE_disj l n m : - shr_locsE l n ⊥ shr_locsE (shift_loc l n) m. - Proof. - revert l; induction n; intros l. - - simpl. set_solver+. - - rewrite -Nat.add_1_l Nat2Z.inj_add /=. - apply disjoint_union_l. split; last (rewrite -shift_loc_assoc; exact: IHn). - clear IHn. revert n; induction m; intros n; simpl; first set_solver+. - rewrite shift_loc_assoc. apply disjoint_union_r. split. - + apply ndot_ne_disjoint. destruct l. intros [=]. omega. - + rewrite -Z.add_assoc. move:(IHm (n + 1)%nat). rewrite Nat2Z.inj_add //. - Qed. - - Lemma shr_locsE_shrN l n : - shr_locsE l n ⊆ ↑shrN. - Proof. - revert l; induction n=>l /=; first by set_solver+. - apply union_least; last by auto. solve_ndisj. - Qed. - - Lemma shr_locsE_subseteq l n m : - (n ≤ m)%nat → shr_locsE l n ⊆ shr_locsE l m. - Proof. - induction 1; first done. etrans; first done. - rewrite -Nat.add_1_l [(_ + _)%nat]comm_L shr_locsE_shift. set_solver+. - Qed. - - Lemma shr_locsE_split_tok l n m tid : - na_own tid (shr_locsE l (n + m)) ⊣⊢ - na_own tid (shr_locsE l n) ∗ na_own tid (shr_locsE (shift_loc l n) m). - Proof. - rewrite shr_locsE_shift na_own_union //. apply shr_locsE_disj. - Qed. - - Class Copy (t : type) := { - copy_persistent tid vl : PersistentP (t.(ty_own) tid vl); - copy_shr_acc κ tid E F l q : - lftE ∪ ↑shrN ⊆ E → shr_locsE l (t.(ty_size) + 1) ⊆ F → - lft_ctx -∗ t.(ty_shr) κ tid l -∗ na_own tid F -∗ q.[κ] ={E}=∗ - ∃ q', na_own tid (F ∖ shr_locsE l t.(ty_size)) ∗ - â–·(l ↦∗{q'}: t.(ty_own) tid) ∗ - (na_own tid (F ∖ shr_locsE l t.(ty_size)) -∗ â–·l ↦∗{q'}: t.(ty_own) tid - ={E}=∗ na_own tid F ∗ q.[κ]) - }. - Global Existing Instances copy_persistent. - - Class LstCopy (tys : list type) := lst_copy : Forall Copy tys. - Global Instance lst_copy_nil : LstCopy [] := List.Forall_nil _. - Global Instance lst_copy_cons ty tys : - Copy ty → LstCopy tys → LstCopy (ty::tys) := List.Forall_cons _ _ _. - - (** Send and Sync types *) - Class Send (t : type) := - send_change_tid tid1 tid2 vl : t.(ty_own) tid1 vl -∗ t.(ty_own) tid2 vl. - - Class LstSend (tys : list type) := lst_send : Forall Send tys. - Global Instance lst_send_nil : LstSend [] := List.Forall_nil _. - Global Instance lst_send_cons ty tys : - Send ty → LstSend tys → LstSend (ty::tys) := List.Forall_cons _ _ _. - - Class Sync (t : type) := - sync_change_tid κ tid1 tid2 l : t.(ty_shr) κ tid1 l -∗ t.(ty_shr) κ tid2 l. - - Class LstSync (tys : list type) := lst_sync : Forall Sync tys. - Global Instance lst_sync_nil : LstSync [] := List.Forall_nil _. - Global Instance lst_sync_cons ty tys : - Sync ty → LstSync tys → LstSync (ty::tys) := List.Forall_cons _ _ _. - - (** Simple types *) - Program Definition ty_of_st (st : simple_type) : type := - {| ty_size := 1; ty_own := st.(st_own); - - (* [st.(st_own) tid vl] needs to be outside of the fractured - borrow, otherwise I do not know how to prove the shr part of - [subtype_shr_mono]. *) - ty_shr := λ κ tid l, - (∃ vl, (&frac{κ} λ q, l ↦∗{q} vl) ∗ - â–· st.(st_own) tid vl)%I - |}. - Next Obligation. intros. apply st_size_eq. Qed. - Next Obligation. - iIntros (st E κ l tid ??) "#LFT Hmt Hκ". - iMod (bor_exists with "LFT Hmt") as (vl) "Hmt". set_solver. - iMod (bor_sep with "LFT Hmt") as "[Hmt Hown]". set_solver. - iMod (bor_persistent with "LFT Hown") as "[Hown|#H†]". set_solver. - - iFrame "Hκ". - iMod (bor_fracture with "LFT [Hmt]") as "Hfrac"; by eauto with iFrame. - - iExFalso. by iApply (lft_tok_dead with "Hκ"). - Qed. - Next Obligation. - intros st κ κ' tid l. iIntros "#Hord H". - iDestruct "H" as (vl) "[#Hf #Hown]". - iExists vl. iFrame "Hown". by iApply (frac_bor_shorten with "Hord"). - Qed. - - Global Program Instance ty_of_st_copy st : Copy (ty_of_st st). - Next Obligation. - iIntros (st κ tid E ? l q ? HF) "#LFT #Hshr Htok Hlft". - iDestruct (na_own_acc with "Htok") as "[$ Htok]"; first set_solver+. - iDestruct "Hshr" as (vl) "[Hf Hown]". - iMod (frac_bor_acc with "LFT Hf Hlft") as (q') "[Hmt Hclose]"; first set_solver. - iModIntro. iExists _. iDestruct "Hmt" as "[Hmt1 Hmt2]". - iSplitL "Hmt1"; first by auto with iFrame. - iIntros "Htok2 Hmt1". iDestruct "Hmt1" as (vl') "[Hmt1 #Hown']". - iDestruct ("Htok" with "Htok2") as "$". - iAssert (â–· ⌜length vl = length vl'âŒ)%I as ">%". - { iNext. iDestruct (st_size_eq with "Hown") as %->. - iDestruct (st_size_eq with "Hown'") as %->. done. } - iCombine "Hmt1" "Hmt2" as "Hmt". rewrite heap_mapsto_vec_op // Qp_div_2. - iDestruct "Hmt" as "[>% Hmt]". subst. by iApply "Hclose". - Qed. - - Global Instance ty_of_st_sync st : - Send (ty_of_st st) → Sync (ty_of_st st). - Proof. - iIntros (Hsend κ tid1 tid2 l). iDestruct 1 as (vl) "[Hm Hown]". - iExists vl. iFrame "Hm". iNext. by iApply Hsend. - Qed. -End type. +Program Definition ty_of_st `{typeG Σ} (st : simple_type) : type := + {| ty_size := 1; ty_own := st.(st_own); + (* [st.(st_own) tid vl] needs to be outside of the fractured + borrow, otherwise I do not know how to prove the shr part of + [subtype_shr_mono]. *) + ty_shr := λ κ tid l, + (∃ vl, (&frac{κ} λ q, l ↦∗{q} vl) ∗ + â–· st.(st_own) tid vl)%I + |}. +Next Obligation. intros. apply st_size_eq. Qed. +Next Obligation. + iIntros (?? st E κ l tid ??) "#LFT Hmt Hκ". + iMod (bor_exists with "LFT Hmt") as (vl) "Hmt". set_solver. + iMod (bor_sep with "LFT Hmt") as "[Hmt Hown]". set_solver. + iMod (bor_persistent with "LFT Hown") as "[Hown|#H†]". set_solver. + - iFrame "Hκ". + iMod (bor_fracture with "LFT [Hmt]") as "Hfrac"; by eauto with iFrame. + - iExFalso. by iApply (lft_tok_dead with "Hκ"). +Qed. +Next Obligation. + iIntros (?? st κ κ' tid l) "#Hord H". + iDestruct "H" as (vl) "[#Hf #Hown]". + iExists vl. iFrame "Hown". by iApply (frac_bor_shorten with "Hord"). +Qed. Coercion ty_of_st : simple_type >-> type. @@ -215,26 +101,26 @@ Section ofe. Inductive type_dist' (n : nat) (ty1 ty2 : type) : Prop := Type_dist : ty1.(ty_size) = ty2.(ty_size) → - (∀ tid vs, dist_later n (ty1.(ty_own) tid vs) (ty2.(ty_own) tid vs)) → + (∀ tid vs, ty1.(ty_own) tid vs ≡{n}≡ ty2.(ty_own) tid vs) → (∀ κ tid l, ty1.(ty_shr) κ tid l ≡{n}≡ ty2.(ty_shr) κ tid l) → type_dist' n ty1 ty2. Instance type_dist : Dist type := type_dist'. Let T := prodC - (prodC natC (thread_id -c> list val -c> laterC (iProp Σ))) + (prodC natC (thread_id -c> list val -c> iProp Σ)) (lft -c> thread_id -c> loc -c> iProp Σ). Let P (x : T) : Prop := (∀ κ tid l, PersistentP (x.2 κ tid l)) ∧ - (∀ tid vl, (later_car (x.1.2 tid vl) : iProp Σ) -∗ ⌜length vl = x.1.1âŒ) ∧ + (∀ tid vl, x.1.2 tid vl -∗ ⌜length vl = x.1.1âŒ) ∧ (∀ E κ l tid q, lftE ⊆ E → - lft_ctx -∗ &{κ} (l ↦∗: λ vs, later_car (x.1.2 tid vs)) -∗ + lft_ctx -∗ &{κ} (l ↦∗: λ vs, x.1.2 tid vs) -∗ q.[κ] ={E}=∗ x.2 κ tid l ∗ q.[κ]) ∧ (∀ κ κ' tid l, κ' ⊑ κ -∗ x.2 κ tid l -∗ x.2 κ' tid l). Definition type_unpack (ty : type) : T := - (ty.(ty_size), λ tid vl, Next (ty.(ty_own) tid vl), ty.(ty_shr)). + (ty.(ty_size), λ tid vl, (ty.(ty_own) tid vl), ty.(ty_shr)). Program Definition type_pack (x : T) (H : P x) : type := - {| ty_size := x.1.1; ty_own tid vl := later_car (x.1.2 tid vl); ty_shr := x.2 |}. + {| ty_size := x.1.1; ty_own tid vl := x.1.2 tid vl; ty_shr := x.2 |}. Solve Obligations with by intros [[??] ?] (?&?&?&?). Definition type_ofe_mixin : OfeMixin type. @@ -250,7 +136,7 @@ Section ofe. Global Instance ty_size_proper : Proper ((≡) ==> eq) ty_size. Proof. intros ?? EQ. apply EQ. Qed. Global Instance ty_own_ne n: - Proper (dist (S n) ==> eq ==> eq ==> dist n) ty_own. + Proper (dist n ==> eq ==> eq ==> dist n) ty_own. Proof. intros ?? EQ ??-> ??->. apply EQ. Qed. Global Instance ty_own_proper : Proper ((≡) ==> eq ==> eq ==> (≡)) ty_own. Proof. intros ?? EQ ??-> ??