From 8b542722bde18ae5f3c601a1e263f685e04fad1f Mon Sep 17 00:00:00 2001
From: Jacques-Henri Jourdan <jacques-henri.jourdan@normalesup.org>
Date: Tue, 18 Apr 2017 11:43:07 +0200
Subject: [PATCH] Begining the work on weak references in Rc: redesign the
 protocol, define the weak type, and update the code for rc.

---
 _CoqProject                   |   3 +-
 theories/typing/lib/rc.v      | 619 ---------------------------
 theories/typing/lib/rc/rc.v   | 758 ++++++++++++++++++++++++++++++++++
 theories/typing/lib/rc/weak.v | 109 +++++
 4 files changed, 869 insertions(+), 620 deletions(-)
 delete mode 100644 theories/typing/lib/rc.v
 create mode 100644 theories/typing/lib/rc/rc.v
 create mode 100644 theories/typing/lib/rc/weak.v

diff --git a/_CoqProject b/_CoqProject
index 332e5c76..e11d0527 100644
--- a/_CoqProject
+++ b/_CoqProject
@@ -52,7 +52,8 @@ theories/typing/lib/option.v
 theories/typing/lib/fake_shared_box.v
 theories/typing/lib/cell.v
 theories/typing/lib/spawn.v
-theories/typing/lib/rc.v
+theories/typing/lib/rc/rc.v
+theories/typing/lib/rc/weak.v
 theories/typing/lib/refcell/refcell.v
 theories/typing/lib/refcell/ref.v
 theories/typing/lib/refcell/refmut.v
diff --git a/theories/typing/lib/rc.v b/theories/typing/lib/rc.v
deleted file mode 100644
index 5012c472..00000000
--- a/theories/typing/lib/rc.v
+++ /dev/null
@@ -1,619 +0,0 @@
-From Coq.QArith Require Import Qcanon.
-From iris.proofmode Require Import tactics.
-From iris.algebra Require Import auth csum frac agree.
-From iris.base_logic Require Import big_op.
-From lrust.lang.lib Require Import memcpy.
-From lrust.lifetime Require Import na_borrow.
-From lrust.typing Require Export type.
-From lrust.typing Require Import typing option.
-Set Default Proof Using "Type".
-
-Definition rc_stR :=
-  optionUR (prodR fracR positiveR).
-Class rcG Σ :=
-  RcG :> inG Σ (authR rc_stR).
-Definition rcΣ : gFunctors := #[GFunctor (authR rc_stR)].
-Instance subG_rcΣ {Σ} : subG rcΣ Σ → rcG Σ.
-Proof. solve_inG. Qed.
-
-Definition rcN := lrustN .@ "rc".
-Definition rc_invN := rcN .@ "inv".
-Definition rc_shrN := rcN .@ "shr".
-
-Section rc.
-  Context `{!typeG Σ, !rcG Σ}.
-
-  Definition rc_inv tid ν (γ : gname) (l : loc) (ty : type) : iProp Σ :=
-    (∃ st, own γ (● st) ∗
-      match st with
-      | Some (q, c) => ∃ q',
-       l ↦ #(Zpos c) ∗ †{1%Qp}l…(S ty.(ty_size)) ∗
-         ⌜(q + q')%Qp = 1%Qp⌝ ∗ q'.[ν] ∗
-         (* We keep this view shift decomposed because we store the persistent part
-            also in ty_own, to make it available with one step less. *)
-         ([†ν] ={↑lftN}=∗ ▷ shift_loc l 1 ↦∗: ty.(ty_own) tid) ∗
-         □ (1.[ν] ={↑lftN,∅}▷=∗ [†ν])
-      | None => True
-      end)%I.
-
-  Global Instance rc_type_ne n :
-    Proper (type_dist2 n ==> dist n) (rc_inv tid ν γ l).
-  Proof.
-    solve_proper_core
-      ltac:(fun _ => exact: type_dist2_S || f_type_equiv || f_contractive || f_equiv).
-  Qed.
