diff --git a/theories/typing/fixpoint.v b/theories/typing/fixpoint.v index c13c52b5d8b17af1744e7e493ea5b9e8ce34ad25..4c9122e99b738c411c07dc49182313ab59d2fb91 100644 --- a/theories/typing/fixpoint.v +++ b/theories/typing/fixpoint.v @@ -13,7 +13,7 @@ Section fixpoint. (∀ `(!Copy ty), Copy (T ty)) → Copy (fixpoint T). Proof. intros ?. apply fixpoint_ind. - - intros ??[[EQsz%leibniz_equiv EQown]EQshr]. + - intros ??[EQsz%leibniz_equiv EQown EQshr]. specialize (λ tid vl, EQown tid vl). specialize (λ κ tid l, EQshr κ tid l). simpl in *=>-[Hp Hsh]; (split; [intros ??|intros ???]). + revert Hp. by rewrite /PersistentP -EQown. @@ -27,10 +27,10 @@ Section fixpoint. apply uPred.entails_equiv_and, equiv_dist=>n. etrans. { apply equiv_dist, uPred.entails_equiv_and, (copy_shr_acc κ tid E F)=>//. by rewrite -conv_compl. } - symmetry. (* FIXME : this is too slow *) + symmetry. do 2 f_equiv; first by rewrite conv_compl. set (cn:=c n). repeat (apply (conv_compl n c) || f_contractive || f_equiv); - by rewrite conv_compl. + by rewrite conv_compl. (* slow, FIXME *) Qed. Global Instance fixpoint_send : @@ -78,12 +78,13 @@ Section subtyping. assert (Hsz : lft_ctx -∗ lft_contexts.elctx_interp_0 E -∗ ⌜lft_contexts.llctx_interp_0 L⌠-∗ ⌜(compl c).(ty_size) = (fixpoint T2).(ty_size)âŒ). - { iIntros "LFT HE HL". iDestruct (Hc 0%nat with "LFT HE HL") as "[$ _]". } + { iIntros "LFT HE HL". rewrite (conv_compl 0 c) /=. + iDestruct (Hc 0%nat with "LFT HE HL") as "[$ _]". } assert (Hown : lft_ctx -∗ lft_contexts.elctx_interp_0 E -∗ ⌜lft_contexts.llctx_interp_0 L⌠-∗ â–¡ (∀ tid vl, (compl c).(ty_own) tid vl -∗ (fixpoint T2).(ty_own) tid vl)). { apply uPred.entails_equiv_and, equiv_dist=>n. - destruct (conv_compl (S n) c) as [[_ Heq] _]. setoid_rewrite (λ tid vl, Heq tid vl). + destruct (conv_compl (S n) c) as [_ Heq _]; simpl in *. setoid_rewrite Heq. apply equiv_dist, uPred.entails_equiv_and. iIntros "LFT HE HL". iDestruct (Hc (S n) with "LFT HE HL") as "[_ [$ _]]". } assert (Hshr : lft_ctx -∗ lft_contexts.elctx_interp_0 E -∗ @@ -91,7 +92,7 @@ Section subtyping. â–¡ (∀ κ tid l, (compl c).(ty_shr) κ tid l -∗ (fixpoint T2).(ty_shr) κ tid l)). { apply uPred.entails_equiv_and, equiv_dist=>n. - destruct (conv_compl n c) as [_ Heq]. setoid_rewrite (λ κ tid l, Heq κ tid l). + destruct (conv_compl n c) as [_ _ Heq]; simpl in *. setoid_rewrite Heq. apply equiv_dist, uPred.entails_equiv_and. iIntros "LFT HE HL". iDestruct (Hc n with "LFT HE HL") as "[_ [_ $]]". } iIntros "LFT HE HL". iSplit; [|iSplit]. @@ -112,12 +113,13 @@ Section subtyping. assert (Hsz : lft_ctx -∗ lft_contexts.elctx_interp_0 E -∗ ⌜lft_contexts.llctx_interp_0 L⌠-∗ ⌜(compl c).(ty_size) = (fixpoint T2).(ty_size)âŒ). - { iIntros "LFT HE HL". iDestruct (Hc 0%nat with "LFT HE HL") as "[$ _]". } + { iIntros "LFT HE HL". rewrite (conv_compl 0 c) /=. + iDestruct (Hc 0%nat with "LFT HE HL") as "[$ _]". } assert (Hown : lft_ctx -∗ lft_contexts.elctx_interp_0 E -∗ ⌜lft_contexts.llctx_interp_0 L⌠-∗ â–¡ (∀ tid vl, (compl c).(ty_own) tid vl ↔ (fixpoint T2).(ty_own) tid vl)). { apply uPred.entails_equiv_and, equiv_dist=>n. - destruct (conv_compl (S n) c) as [[_ Heq] _]. setoid_rewrite (λ tid vl, Heq tid vl). + destruct (conv_compl (S n) c) as [_ Heq _]; simpl in *. setoid_rewrite Heq. apply equiv_dist, uPred.entails_equiv_and. iIntros "LFT HE HL". iDestruct (Hc (S n) with "LFT HE HL") as "[_ [$ _]]". } assert (Hshr : lft_ctx -∗ lft_contexts.elctx_interp_0 E -∗ @@ -125,7 +127,7 @@ Section subtyping. â–¡ (∀ κ tid l, (compl c).(ty_shr) κ tid l ↔ (fixpoint T2).