->. apply EQ. Qed. @@ -267,15 +153,15 @@ Section ofe. - split; [by destruct 1|by intros [[??] ?]; constructor]. - by intros []. - intros ? c. rewrite /P /=. split_and!. + (* TODO: Can we do these proofs without effectively going into the model? *) + intros κ tid l. apply uPred.entails_equiv_and, equiv_dist=>n. setoid_rewrite conv_compl; simpl. apply equiv_dist, uPred.entails_equiv_and, ty_shr_persistent. + intros tid vl. apply uPred.entails_equiv_and, equiv_dist=>n. - rewrite !conv_compl /=. + repeat setoid_rewrite conv_compl at 1. simpl. apply equiv_dist, uPred.entails_equiv_and, ty_size_eq. + intros E κ l tid q ?. apply uPred.entails_equiv_and, equiv_dist=>n. setoid_rewrite conv_compl; simpl. - rewrite -(c.(chain_cauchy) n (S n)); last lia. by apply equiv_dist, uPred.entails_equiv_and, ty_share. + intros κ κ' tid l. apply uPred.entails_equiv_and, equiv_dist=>n. setoid_rewrite conv_compl; simpl. @@ -289,12 +175,12 @@ Section ofe. Instance st_equiv : Equiv simple_type := st_equiv'. Inductive st_dist' (n : nat) (ty1 ty2 : simple_type) : Prop := St_dist : - (∀ tid vs, dist_later n (ty1.(ty_own) tid vs) (ty2.(ty_own) tid vs)) → + (∀ tid vs, ty1.(ty_own) tid vs ≡{n}≡ (ty2.(ty_own) tid vs)) → st_dist' n ty1 ty2. Instance st_dist : Dist simple_type := st_dist'. - Definition st_unpack (ty : simple_type) : thread_id -c> list val -c> laterC (iProp Σ) := - λ tid vl, Next (ty.(ty_own) tid vl). + Definition st_unpack (ty : simple_type) : thread_id -c> list val -c> iProp Σ := + λ tid vl, ty.(ty_own) tid vl. Definition st_ofe_mixin : OfeMixin simple_type. Proof. @@ -305,7 +191,7 @@ Section ofe. Canonical Structure stC : ofeT := OfeT simple_type st_ofe_mixin. Global Instance st_own_ne n : - Proper (dist (S n) ==> eq ==> eq ==> dist n) st_own. + Proper (dist n ==> eq ==> eq ==> dist n) st_own. Proof. intros ?? EQ ??-> ??->. apply EQ. Qed. Global Instance st_own_proper : Proper ((≡) ==> eq ==> eq ==> (≡)) st_own. Proof. intros ?? EQ ??-> ??->. apply EQ. Qed. @@ -314,12 +200,271 @@ Section ofe. Proof. intros n ?? EQ. constructor. done. simpl. - intros tid l. apply EQ. - - simpl. intros; repeat (f_contractive || f_equiv). apply EQ. + - simpl. intros; repeat f_equiv. apply EQ. Qed. Global Instance ty_of_st_proper : Proper ((≡) ==> (≡)) ty_of_st. Proof. apply (ne_proper _). Qed. End ofe. +(** Special metric for type-nonexpansive and Type-contractive functions. *) +Section type_dist2. + Context `{typeG Σ}. + + (* Size and shr are n-equal, but own is only n-1-equal. + We need this to express what shr has to satisfy on a Type-NE-function: + It may only depend contractively on own. *) + (* TODO: Find a better name for this metric. *) + Inductive type_dist2 (n : nat) (ty1 ty2 : type) : Prop := + Type_dist2 : + ty1.(ty_size) = ty2.(ty_size) → + (∀ tid vs, dist_later n (ty1.(ty_own) tid vs) (ty2.(ty_own) tid vs)) → + (∀ κ tid l, ty1.(ty_shr) κ tid l ≡{n}≡ ty2.(ty_shr) κ tid l) → + type_dist2 n ty1 ty2. + + Global Instance type_dist2_equivalence : Equivalence (type_dist2 n). + Proof. + constructor. + - by constructor. + - intros ?? Heq; constructor; symmetry; eapply Heq. + - intros ??? Heq1 Heq2; constructor; etrans; (eapply Heq1 || eapply Heq2). + Qed. + + Definition type_dist2_later (n : nat) ty1 ty2 : Prop := + match n with O => True | S n => type_dist2 n ty1 ty2 end. + Arguments type_dist2_later !