-
-  Program Definition rc (ty : type) :=
-    {| ty_size := 1;
-       ty_own tid vl :=
-         match vl return _ with
-         | [ #(LitLoc l) ] =>
-           (l ↦ #1 ∗ ▷ †{1%Qp}l…(S ty.(ty_size)) ∗ ▷ shift_loc l 1 ↦∗: ty.(ty_own) tid) ∨
-           (∃ γ ν q ty', ▷ type_incl ty' ty ∗
-                     na_inv tid rc_invN (rc_inv tid ν γ l ty') ∗
-                     own γ (◯ Some (q, 1%positive)) ∗
-                     ty.(ty_shr) ν tid (shift_loc l 1) ∗
-                     q.[ν] ∗ □ (1.[ν] ={↑lftN,∅}▷=∗ [†ν]))
-         | _ => False end;
-       ty_shr κ tid l :=
-         ∃ (l' : loc), &frac{κ} (λ q, l ↦{q} #l') ∗
-           □ ∀ F q, ⌜↑shrN ∪ lftE ⊆ F⌝ -∗ q.[κ]
-             ={F, F∖↑shrN}▷=∗ q.[κ] ∗ ∃ γ ν q' ty', κ ⊑ ν ∗
-                ▷ type_incl ty' ty ∗
-                na_inv tid rc_invN (rc_inv tid ν γ l' ty') ∗
-                &na{κ, tid, rc_shrN}(own γ (◯ Some (q', 1%positive))) ∗
-                ty.(ty_shr) ν tid (shift_loc l' 1)
-    |}%I.
-  Next Obligation. by iIntros (ty tid [|[[]|][]]) "H". Qed.
-  Next Obligation.
-    iIntros (ty E κ l tid q ?) "#LFT Hb Htok".
-    iMod (bor_exists with "LFT Hb") as (vl) "Hb"; first done.
-    iMod (bor_sep with "LFT Hb") as "[H↦ Hb]"; first done.
-    (* Ideally, we'd change ty_shr to say "l ↦{q} #l" in the fractured borrow,
-       but that would be additional work here... *)
-    iMod (bor_fracture (λ q, l ↦∗{q} vl)%I with "LFT H↦") as "#H↦"; first done.
-    destruct vl as [|[[|l'|]|][|]];
-      try by iMod (bor_persistent_tok with "LFT Hb Htok") as "[>[] _]".
-    setoid_rewrite heap_mapsto_vec_singleton.
-    iFrame "Htok". iExists _. iFrame "#". rewrite bor_unfold_idx.
-    iDestruct "Hb" as (i) "(#Hpb&Hpbown)".
-    set (C := (∃ _ _ _ _, _ ∗ _ ∗ _ ∗ &na{_,_,_} _ ∗ _)%I).
-    iMod (inv_alloc shrN _ (idx_bor_own 1 i ∨ C)%I
-          with "[Hpbown]") as "#Hinv"; first by iLeft.
-    iIntros "!> !# * % Htok". iMod (inv_open with "Hinv") as "[INV Hclose1]"; first solve_ndisj.
-    iDestruct "INV" as "[>Hbtok|#Hshr]".
-    - iAssert (&{κ} _)%I with "[Hbtok]" as "Hb".
-      { rewrite bor_unfold_idx. iExists _. by iFrame. }
-      iClear "H↦ Hinv Hpb".
-      iMod (bor_acc_cons with "LFT Hb Htok") as "[HP Hclose2]"; first solve_ndisj.
-      set (X := (∃ _ _ _, _)%I).
-      iModIntro. iNext. iAssert X with "[>HP]" as "HX".
-      { iDestruct "HP" as "[[Hl' [H† Hown]]|$]"; last done.
-        iMod (lft_create with "LFT") as (ν) "[[Hν1 Hν2] #Hν†]"; first solve_ndisj.
-        (* TODO: We should consider changing the statement of
-           bor_create to dis-entangle the two masks such that this is no
-          longer necessary. *)
-        iApply (fupd_mask_mono (↑lftN)); first solve_ndisj.