(ty_shr) κ tid l)). { apply uPred.entails_equiv_and, equiv_dist=>n. - destruct (conv_compl n c) as [_ Heq]. setoid_rewrite (λ κ tid l, Heq κ tid l). + destruct (conv_compl n c) as [_ _ Heq]. setoid_rewrite Heq. apply equiv_dist, uPred.entails_equiv_and. iIntros "LFT HE HL". iDestruct (Hc n with "LFT HE HL") as "[_ [_ $]]". } iIntros "LFT HE HL". iSplit; [|iSplit]. diff --git a/theories/typing/function.v b/theories/typing/function.v index b7dee7711a717f20745a921b43ff01c2490707af..6cecb4cf2c49dac7345475680368101e3beb36cf 100644 --- a/theories/typing/function.v +++ b/theories/typing/function.v @@ -29,17 +29,17 @@ Section fn. Proper (pointwise_relation A (dist_later n') ==> pointwise_relation A (dist_later n') ==> dist n') (fn E). Proof. - intros ?? Htys ?? Hty. unfold fn. f_equiv. rewrite st_dist_unfold /=. - f_contractive=>tid vl. unfold typed_body. + intros ?? Htys ?? Hty. apply ty_of_st_ne; constructor. + intros tid vl. destruct n' as [|n']; simpl; [done|]. unfold typed_body. do 12 f_equiv. f_contractive. do 17 f_equiv. - rewrite !cctx_interp_singleton /=. do 5 f_equiv. rewrite !tctx_interp_singleton /tctx_elt_interp /=. repeat f_equiv. apply Hty. - by rewrite (ty_size_proper_d _ _ _ (Hty _)). + by rewrite (ty_size_ne _ _ _ (Hty _)). - rewrite /tctx_interp !big_sepL_zip_with /=. do 3 f_equiv. cut (∀ n tid p i, Proper (dist (S n) ==> dist n) (λ (l : list _), ∀ ty, ⌜l !! i = Some ty⌠→ tctx_elt_interp tid (p â— ty))%I). { intros Hprop. apply Hprop, list_fmap_ne, Htys. intros ty1 ty2 Hty12. - rewrite (ty_size_proper_d _ _ _ Hty12). by rewrite Hty12. } + rewrite (ty_size_ne _ _ _ Hty12). by rewrite Hty12. } clear. intros n tid p i x y. rewrite list_dist_lookup=>Hxy. specialize (Hxy i). destruct (x !! i) as [tyx|], (y !! i) as [tyy|]; inversion_clear Hxy; last done. diff --git a/theories/typing/own.v b/theories/typing/own.v index b3707114cc5a1550482ec178eee88b82204aa590..0bb33dda2d6ecdbe40b462bb9b583d071c94534f 100644 --- a/theories/typing/own.v +++ b/theories/typing/own.v @@ -131,7 +131,7 @@ Section own. Global Instance own_contractive n : Contractive (own_ptr n). Proof. - intros m ?? EQ. split; [split|]; simpl. + intros m ?? EQ. constructor; simpl. - done. - destruct m=>// tid vl /=. repeat (apply EQ || f_contractive || f_equiv). - intros κ tid l. repeat (apply EQ || f_contractive || f_equiv). diff --git a/theories/typing/product.v b/theories/typing/product.v index 6a43961ebc49b0b84ae9c6fef49f7f2a516429e5..898338ae1567c91cd8ad9d0c95c095d38ab5c748 100644 --- a/theories/typing/product.v +++ b/theories/typing/product.v @@ -70,10 +70,10 @@ Section product. Global Instance product2_ne n: Proper (dist n ==> dist n ==> dist n) product2. Proof. - intros ?? EQ1 ?? EQ2. split; [split|]; simpl. + intros ?? EQ1 ?? EQ2. constructor; simpl. - by rewrite EQ1 EQ2. - - f_contractive=>tid vl. by setoid_rewrite EQ1; setoid_rewrite EQ2. - - intros ???. by rewrite EQ1 EQ2. + - intros tid vs. destruct n as [|n]=>//=. by setoid_rewrite EQ1; setoid_rewrite EQ2. + - intros ???. by rewrite EQ1 EQ2. (* slow, FIXME *) Qed. Global Instance product2_mono E L: diff --git a/theories/typing/shr_bor.v b/theories/typing/shr_bor.v index 8ed4d9371c95fa47f05421849fa575288e8b84d4..eac5bb844efa4c684468a1a44672cc9537d69a26 100644 --- a/theories/typing/shr_bor.v +++ b/theories/typing/shr_bor.v @@ -34,8 +34,8 @@ Section shr_bor. Global Instance shr_contractive κ : Contractive (shr_bor κ). Proof. - intros n ?? EQ. unfold shr_bor. f_equiv. rewrite st_dist_unfold. - f_contractive=> /= tid vl. repeat