_ _ _ /. + + Global Instance type_dist2_later_equivalence n : + Equivalence (type_dist2_later n). + Proof. destruct n as [|n]. by split. apply type_dist2_equivalence. Qed. + + (* The hierarchy of metrics: + dist n → type_dist2 n → dist_later n → type_dist2_later. *) + Lemma type_dist_dist2 n ty1 ty2 : dist n ty1 ty2 → type_dist2 n ty1 ty2. + Proof. intros EQ. split; intros; try apply dist_dist_later; apply EQ. Qed. + Lemma type_dist2_dist_later n ty1 ty2 : type_dist2 n ty1 ty2 → dist_later n ty1 ty2. + Proof. + intros EQ. destruct n; first done. split; intros; try apply EQ. + apply dist_S, EQ. + Qed. + Lemma type_later_dist2_later n ty1 ty2 : dist_later n ty1 ty2 → type_dist2_later n ty1 ty2. + Proof. destruct n; first done. exact: type_dist_dist2. Qed. + Lemma type_dist2_dist n ty1 ty2 : type_dist2 (S n) ty1 ty2 → dist n ty1 ty2. + Proof. move=>/type_dist2_dist_later. done. Qed. + Lemma type_dist2_S n ty1 ty2 : type_dist2 (S n) ty1 ty2 → type_dist2 n ty1 ty2. + Proof. intros. apply type_dist_dist2, type_dist2_dist. done. Qed. + + Lemma ty_size_type_dist n : Proper (type_dist2 n ==> eq) ty_size. + Proof. intros ?? EQ. apply EQ. Qed. + Lemma ty_own_type_dist n: + Proper (type_dist2 (S n) ==> eq ==> eq ==> dist n) ty_own. + Proof. intros ?? EQ ??-> ??->. apply EQ. Qed. + Lemma ty_shr_type_dist n : + Proper (type_dist2 n ==> eq ==> eq ==> eq ==> dist n) ty_shr. + Proof. intros ?? EQ ??-> ??-> ??->. apply EQ. Qed. +End type_dist2. + +(** Type-nonexpansive and Type-contractive functions. *) +(* Note that TypeContractive is neither weaker nor stronger than Contractive, because + (a) it allows the dependency of own on shr to be non-expansive, and + (b) it forces the dependency of shr on own to be doubly-contractive. + It would be possible to weaken this so that no double-contractivity is required. + However, then it is no longer possible to write TypeContractive as just a + Proper, which makes it significantly more annoying to use. + For similar reasons, TypeNonExpansive is incomparable to NonExpansive. +*) +Notation TypeNonExpansive T := (∀ n, Proper (type_dist2 n ==> type_dist2 n) T). +Notation TypeContractive T := (∀ n, Proper (type_dist2_later n ==> type_dist2 n) T). + +Section type_contractive. + Context `{typeG Σ}. + + Lemma type_ne_dist_later T : + TypeNonExpansive T → ∀ n, Proper (type_dist2_later n ==> type_dist2_later n) T. + Proof. intros Hf [|n]; last exact: Hf. hnf. by intros. Qed. + + (* From the above, it easily follows that TypeNonExpansive functions compose with + TypeNonExpansive and with TypeContractive functions. *) + Lemma type_ne_ne_compose T1 T2 : + TypeNonExpansive T1 → TypeNonExpansive T2 → TypeNonExpansive (T1 ∘ T2). + Proof. intros NE1 NE2 ? ???; simpl. apply: NE1. exact: NE2. Qed. + + Lemma type_contractive_compose_right T1 T2 : + TypeContractive T1 → TypeNonExpansive T2 → TypeContractive (T1 ∘ T2). + Proof. intros HT1 HT2 ? ???. apply: HT1. exact: type_ne_dist_later. Qed. + + Lemma type_contractive_compose_left T1 T2 : + TypeNonExpansive T1 → TypeContractive T2 → TypeContractive (T1 ∘ T2). + Proof. intros HT1 HT2 ? ???; simpl. apply: HT1. exact: HT2. Qed. + + (* Show some more relationships between properties. *) + Lemma type_contractive_type_ne T : + TypeContractive T → TypeNonExpansive T. + Proof. + intros HT ? ???. apply type_dist_dist2, dist_later_dist, type_dist2_dist_later, HT. done. + Qed. + + Lemma type_contractive_ne T : + TypeContractive T → NonExpansive T. + Proof. + intros HT ? ???. apply dist_later_dist, type_dist2_dist_later, HT, type_dist_dist2. done. + Qed. + + (* Simple types *) + Global Instance ty_of_st_type_ne n : + Proper (dist_later n ==> type_dist2 n) ty_of_st. + Proof. + intros ???. constructor. + - done. + - intros. destruct n; first done; simpl. by f_equiv. + - intros. solve_contractive. + Qed. +End type_contractive. + +(* Tactic automation. *) +Ltac f_type_equiv := + first [ ((eapply ty_size_type_dist || eapply ty_shr_type_dist || eapply ty_own_type_dist); try reflexivity) | + match goal with | |- @dist_later ?A ?n ?x ?y => + destruct n as [|n]; [exact I|change (@dist A _ n x y)] + end ]. +Ltac solve_type_proper := + constructor; + solve_proper_core ltac:(fun _ => f_type_equiv || f_contractive || f_equiv). + +Section type. + Context `{typeG Σ}. + + (** Copy types *) + Fixpoint shr_locsE (l : loc) (n : nat) : coPset := + match n with + | 0%nat => ∅ + | S n => ↑shrN.