diff --git a/theories/typing/sum.v b/theories/typing/sum.v index 22b2f301d7ca2b517816f6dc09872b9b2a61e1b8..e48d0aea8b2441cd7d644855dafad47e27c3e294 100644 --- a/theories/typing/sum.v +++ b/theories/typing/sum.v @@ -183,12 +183,10 @@ Section sum. Lemma emp_sum E L : eqtype E L emp (sum []). Proof. - split; (iIntros (q) "_ _"; iSplit; first done; iSplit; iAlways). - - iIntros (??) "[]". - - iIntros (κ tid l) "[]". - - iIntros (??) "H". iDestruct "H" as (i vl' vl'') "(% & % & Hown)". - by rewrite nth_empty. - - iIntros (???) "H". iDestruct "H" as (i) "(_ & Hshr)". by rewrite nth_empty. + apply eqtype_unfold. iIntros (?) "_ !# _". + iSplit; first done; iSplit; iAlways; iIntros; iSplit; try by iIntros "[]". + - iIntros "H". iDestruct "H" as (i vl' vl'') "(% & % & Hown)". by rewrite nth_empty. + - iIntros "H". iDestruct "H" as (i) "(_ & Hshr)". by rewrite nth_empty. Qed. Global Instance sum_copy tyl : LstCopy tyl → Copy (sum tyl).