f_equiv. apply EQ. + intros n ?? EQ. apply ty_of_st_ne; constructor=> //=. + intros tid vl. destruct n as [n|]=>//=. repeat f_equiv. apply EQ. Qed. Global Instance shr_ne κ n : Proper (dist n ==> dist n) (shr_bor κ). Proof. apply contractive_ne, _. Qed. diff --git a/theories/typing/sum.v b/theories/typing/sum.v index 2b7b157df5c2484ad63e18ef7d74ca06af442e98..69de6094161cc24fba701ec705a658d7cc3ece9c 100644 --- a/theories/typing/sum.v +++ b/theories/typing/sum.v @@ -103,9 +103,9 @@ Section sum. rewrite IH. f_equiv. apply EQ. } assert (EQnth :∀ i, nth i x ∅ ≡{n}≡ nth i y ∅). { clear EQmax. induction EQ as [|???? EQ _ IH]=>-[|i] //=. } - split; [split|]; simpl. + constructor; simpl. - by rewrite EQmax. - - f_contractive=>tid vl. rewrite EQmax. by setoid_rewrite EQnth. + - intros tid vl. destruct n as [|n]=> //=. rewrite EQmax. by setoid_rewrite EQnth. - intros κ tid l. unfold is_pad. rewrite EQmax. assert (EQsz : ∀ i, (nth i x ∅).(ty_size) = (nth i y ∅).(ty_size)) by (intros; apply EQnth). diff --git a/theories/typing/type.v b/theories/typing/type.v index 86459792ec338a3c416864e91d748bfbf26560e8..e08feeca0f55b09318422fcc78ff10fa884c74b1 100644 --- a/theories/typing/type.v +++ b/theories/typing/type.v @@ -16,40 +16,50 @@ Definition lftE := ↑lftN. Definition lrustN := nroot .@ "lrust". Definition shrN := lrustN .@ "shr". +Definition thread_id := na_inv_pool_name. + +Record type `{typeG Σ} := + { ty_size : nat; + ty_own : thread_id → list val → iProp Σ; + ty_shr : lft → thread_id → loc → iProp Σ; + + ty_shr_persistent κ tid l : PersistentP (ty_shr κ tid l); + + ty_size_eq tid vl : ty_own tid vl -∗ ⌜length vl = ty_sizeâŒ; + (* The mask for starting the sharing does /not/ include the + namespace N, for allowing more flexibility for the user of + this type (typically for the [own] type). AFAIK, there is no + fundamental reason for this. + This should not be harmful, since sharing typically creates + invariants, which does not need the mask. Moreover, it is + more consistent with thread-local tokens, which we do not + give any. + + The lifetime token is needed (a) to make the definition of simple types + nicer (they would otherwise require a "∨ â–¡|=>[†κ]"), and (b) so that + we can have emp == sum []. + *) + ty_share E κ l tid q : lftE ⊆ E → + lft_ctx -∗ &{κ} (l ↦∗: ty_own tid) -∗ q.[κ] ={E}=∗ + ty_shr κ tid l ∗ q.[κ]; + ty_shr_mono κ κ' tid l : + lft_ctx -∗ κ' ⊑ κ -∗ ty_shr κ tid l -∗ ty_shr κ' tid l + }. +Existing Instance ty_shr_persistent. +Instance: Params (@ty_size) 2. +Instance: Params (@ty_own) 2. +Instance: Params (@ty_shr) 2. + +Record simple_type `{typeG Σ} := + { st_own : thread_id → list val → iProp Σ; + st_size_eq tid vl : st_own tid vl -∗ ⌜length vl = 1%natâŒ; + st_own_persistent tid vl : PersistentP (st_own tid vl) }. +Existing Instance st_own_persistent. +Instance: Params (@st_own) 2. + Section type. Context `{typeG Σ}. - Definition thread_id := na_inv_pool_name. - - Record type := - { ty_size : nat; - ty_own : thread_id → list val → iProp Σ; - ty_shr : lft → thread_id → loc → iProp Σ; - - ty_shr_persistent κ tid l : PersistentP (ty_shr κ tid l); - - ty_size_eq tid vl : ty_own tid vl -∗ ⌜length vl = ty_sizeâŒ; - (* The mask for starting the sharing does /not/ include the - namespace N, for allowing more flexibility for the user of - this type (typically for the [own] type). AFAIK, there is no - fundamental reason for this. - This should not be harmful, since sharing typically creates - invariants, which does not need the mask. Moreover, it is - more consistent with thread-local tokens, which we do not - give any. - - The lifetime token is needed (a) to make the definition of simple types - nicer (they would otherwise require a "∨ â–¡|=>[†κ]"), and (b) so that - we can have emp == sum []. - *) - ty_share E κ l tid q : lftE ⊆ E → - lft_ctx -∗ &{κ} (l ↦∗: ty_own tid) -∗ q.