@l ∪ shr_locsE (shift_loc l 1%nat) n + end. + + Lemma shr_locsE_shift l n m : + shr_locsE l (n + m) = shr_locsE l n ∪ shr_locsE (shift_loc l n) m. + Proof. + revert l; induction n; intros l. + - rewrite shift_loc_0. set_solver+. + - rewrite -Nat.add_1_l Nat2Z.inj_add /= IHn shift_loc_assoc. + set_solver+. + Qed. + + Lemma shr_locsE_disj l n m : + shr_locsE l n ⊥ shr_locsE (shift_loc l n) m. + Proof. + revert l; induction n; intros l. + - simpl. set_solver+. + - rewrite -Nat.add_1_l Nat2Z.inj_add /=. + apply disjoint_union_l. split; last (rewrite -shift_loc_assoc; exact: IHn). + clear IHn. revert n; induction m; intros n; simpl; first set_solver+. + rewrite shift_loc_assoc. apply disjoint_union_r. split. + + apply ndot_ne_disjoint. destruct l. intros [=]. omega. + + rewrite -Z.add_assoc. move:(IHm (n + 1)%nat). rewrite Nat2Z.inj_add //. + Qed. + + Lemma shr_locsE_shrN l n : + shr_locsE l n ⊆ ↑shrN. + Proof. + revert l; induction n=>l /=; first by set_solver+. + apply union_least; last by auto. solve_ndisj. + Qed. + + Lemma shr_locsE_subseteq l n m : + (n ≤ m)%nat → shr_locsE l n ⊆ shr_locsE l m. + Proof. + induction 1; first done. etrans; first done. + rewrite -Nat.add_1_l [(_ + _)%nat]comm_L shr_locsE_shift. set_solver+. + Qed. + + Lemma shr_locsE_split_tok l n m tid : + na_own tid (shr_locsE l (n + m)) ⊣⊢ + na_own tid (shr_locsE l n) ∗ na_own tid (shr_locsE (shift_loc l n) m). + Proof. + rewrite shr_locsE_shift na_own_union //. apply shr_locsE_disj. + Qed. + + Class Copy (t : type) := { + copy_persistent tid vl : PersistentP (t.(ty_own) tid vl); + copy_shr_acc κ tid E F l q : + lftE ∪ ↑shrN ⊆ E → shr_locsE l (t.(ty_size) + 1) ⊆ F → + lft_ctx -∗ t.(ty_shr) κ tid l -∗ na_own tid F -∗ q.[κ] ={E}=∗ + ∃ q', na_own tid (F ∖ shr_locsE l t.(ty_size)) ∗ + â–·(l ↦∗{q'}: t.(ty_own) tid) ∗ + (na_own tid (F ∖ shr_locsE l t.(ty_size)) -∗ â–·l ↦∗{q'}: t.(ty_own) tid + ={E}=∗ na_own tid F ∗ q.[κ]) + }. + Global Existing Instances copy_persistent. + + Global Instance copy_equiv : + Proper (equiv ==> impl) Copy. + Proof. + intros ty1 ty2 [EQsz%leibniz_equiv EQown EQshr] Hty1. split. + - intros. rewrite -EQown. apply _. + - intros *. rewrite -EQsz -EQshr. setoid_rewrite <-EQown. + apply copy_shr_acc. + Qed. + + Class LstCopy (tys : list type) := lst_copy : Forall Copy tys. + Global Instance lst_copy_nil : LstCopy [] := List.Forall_nil _. + Global Instance lst_copy_cons ty tys : + Copy ty → LstCopy tys → LstCopy (ty::tys) := List.Forall_cons _ _ _. + + Global Program Instance ty_of_st_copy st : Copy (ty_of_st st). + Next Obligation. + iIntros (st κ tid E ? l q ? HF) "#LFT #Hshr Htok Hlft". + iDestruct (na_own_acc with "Htok") as "[$ Htok]"; first set_solver+. + iDestruct "Hshr" as (vl) "[Hf Hown]". + iMod (frac_bor_acc with "LFT Hf Hlft") as (q') "[Hmt Hclose]"; first set_solver. + iModIntro. iExists _. iDestruct "Hmt" as "[Hmt1 Hmt2]". + iSplitL "Hmt1"; first by auto with iFrame. + iIntros "Htok2 Hmt1". iDestruct "Hmt1" as (vl') "[Hmt1 #Hown']". + iDestruct ("Htok" with "Htok2") as "$". + iAssert (â–· ⌜length vl = length vl'âŒ)%I as ">%". + { iNext. iDestruct (st_size_eq with "Hown") as %->. + iDestruct (st_size_eq with "Hown'") as %->. done. } + iCombine "Hmt1" "Hmt2" as "Hmt". rewrite heap_mapsto_vec_op // Qp_div_2. + iDestruct "Hmt" as "[>% Hmt]". subst. by iApply "Hclose". + Qed. + + (** Send and Sync types *) + Class Send (t : type) := + send_change_tid tid1 tid2 vl : t.(ty_own) tid1 vl -∗ t.(ty_own) tid2 vl. + + Global Instance send_equiv : + Proper (equiv ==> impl) Send. + Proof. + intros ty1 ty2 [EQsz%leibniz_equiv EQown EQshr] Hty1. + rewrite /Send=>???. rewrite -!EQown. auto. + Qed. + + Class LstSend (tys : list type) := lst_send : Forall Send tys. + Global Instance lst_send_nil : LstSend [] := List.Forall_nil _. + Global Instance lst_send_cons ty tys : + Send ty → LstSend tys → LstSend (ty::tys) := List.Forall_cons _ _ _. + + Class Sync (t : type) := + sync_change_tid κ tid1 tid2 l : t.