-        iMod (bor_create with "LFT Hown") as "[HP HPend]"; first solve_ndisj.
-        iMod (own_alloc (● Some ((1/2)%Qp, 1%positive) ⋅
-                         ◯ Some ((1/2)%Qp, 1%positive))) as (γ) "[Ha Hf]".
-        { apply auth_valid_discrete_2. done. }
-        iMod (na_inv_alloc tid _ _ (rc_inv tid ν γ l' ty) with "[Ha Hν2 Hl' H† HPend]").
-        { rewrite /rc_inv. iExists (Some (_, _)). iFrame. iExists _. iFrame "#∗".
-          rewrite Qp_div_2; auto. }
-        iMod (ty_share with "LFT HP Hν1") as "[??]"; first solve_ndisj.
-        iExists _, _, _, _. iFrame. iModIntro. iSplit; last done.
-        by iApply type_incl_refl. }
-      iDestruct "HX" as (γ ν q' ty') "(#Hincl & #Hinv & Hrc & #Hshr & Htok & #Hν†)".
-      iMod ("Hclose2" with "[] [Hrc Htok]") as "[HX Htok]".
-      { iNext. iIntros "HX". iModIntro. iNext.
-        iRight. iExists γ, ν, q', _. iExact "HX". }
-      { iNext.  by iFrame "#∗". }
-      iAssert C with "[>HX]" as "#HC".
-      { iExists _, _, _, _. iFrame "Hinv".
-        iMod (bor_sep with "LFT HX") as "[_ HX]"; first solve_ndisj.
-        iMod (bor_sep with "LFT HX") as "[_ HX]"; first solve_ndisj.
-        iMod (bor_sep with "LFT HX") as "[Hrc HX]"; first solve_ndisj.
-        iMod (bor_sep with "LFT HX") as "[_ HX]"; first solve_ndisj.
-        iMod (bor_sep with "LFT HX") as "[Hlft _]"; first solve_ndisj.
-        iDestruct (frac_bor_lft_incl with "LFT [> Hlft]") as "#Hlft".
-        { iApply (bor_fracture with "LFT"); first solve_ndisj. by rewrite Qp_mult_1_r. }
-        iMod (bor_na with "Hrc") as "$"; first solve_ndisj.
-        by iFrame "#". }
-      iMod ("Hclose1" with "[]") as "_"; first by auto.
-      by iFrame "#∗".
-    - iMod ("Hclose1" with "[]") as "_"; first by auto.
-      iApply step_fupd_intro; first solve_ndisj. by iFrame.
-  Qed.
-  Next Obligation.
-    iIntros (ty κ κ' tid l) "#Hincl H". iDestruct "H" as (l') "[#Hl #Hshr]".
-    iExists _. iSplit; first by iApply frac_bor_shorten.
-    iAlways. iIntros (F q) "% Htok".
-    iMod (lft_incl_acc with "Hincl Htok") as (q'') "[Htok Hclose]"; first solve_ndisj.
-    iMod ("Hshr" with "[] Htok") as "Hshr2"; first done.
-    iModIntro. iNext. iMod "Hshr2" as "[Htok HX]".
-    iMod ("Hclose" with "Htok") as "$". iDestruct "HX" as (? ν ??) "(? & ? & ? & ? & ?)".
-    iExists _, _, _, _. iModIntro. iFrame. iSplit.
-    - by iApply lft_incl_trans.
-    - by iApply na_bor_shorten.
-  Qed.
-
-  Global Instance rc_wf ty `{!TyWf ty} : TyWf (rc ty) :=
-    { ty_lfts := ty.(ty_lfts); ty_wf_E := ty.(ty_wf_E) }.
-
-  Global Instance rc_type_contractive : TypeContractive rc.
-  Proof.
-    constructor;
-      solve_proper_core ltac:(fun _ => exact: type_dist2_S || exact: type_dist2_dist ||
-                                       (eapply refcell_inv_type_ne; try reflexivity) ||
-                                       f_type_equiv || f_contractive || f_equiv).