[κ] ={E}=∗ - ty_shr κ tid l ∗ q.[κ]; - ty_shr_mono κ κ' tid l : - lft_ctx -∗ κ' ⊑ κ -∗ ty_shr κ tid l -∗ ty_shr κ' tid l - }. - Global Existing Instances ty_shr_persistent. - (** Copy types *) Fixpoint shr_locsE (l : loc) (n : nat) : coPset := match n with @@ -135,17 +145,6 @@ Section type. Sync ty → LstSync tys → LstSync (ty::tys) := List.Forall_cons _ _ _. (** Simple types *) - (* We are repeating the typeclass parameter here just to make sure - that simple_type does depend on it. Otherwise, the coercion defined - bellow will not be acceptable by Coq. *) - Record simple_type `{typeG Σ} := - { st_own : thread_id → list val → iProp Σ; - - st_size_eq tid vl : st_own tid vl -∗ ⌜length vl = 1%natâŒ; - st_own_persistent tid vl : PersistentP (st_own tid vl) }. - - Global Existing Instance st_own_persistent. - Program Definition ty_of_st (st : simple_type) : type := {| ty_size := 1; ty_own := st.(st_own); @@ -162,10 +161,9 @@ Section type. iMod (bor_exists with "LFT Hmt") as (vl) "Hmt". set_solver. iMod (bor_sep with "LFT Hmt") as "[Hmt Hown]". set_solver. iMod (bor_persistent with "LFT Hown") as "[Hown|#H†]". set_solver. - - iFrame "Hκ". iMod (bor_fracture with "LFT [Hmt]") as "Hfrac"; last first. - { iExists vl. iFrame. auto. } - done. set_solver. - - iExFalso. iApply (lft_tok_dead with "Hκ"). done. + - iFrame "Hκ". + iMod (bor_fracture with "LFT [Hmt]") as "Hfrac"; by eauto with iFrame. + - iExFalso. by iApply (lft_tok_dead with "Hκ"). Qed. Next Obligation. intros st κ κ' tid l. iIntros "#LFT #Hord H". @@ -175,25 +173,25 @@ Section type. Global Program Instance ty_of_st_copy st : Copy (ty_of_st st). Next Obligation. - intros st κ tid E ? l q ? HF. iIntros "#LFT #Hshr Htok Hlft". + iIntros (st κ tid E ? l q ? HF) "#LFT #Hshr Htok Hlft". iDestruct (na_own_acc with "Htok") as "[$ Htok]"; first set_solver+. iDestruct "Hshr" as (vl) "[Hf Hown]". iMod (frac_bor_acc with "LFT Hf Hlft") as (q') "[Hmt Hclose]"; first set_solver. - iModIntro. iExists _. iDestruct "Hmt" as "[Hmt1 Hmt2]". iSplitL "Hmt1". - - iNext. iExists _. by iFrame. - - iIntros "Htok2 Hmt1". iDestruct "Hmt1" as (vl') "[Hmt1 #Hown']". - iDestruct ("Htok" with "Htok2") as "$". - iAssert (â–· ⌜length vl = length vl'âŒ)%I as ">%". - { iNext. iDestruct (st_size_eq with "Hown") as %->. - iDestruct (st_size_eq with "Hown'") as %->. done. } - iCombine "Hmt1" "Hmt2" as "Hmt". rewrite heap_mapsto_vec_op // Qp_div_2. - iDestruct "Hmt" as "[>% Hmt]". subst. by iApply "Hclose". + iModIntro. iExists _. iDestruct "Hmt" as "[Hmt1 Hmt2]". + iSplitL "Hmt1"; first by auto with iFrame. + iIntros "Htok2 Hmt1". iDestruct "Hmt1" as (vl') "[Hmt1 #Hown']". + iDestruct ("Htok" with "Htok2") as "$". + iAssert (â–· ⌜length vl = length vl'âŒ)%I as ">%". + { iNext. iDestruct (st_size_eq with "Hown") as %->. + iDestruct (st_size_eq with "Hown'") as %->. done. } + iCombine "Hmt1" "Hmt2" as "Hmt". rewrite heap_mapsto_vec_op // Qp_div_2. + iDestruct "Hmt" as "[>% Hmt]". subst. by iApply "Hclose". Qed. Global Instance ty_of_st_sync st : Send (ty_of_st st) → Sync (ty_of_st st). Proof. - iIntros (Hsend κ tid1 tid2 l) "H". iDestruct "H" as (vl) "[Hm Hown]". + iIntros (Hsend κ tid1 tid2 l). iDestruct 1 as (vl) "[Hm Hown]". iExists vl. iFrame "Hm". iNext. by iApply Hsend. Qed. End type. @@ -207,123 +205,119 @@ Bind Scope lrust_type_scope with type. Section ofe. Context `{typeG Σ}. - (* TODO: Use the ofe_iso infrastructure from Iris. *) - Section def. - Definition tuple_of_type (ty : type) : prodC (prodC _ _) _ := - (ty.