(ty_shr) κ tid1 l -∗ t.(ty_shr) κ tid2 l. + + Global Instance sync_equiv : + Proper (equiv ==> impl) Sync. + Proof. + intros ty1 ty2 [EQsz%leibniz_equiv EQown EQshr] Hty1. + rewrite /Send=>????. rewrite -!EQshr. auto. + Qed. + + Class LstSync (tys : list type) := lst_sync : Forall Sync tys. + Global Instance lst_sync_nil : LstSync [] := List.Forall_nil _. + Global Instance lst_sync_cons ty tys : + Sync ty → LstSync tys → LstSync (ty::tys) := List.Forall_cons _ _ _. + + Global Instance ty_of_st_sync st : + Send (ty_of_st st) → Sync (ty_of_st st). + Proof. + iIntros (Hsend κ tid1 tid2 l). iDestruct 1 as (vl) "[Hm Hown]". + iExists vl. iFrame "Hm". iNext. by iApply Hsend. + Qed. +End type. + Section subtyping. Context `{typeG Σ}. Definition type_incl (ty1 ty2 : type) : iProp Σ := @@ -327,6 +472,12 @@ Section subtyping. (â–¡ ∀ tid vl, ty1.(ty_own) tid vl -∗ ty2.(ty_own) tid vl) ∗ (â–¡ ∀ κ tid l, ty1.(ty_shr) κ tid l -∗ ty2.(ty_shr) κ tid l))%I. + Global Instance type_incl_ne : NonExpansive2 type_incl. + Proof. + intros n ?? [EQsz1%leibniz_equiv EQown1 EQshr1] ?? [EQsz2%leibniz_equiv EQown2 EQshr2]. + rewrite /type_incl. repeat ((by auto) || f_equiv). + Qed. + Global Instance type_incl_persistent ty1 ty2 : PersistentP (type_incl ty1 ty2) := _. (* Typeclasses Opaque type_incl. *) @@ -347,9 +498,6 @@ Section subtyping. Definition subtype (ty1 ty2 : type) : Prop := elctx_interp_0 E -∗ ⌜llctx_interp_0 L⌠-∗ type_incl ty1 ty2. - (* TODO RJ: I'd really like to get rid of this definition. *) - Definition ctx_eq {A} (x1 x2 : A) : Prop := - elctx_interp_0 E -∗ ⌜llctx_interp_0 L⌠-∗ ⌜x1 = x2âŒ. Lemma subtype_refl ty : subtype ty ty. Proof. iIntros. iApply type_incl_refl. Qed. @@ -362,6 +510,10 @@ Section subtyping. - iApply (H23 with "[] []"); done. Qed. + (* Conditional equality (intended to be used with sizes) *) + (* TODO RJ: I'd really like to get rid of this definition. *) + Definition ctx_eq {A} (x1 x2 : A) : Prop := + elctx_interp_0 E -∗ ⌜llctx_interp_0 L⌠-∗ ⌜x1 = x2âŒ. Lemma ctx_eq_refl {A} (x : A) : ctx_eq x x. Proof. by iIntros "_ _". Qed. Global Instance ctx_eq_equivalent {A} : Equivalence (@ctx_eq A). diff --git a/theories/typing/uniq_bor.v b/theories/typing/uniq_bor.v index 53e18448400a1a18b632669e9b16b5ef76a4d8a0..9c7f4cc02ecd47c1f8215097857a1aee91d52289 100644 --- a/theories/typing/uniq_bor.v +++ b/theories/typing/uniq_bor.v @@ -79,14 +79,11 @@ Section uniq_bor. Proper (lctx_lft_eq E L ==> eqtype E L ==> eqtype E L) uniq_bor. Proof. intros ??[]; split; by apply uniq_mono. Qed. - Global Instance uniq_contractive κ : Contractive (uniq_bor κ). - Proof. - intros n ?? EQ. constructor=> //=. - - destruct n=>// tid vl /=. repeat (apply EQ || f_contractive || f_equiv). - - intros κ' tid l. repeat (apply EQ || f_contractive || f_equiv). - Qed. - Global Instance uniq_ne κ n : Proper (dist n ==> dist n) (uniq_bor κ). - Proof. apply contractive_ne, _. Qed. + Global Instance uniq_type_contractive κ : TypeContractive (uniq_bor κ). + Proof. solve_type_proper. Qed. + + Global Instance uniq_ne κ : NonExpansive (uniq_bor κ). + Proof. apply type_contractive_ne, _. Qed. Global Instance uniq_send κ ty : Send ty → Send (uniq_bor κ ty). diff --git a/theories/typing/unsafe/cell.v b/theories/typing/unsafe/cell.v index 690f0f73c591396d00ad77f8cbfc7fef593b51ef..b273af62085a132d55e843c1b7279856c1a72422 100644 --- a/theories/typing/unsafe/cell.v +++ b/theories/typing/unsafe/cell.v @@ -21,11 +21,8 @@ Section cell. iIntros (ty ?? tid l) "#H⊑ H". by iApply (na_bor_shorten with "H⊑"). Qed. - Global Instance cell_ne n : Proper (dist n ==> dist n) cell. - Proof. - intros ?? EQ. constructor; simpl; try apply EQ. - intros κ tid l. repeat (apply EQ || f_contractive || f_equiv). - Qed. + Global