(ty_size), - Next (ty.(ty_own) : _ -c> _ -c> _), - ty.(ty_shr) : _ -c> _ -c> _ -c> _). - - Instance type_equiv : Equiv type := λ ty1 ty2, - tuple_of_type ty1 ≡ tuple_of_type ty2. - Instance type_dist : Dist type := λ n ty1 ty2, - tuple_of_type ty1 ≡{n}≡ tuple_of_type ty2. - - Definition type_ofe_mixin : OfeMixin type. - Proof. - split; [|split|]; unfold equiv, dist, type_equiv, type_dist. - - intros. apply equiv_dist. - - by intros ?. - - by intros ???. - - by intros ???->. - - by intros ????; apply dist_S. - Qed. - - Canonical Structure typeC : ofeT := OfeT type type_ofe_mixin. - - Instance st_equiv : Equiv simple_type := λ st1 st2, - @Next (_ -c> _ -c> _) st1.(st_own) ≡ @Next (_ -c> _ -c> _) st2.(st_own). - Instance st_dist : Dist simple_type := λ n st1 st2, - @Next (_ -c> _ -c> _) st1.(st_own) ≡{n}≡ @Next (_ -c> _ -c> _) st2.(st_own). - - Definition st_ofe_mixin : OfeMixin simple_type. - Proof. - split; [|split|]; unfold equiv, dist, st_equiv, st_dist. - - intros. apply equiv_dist. - - by intros ?. - - by intros ???. - - by intros ???->. - - by intros ????; apply dist_S. - Qed. - - Canonical Structure simple_typeC : ofeT := OfeT simple_type st_ofe_mixin. - End def. - - Lemma st_dist_unfold n (x y : simple_type) : - x ≡{n}≡ y ↔ - @Next (_ -c> _ -c> _) x.(st_own) ≡{n}≡ @Next (_ -c> _ -c> _) y.(st_own). - Proof. done. Qed. - - Global Instance ty_size_proper_d n: - Proper (dist n ==> eq) ty_size. + Inductive type_equiv' (ty1 ty2 : type) : Prop := + Type_equiv : + ty1.(ty_size) = ty2.(ty_size) → + (∀ tid vs, ty1.(ty_own) tid vs ≡ ty2.(ty_own) tid vs) → + (∀ κ tid l, ty1.(ty_shr) κ tid l ≡ ty2.(ty_shr) κ tid l) → + type_equiv' ty1 ty2. + Instance type_equiv : Equiv type := type_equiv'. + Inductive type_dist' (n : nat) (ty1 ty2 : type) : Prop := + Type_dist : + ty1.(ty_size) = ty2.(ty_size) → + (∀ tid vs, dist_later n (ty1.(ty_own) tid vs) (ty2.(ty_own) tid vs)) → + (∀ κ tid l, ty1.(ty_shr) κ tid l ≡{n}≡ ty2.(ty_shr) κ tid l) → + type_dist' n ty1 ty2. + Instance type_dist : Dist type := type_dist'. + + Let T := prodC + (prodC natC (thread_id -c> list val -c> laterC (iProp Σ))) + (lft -c> thread_id -c> loc -c> iProp Σ). + Let P (x : T) : Prop := + (∀ κ tid l, PersistentP (x.2 κ tid l)) ∧ + (∀ tid vl, (later_car (x.1.2 tid vl) : iProp Σ) -∗ ⌜length vl = x.1.1âŒ) ∧ + (∀ E κ l tid q, lftE ⊆ E → + lft_ctx -∗ &{κ} (l ↦∗: λ vs, later_car (x.1.2 tid vs)) -∗ + q.[κ] ={E}=∗ x.2 κ tid l ∗ q.[κ]) ∧ + (∀ κ κ' tid l, lft_ctx -∗ κ' ⊑ κ -∗ x.2 κ tid l -∗ x.2 κ' tid l). + + Definition type_unpack (ty : type) : T := + (ty.(ty_size), λ tid vl, Next (ty.(ty_own) tid vl), ty.(ty_shr)). + Program Definition type_pack (x : T) (H : P x) : type := + {| ty_size := x.1.1; ty_own tid vl := later_car (x.1.2 tid vl); ty_shr := x.2 |}. + Solve Obligations with by intros [[??] ?] (?&?&?&?). + + Definition type_ofe_mixin : OfeMixin type. + Proof. + apply (iso_ofe_mixin type_unpack). + - split; [by destruct 1|by intros [[??] ?]; constructor]. + - split; [by destruct 1|by intros [[??] ?]; constructor]. + Qed. + Canonical Structure typeC : ofeT := OfeT type type_ofe_mixin. + + Global Instance ty_size_ne n : Proper (dist n ==> eq) ty_size. Proof. intros ?? EQ. apply EQ. Qed. - Global Instance ty_size_proper_e : - Proper ((≡) ==> eq) ty_size. + Global Instance ty_size_proper : Proper ((≡) ==> eq) ty_size. Proof. intros ?? EQ. apply EQ. Qed. Global Instance ty_own_ne n: Proper (dist (S n) ==> eq ==> eq ==> dist n) ty_own. Proof. intros ?? EQ ??-> ??->. apply EQ. Qed. - Global Instance ty_own_proper_e: - Proper ((≡) ==> eq ==> eq ==> (≡)) ty_own. + Global Instance ty_own_proper : Proper ((≡) ==> eq ==> eq ==> (≡)) ty_own. Proof. intros ?? EQ ??-> ??->. apply EQ. Qed. - Global Instance ty_shr_ne n: + Global Instance ty_shr_ne n : Proper (dist n ==> eq ==> eq ==> eq ==> dist n) ty_shr. Proof. intros ?? EQ ??-> ??-> ??->. apply EQ. Qed. - Global Instance ty_shr_proper_e : + Global Instance ty_shr_proper : Proper ((≡) ==> eq ==> eq ==> eq ==> (≡)) ty_shr. Proof. intros ?? EQ ??-> ??-> ??->. apply EQ. Qed. - Global Instance st_own_ne n: - Proper (dist (S n) ==> eq ==> eq ==> dist n) st_own. - Proof. intros ?? EQ ??-> ??->. apply EQ. Qed. - Global Instance st_own_proper_e : - Proper ((≡) ==> eq ==> eq ==> (≡)) st_own. - Proof. intros ?? EQ ??-> ??->. apply EQ. Qed. - Global Program Instance type_cofe : Cofe typeC := - {| compl c := - let '(ty_size, Next ty_own, ty_shr) := - compl {| chain_car := tuple_of_type ∘ c |} - in - {| ty_size := ty_size; ty_own := ty_own; ty_shr := ty_shr |} - |}. - Next Obligation. intros [c Hc]. apply Hc. Qed. - Next Obligation. - simpl. intros c _ _ shr [=_ _ ->] κ tid l. - apply uPred.equiv_entails, equiv_dist=>n. - by rewrite (λ c, conv_compl (A:=_ -c> _ -c> _ -c> _) n c κ tid l) /= - uPred.always_always. - Qed. - Next Obligation. - simpl. intros c sz own _ [=-> -> _] tid vl. - apply uPred.entails_equiv_and, equiv_dist=>n. - rewrite (λ c, conv_compl (A:=_ -c> _ -c> _) n c tid vl) /= conv_compl /=. - apply equiv_dist, uPred.entails_equiv_and, ty_size_eq. - Qed. - Next Obligation. - simpl. intros c _ own shr [=_ -> ->] E κ l tid q ?. - apply uPred.entails_equiv_and, equiv_dist=>n. - rewrite (λ c, conv_compl (A:=_ -c> _ -c> _ -c> _) n c κ tid l) /=. - setoid_rewrite (λ c vl, conv_compl (A:=_ -c> _ -c> _) n c tid vl). simpl. - etrans. { by apply equiv_dist, uPred.entails_equiv_and, (c n).(ty_share). } - simpl. destruct n; repeat (simpl; (f_contractive || f_equiv)). - rewrite (c.(chain_cauchy) (S n) (S (S n))) //. lia. - Qed. - Next Obligation. - simpl. intros c _ _ shr [=_ _ ->] κ κ' tid l. - apply uPred.entails_equiv_and, equiv_dist=>n. - rewrite !(λ c, conv_compl (A:=_ -c> _ -c> _ -c> _) n c _ tid l) /=. - apply equiv_dist, uPred.entails_equiv_and. apply ty_shr_mono. + Global Instance type_cofe : Cofe typeC. + Proof. + apply: (iso_cofe_subtype P type_pack type_unpack). + - split; [by destruct 1|by intros [[??] ?]; constructor]. + - by intros []. + - intros ? c. rewrite /P /=. split_and!. + + intros κ tid l. apply uPred.entails_equiv_and, equiv_dist=>n. + setoid_rewrite conv_compl; simpl. + apply equiv_dist, uPred.entails_equiv_and, ty_shr_persistent. + + intros tid vl. apply uPred.entails_equiv_and, equiv_dist=>n. + rewrite !conv_compl /=. + apply equiv_dist, uPred.entails_equiv_and, ty_size_eq. + + intros E κ l tid q ?. apply uPred.entails_equiv_and, equiv_dist=>n. + setoid_rewrite conv_compl; simpl. + rewrite -(c.(chain_cauchy) n (S n)); last lia. + by apply equiv_dist, uPred.entails_equiv_and, ty_share. + + intros κ κ' tid l. apply uPred.entails_equiv_and, equiv_dist=>n. + setoid_rewrite conv_compl; simpl. + apply equiv_dist, uPred.entails_equiv_and, ty_shr_mono. Qed. - Next Obligation. - intros n c. split; [split|]; simpl; try by rewrite conv_compl. - set (c n). f_contractive. rewrite conv_compl //. + + Inductive st_equiv' (ty1 ty2 : simple_type) : Prop := + St_equiv : + (∀ tid vs, ty1.