Instance cell_type_ne : TypeNonExpansive cell. + Proof. solve_type_proper. Qed. Global Instance cell_mono E L : Proper (eqtype E L ==> subtype E L) cell. Proof. diff --git a/theories/typing/unsafe/refcell/ref.v b/theories/typing/unsafe/refcell/ref.v index e524dd99ad9130c047604175ac4b255639cf3ff6..c9c8b761a4cb361e1f4f44258656a9f2c8461db2 100644 --- a/theories/typing/unsafe/refcell/ref.v +++ b/theories/typing/unsafe/refcell/ref.v @@ -68,14 +68,10 @@ Section ref. - by iApply na_bor_shorten. Qed. - Global Instance ref_contractive α : Contractive (ref α). - Proof. - intros n ?? EQ. unfold ref. constructor=>//=. - - intros tid vl. destruct n as [|n]=>//=. repeat (f_contractive || f_equiv). apply EQ. - - intros κ tid l. repeat (f_contractive || f_equiv). apply EQ. - Qed. - Global Instance ref_ne n α : Proper (dist n ==> dist n) (ref α). - Proof. apply contractive_ne, _. Qed. + Global Instance ref_type_contractive α : TypeContractive (ref α). + Proof. solve_type_proper. Qed. + Global Instance ref_ne α : NonExpansive (ref α). + Proof. apply type_contractive_ne, _. Qed. Global Instance ref_mono E L : Proper (flip (lctx_lft_incl E L) ==> subtype E L ==> subtype E L) ref. diff --git a/theories/typing/unsafe/refcell/refcell.v b/theories/typing/unsafe/refcell/refcell.v index 6ccdd17ea4f6ef58f4edde35ada9ce5d9d045f72..063fd5b13ebe1140562c922af13ce1260400689d 100644 --- a/theories/typing/unsafe/refcell/refcell.v +++ b/theories/typing/unsafe/refcell/refcell.v @@ -50,10 +50,9 @@ Section refcell_inv. end)%I. Global Instance refcell_inv_ne n tid l γ α : - Proper (dist n ==> dist n) (refcell_inv tid l γ α). - Proof. - intros ty1 ty2 Hty. unfold refcell_inv. - repeat (f_contractive || f_equiv || apply Hty || apply dist_S). + Proper (type_dist2 n ==> dist n) (refcell_inv tid l γ α). + Proof. + solve_proper_core ltac:(fun _ => exact: type_dist2_S || f_type_equiv || f_contractive || f_equiv). Qed. Lemma refcell_inv_proper E L tid l γ α ty1 ty2 : @@ -149,12 +148,10 @@ Section refcell. iExists _, _. iFrame. iApply lft_incl_trans; auto. Qed. - Global Instance refcell_ne n : Proper (dist n ==> dist n) refcell. + Global Instance refcell_type_ne : TypeNonExpansive refcell. Proof. - move=>ty1 ty2 Hty. constructor; simpl. - - f_equiv. apply Hty. - - intros tid vl. destruct n as [|n]=>//=. repeat f_equiv. apply Hty. - - intros κ tid l. by repeat f_equiv. + constructor; + solve_proper_core ltac:(fun _ => exact: type_dist2_S || f_type_equiv || f_contractive || f_equiv). Qed. Global Instance refcell_mono E L : Proper (eqtype E L ==> subtype E L) refcell. diff --git a/theories/typing/unsafe/refcell/refmut.v b/theories/typing/unsafe/refcell/refmut.v index f619bdaa1b8af8ede238a1e93452b49efccc0f72..2dbaf8465e5aa49de9018d724c02c887e487a900 100644 --- a/theories/typing/unsafe/refcell/refmut.v +++ b/theories/typing/unsafe/refcell/refmut.v @@ -86,14 +86,10 @@ Section refmut. iApply ty_shr_mono; try done. iApply lft_glb_mono. iApply lft_incl_refl. done. Qed. - Global Instance refmut_contractive α : Contractive (refmut α). - Proof. - intros n ?? EQ. unfold refmut. constructor=>//=. - - intros tid vl. destruct n as [|n]=>//=. repeat (f_contractive || f_equiv). apply EQ. - - intros κ tid l. repeat (f_contractive || f_equiv). apply EQ. - Qed. - Global Instance refmut_ne n α : Proper (dist n ==> dist n) (refmut α). - Proof. apply contractive_ne, _. Qed. + Global Instance refmut_type_contractive α : TypeContractive (refmut α). + Proof. solve_type_proper. Qed. + Global Instance refmut_ne α : NonExpansive (refmut α). + Proof. apply type_contractive_ne, _. Qed. Global Instance refmut_mono E L : Proper (flip (lctx_lft_incl E L) ==> eqtype E L ==> subtype E L) refmut. diff --git a/theories/typing/unsafe/rwlock/rwlock.v b/theories/typing/unsafe/rwlock/rwlock.v index 3ce0d9f404a17aa341274155f722abe16e77740a..fcdfbe40e9c036ea73a001619ca10e5ec2b8edaf 