(ty_own) tid vs ≡ ty2.(ty_own) tid vs) → + st_equiv' ty1 ty2. + Instance st_equiv : Equiv simple_type := st_equiv'. + Inductive st_dist' (n : nat) (ty1 ty2 : simple_type) : Prop := + St_dist : + (∀ tid vs, dist_later n (ty1.(ty_own) tid vs) (ty2.(ty_own) tid vs)) → + st_dist' n ty1 ty2. + Instance st_dist : Dist simple_type := st_dist'. + + Definition st_unpack (ty : simple_type) : thread_id -c> list val -c> laterC (iProp Σ) := + λ tid vl, Next (ty.(ty_own) tid vl). + + Definition st_ofe_mixin : OfeMixin simple_type. + Proof. + apply (iso_ofe_mixin st_unpack). + - split; [by destruct 1|by constructor]. + - split; [by destruct 1|by constructor]. Qed. + Canonical Structure stC : ofeT := OfeT simple_type st_ofe_mixin. + + Global Instance st_own_ne n : + Proper (dist (S n) ==> eq ==> eq ==> dist n) st_own. + Proof. intros ?? EQ ??-> ??->. apply EQ. Qed. + Global Instance st_own_proper : Proper ((≡) ==> eq ==> eq ==> (≡)) st_own. + Proof. intros ?? EQ ??-> ??->. apply EQ. Qed. - Global Instance ty_of_st_ne n : Proper (dist n ==> dist n) ty_of_st. + Global Instance ty_of_st_ne : NonExpansive ty_of_st. Proof. - intros [][]EQ. split;[split|]=>//= κ tid l. - repeat (f_contractive || f_equiv). apply EQ. + intros n ?? EQ. constructor. done. simpl. + - intros tid l. apply EQ. + - simpl. intros; repeat (f_contractive || f_equiv). apply EQ. Qed. + Global Instance ty_of_st_proper : Proper ((≡) ==> (≡)) ty_of_st. + Proof. apply (ne_proper _). Qed. End ofe. Section subtyping. @@ -382,16 +376,16 @@ Section subtyping. Lemma equiv_subtype ty1 ty2 : ty1 ≡ ty2 → subtype ty1 ty2. Proof. unfold subtype, type_incl=>EQ. setoid_rewrite EQ. apply subtype_refl. Qed. - Global Instance ty_size_proper : Proper (subtype ==> ctx_eq) ty_size. + Global Instance ty_size_subtype : Proper (subtype ==> ctx_eq) ty_size. Proof. iIntros (?? Hst) "LFT HE HL". iDestruct (Hst with "LFT HE HL") as "[$ ?]". Qed. - Global Instance ty_size_proper_flip : Proper (flip subtype ==> ctx_eq) ty_size. + Global Instance ty_size_subtype_flip : Proper (flip subtype ==> ctx_eq) ty_size. Proof. by intros ?? ->. Qed. - Lemma ty_size_proper' ty1 ty2 : + Lemma ty_size_subtype' ty1 ty2 : subtype ty1 ty2 → ctx_eq (ty_size ty1) (ty_size ty2). - Proof. apply ty_size_proper. Qed. - Lemma ty_size_proper_flip' ty1 ty2 : + Proof. apply ty_size_subtype. Qed. + Lemma ty_size_subtype_flip' ty1 ty2 : subtype ty2 ty1 → ctx_eq (ty_size ty1) (ty_size ty2). - Proof. apply ty_size_proper_flip. Qed. + Proof. apply ty_size_subtype_flip. Qed. (* TODO: The prelude should have a symmetric closure. *) Definition eqtype (ty1 ty2 : type) : Prop := @@ -471,6 +465,6 @@ Section weakening. Qed. End weakening. -Hint Resolve subtype_refl eqtype_refl ctx_eq_refl ty_size_proper' - ty_size_proper_flip': lrust_typing. -Hint Opaque ctx_eq subtype eqtype : lrust_typing. \ No newline at end of file +Hint Resolve subtype_refl eqtype_refl ctx_eq_refl ty_size_subtype' + ty_size_subtype_flip': lrust_typing. +Hint Opaque ctx_eq subtype eqtype : lrust_typing. diff --git a/theories/typing/uninit.v b/theories/typing/uninit.v index b437c900db310d351d0877a83b0604e30c602f85..294fb3721164eff16ac29a7041e4ed8fb3fa584d 100644 --- a/theories/typing/uninit.v +++ b/theories/typing/uninit.v @@ -43,7 +43,7 @@ Section uninit. Lemma uninit_uninit0_eqtype E L n : eqtype E L (uninit0 n) (uninit n). - Proof. apply equiv_eqtype; (split; first split)=>//=. apply uninit0_sz. Qed. + Proof. apply equiv_eqtype; constructor=>//=. apply uninit0_sz. Qed. Lemma uninit_product_subtype_cons {E L} (n : nat) ty tyl : ty.(ty_size) ≤ n → diff --git a/theories/typing/uniq_bor.v b/theories/typing/uniq_bor.v index e5792895343245cd7e94533e53a9d6dc4f83e8e3..581891b02d0c352b1b47b5b2d06704d91a658e3f 100644 --- a/theories/typing/uniq_bor.v +++ b/theories/typing/uniq_bor.v @@ -81,8 +81,7 @@ Section uniq_bor. Global Instance uniq_contractive κ : Contractive (uniq_bor κ). Proof. - intros n ?? EQ. split; [split|]; simpl. - - done. + intros n ?? EQ. constructor=> //=. - destruct n=>// tid vl /=. repeat (apply EQ || f_contractive || f_equiv). - intros κ' tid l. repeat (apply EQ || f_contractive || f_equiv). Qed. diff --git a/theories/typing/unsafe/cell.v b/theories/typing/unsafe/cell.v index 554c95ef47b1bc862085f670ba129c7ad851fba1..2bcbc1906370a38801102528fdf5c82f2bf23850 100644 --- a/theories/typing/unsafe/cell.v +++ b/theories/typing/unsafe/cell.v @@ -23,7 +23,7 @@ Section cell. Global Instance cell_ne n : Proper (dist n ==> dist n) cell. Proof. - intros ?? EQ. split; [split|]; simpl; try apply EQ. + intros ?? EQ. constructor; simpl; try apply EQ. intros κ tid l. repeat (apply EQ || f_contractive || f_equiv). Qed. diff --git a/theories/typing/unsafe/refcell/ref.v b/theories/typing/unsafe/refcell/ref.v index 93e7cf567fcdc21c8b32e5301754a2eb106d6461..9e9f8c0afc53e9e71a3ea7970cfd97f05365ff48 100644 --- a/theories/typing/unsafe/refcell/ref.v +++ b/theories/typing/unsafe/refcell/ref.v @@ -62,8 +62,8 @@ Section ref. Global Instance ref_contractive α : Contractive (ref α). Proof. - intros n ?? EQ. unfold ref. split; [split|]=>//=. - - f_contractive=>tid vl. repeat (f_contractive || f_equiv). apply EQ. + intros n ?? EQ. unfold ref. constructor=>//=. + - intros tid vl. destruct n as [|n]=>//=. repeat (f_contractive || f_equiv). apply EQ. - intros κ tid l. repeat (f_contractive || f_equiv). apply EQ. Qed. Global Instance ref_ne n α : Proper (dist n ==> dist n) (ref α). diff --git a/theories/typing/unsafe/refcell/refcell.v b/theories/typing/unsafe/refcell/refcell.v index 31a8afee7b6b4aac7653121b6d9eeda4d3450cd6..0eb1bb4deec190ecfa221bddd3f94e31d946efbe 100644 --- a/theories/typing/unsafe/refcell/refcell.v +++ b/theories/typing/unsafe/refcell/refcell.v @@ -143,9 +143,9 @@ Section refcell. Global Instance refcell_ne n : Proper (dist n ==> dist n) refcell. Proof. - move=>ty1 ty2 Hty. split; [split|]; simpl. + move=>ty1 ty2 Hty. constructor; simpl. - f_equiv. apply Hty. - - f_contractive=>tid vl. repeat f_equiv. apply Hty. + - intros tid vl. destruct n as [|n]=>//=. repeat f_equiv. apply Hty. - intros κ tid l. by repeat f_equiv. Qed. diff --git a/theories/typing/unsafe/refcell/refmut.v b/theories/typing/unsafe/refcell/refmut.v index 1c7b2b00fe2bc8622c70e145f4cba9dbd70967c0..36a86ad35098fe05ccc1638eaa6f1e23d9106bd6 100644 --- a/theories/typing/unsafe/refcell/refmut.v +++ b/theories/typing/unsafe/refcell/refmut.v @@ -78,8 +78,8 @@ Section refmut. Global Instance refmut_contractive α : Contractive (refmut α). Proof. - intros n ?? EQ. unfold refmut. split; [split|]=>//=. - - f_contractive=>tid vl. repeat (f_contractive || f_equiv). apply EQ. + intros n ?? EQ. unfold refmut. constructor=>//=. + - intros tid vl. destruct n as [|n]=>//=. repeat (f_contractive || f_equiv). apply EQ. - intros κ tid l. repeat (f_contractive || f_equiv). apply EQ. Qed. Global Instance refmut_ne n α : Proper (dist n ==> dist n) (refmut α).