100644 --- a/theories/typing/unsafe/rwlock/rwlock.v +++ b/theories/typing/unsafe/rwlock/rwlock.v @@ -47,10 +47,9 @@ Section rwlock_inv. end)%I. Global Instance rwlock_inv_ne n tid l γ α : - Proper (dist n ==> dist n) (rwlock_inv tid l γ α). - Proof. - intros ty1 ty2 Hty. unfold rwlock_inv. - repeat (f_contractive || f_equiv || apply Hty || apply dist_S). + Proper (type_dist2 n ==> dist n) (rwlock_inv tid l γ α). + Proof. + solve_proper_core ltac:(fun _ => exact: type_dist2_S || f_type_equiv || f_contractive || f_equiv). Qed. Lemma rwlock_inv_proper E L tid l γ α ty1 ty2 : @@ -143,12 +142,10 @@ Section rwlock. iExists _, _. iFrame. iApply lft_incl_trans; auto. Qed. - Global Instance rwlock_ne n : Proper (dist n ==> dist n) rwlock. + Global Instance rwlock_type_ne : TypeNonExpansive rwlock. Proof. - move=>ty1 ty2 Hty. constructor; simpl. - - f_equiv. apply Hty. - - intros tid vl. destruct n as [|n]=>//=. repeat f_equiv. apply Hty. - - intros κ tid l. by repeat f_equiv. + constructor; + solve_proper_core ltac:(fun _ => exact: type_dist2_S || f_type_equiv || f_contractive || f_equiv). Qed. Global Instance rwlock_mono E L : Proper (eqtype E L ==> subtype E L) rwlock. diff --git a/theories/typing/unsafe/rwlock/rwlockreadguard.v b/theories/typing/unsafe/rwlock/rwlockreadguard.v index 21f9a717a50fb95fe7453e95e307197626071f03..9b773a27c7e291d6ecf140f28c3af552b7c4e426 100644 --- a/theories/typing/unsafe/rwlock/rwlockreadguard.v +++ b/theories/typing/unsafe/rwlock/rwlockreadguard.v @@ -61,14 +61,14 @@ Section rwlockreadguard. iApply lft_incl_refl. Qed. - Global Instance rwlockreadguard_contractive α : Contractive (rwlockreadguard α). + Global Instance rwlockreadguard_type_contractive α : TypeContractive (rwlockreadguard α). Proof. - intros n ?? EQ. unfold rwlockreadguard. constructor=>//=. - - intros tid vl. destruct n as [|n]=>//=. by repeat f_equiv. - - intros κ tid l. repeat (f_contractive || f_equiv). apply EQ. + constructor; + solve_proper_core ltac:(fun _ => exact: type_dist2_S || (eapply rwlock_inv_ne; try reflexivity) || + f_type_equiv || f_contractive || f_equiv). Qed. - Global Instance rwlockreadguard_ne n α : Proper (dist n ==> dist n) (rwlockreadguard α). - Proof. apply contractive_ne, _. Qed. + Global Instance rwlockreadguard_ne α : NonExpansive (rwlockreadguard α). + Proof. apply type_contractive_ne, _. Qed. (* The rust type is not covariant, although it probably could (cf. refcell). This would require changing the definition of the type, though. *) diff --git a/theories/typing/unsafe/rwlock/rwlockwriteguard.v b/theories/typing/unsafe/rwlock/rwlockwriteguard.v index 15ad051c8daa29e8ed4d376f31fa3bc20a0550e1..9386c022a103ce67ecb6188e71ac7969ca715793 100644 --- a/theories/typing/unsafe/rwlock/rwlockwriteguard.v +++ b/theories/typing/unsafe/rwlock/rwlockwriteguard.v @@ -73,15 +73,14 @@ Section rwlockwriteguard. iApply ty_shr_mono; try done. iApply lft_glb_mono. iApply lft_incl_refl. done. Qed. - Global Instance rwlockwriteguard_contractive α : Contractive (rwlockwriteguard α). + Global Instance rwlockwriteguard_type_contractive α : TypeContractive (rwlockwriteguard α). Proof. - intros n ?? EQ. unfold rwlockwriteguard. constructor=>//=. - - intros tid vl. destruct n as [|n]=>//=. - do 9 f_equiv. solve_contractive. by repeat f_equiv. - - intros κ tid l. repeat (f_contractive || f_equiv). apply EQ. + constructor; + solve_proper_core ltac:(fun _ => exact: type_dist2_S || (eapply rwlock_inv_ne; try reflexivity) || + f_type_equiv || f_contractive || f_equiv). Qed. Global Instance rwlockwriteguard_ne α : NonExpansive (rwlockwriteguard α). - Proof. apply contractive_ne, _. Qed. + Proof. apply type_contractive_ne, _. Qed. Global Instance rwlockwriteguard_mono E L : Proper (flip (lctx_lft_incl E L) ==> eqtype E L ==> subtype E L) rwlockwriteguard.