-  Qed.
-
-  Global Instance rc_ne : NonExpansive rc.
-  Proof. apply type_contractive_ne, _. Qed.
-
-  Lemma rc_subtype ty1 ty2 :
-    type_incl ty1 ty2 -∗ type_incl (rc ty1) (rc ty2).
-  Proof.
-    iIntros "#Hincl". iPoseProof "Hincl" as "(#Hsz & #Hoincl & #Hsincl)".
-    iSplit; first done. iSplit; iAlways.
-    - iIntros "* Hvl". destruct vl as [|[[|vl|]|] [|]]; try done.
-      iDestruct "Hvl" as "[(Hl & H† & Hc) | Hvl]".
-      { iLeft. iFrame "Hl". iNext. iDestruct "Hsz" as %->.
-        iFrame. iApply (heap_mapsto_pred_wand with "Hc").
-        iApply "Hoincl". }
-      iDestruct "Hvl" as (γ ν q ty') "(#Hincl' & #Hinc & Htk & #Hsr & Hν)".
-      iRight. iExists _, _, _, _. iFrame "#∗". iSplit.
-      + iNext. iApply type_incl_trans; done.
-      + iApply "Hsincl". done.
-    - iIntros "* #Hshr". iDestruct "Hshr" as (l') "[Hfrac Hshr]". iExists l'.
-      iFrame "Hfrac". iIntros "!# * % Htok". iMod ("Hshr" with "[% //] Htok") as "{Hshr} H".
-      iModIntro. iNext. iMod "H" as "[Htok H]". iModIntro. iFrame "Htok".
-      iDestruct "H" as (γ ν q' ty') "(Hlft & #Hincl' & Hinv & Hna & Hshr)". iExists _, _, _, _.
-      iFrame. iSplit.
-      + iNext. iApply type_incl_trans; done.
-      + iApply "Hsincl". done.
-  Qed.
-
-  Global Instance rc_mono E L :
-    Proper (subtype E L ==> subtype E L) rc.
-  Proof.
-    iIntros (ty1 ty2 Hsub ?) "HL". iDestruct (Hsub with "HL") as "#Hsub".
-    iIntros "!# #HE". iApply rc_subtype. iApply "Hsub"; done.
-  Qed.
-  Global Instance rc_proper E L :
-    Proper (eqtype E L ==> eqtype E L) rc.
-  Proof. intros ??[]. by split; apply rc_mono. Qed.
-End rc.
-
-Section code.
-  Context `{!typeG Σ, !rcG Σ}.
-
-  Lemma rc_check_unique ty F tid (l : loc) :
-    ↑rc_invN ⊆ F →
-    {{{ na_own tid F ∗ ty_own (rc ty) tid [ #l ] }}}
-    !#l
-    {{{ c, RET #(Zpos c); l ↦ #(Zpos c) ∗
-        ((⌜c = 1%positive⌝ ∗ †{1%Qp}l…(S ty.(ty_size)) ∗ na_own tid F ∗ ▷ shift_loc l 1 ↦∗: ty.(ty_own) tid) ∨
-         (⌜(1 < c)%positive⌝ ∗ na_own tid (F ∖ ↑rc_invN) ∗
-          ∃ γ ν q q' ty', ▷ type_incl ty' ty ∗ na_inv tid rc_invN (rc_inv tid ν γ l ty') ∗
-            own γ (◯ Some (q, 1%positive)) ∗ own γ (● Some ((q + q')%Qp, c)) ∗
-            q.[ν] ∗ □ ((1).[ν] ={↑lftN,∅}▷=∗ [†ν]) ∗
-            ty.(ty_shr) ν tid (shift_loc l 1) ∗
-            (∀ c' q'', own γ (● Some (q'', c')) ∗ l ↦ #(Zpos c') ∗
-                       (⌜(q + q')%Qp = q''⌝ ∨ ∃ qg, ⌜(q + q' = qg + q'')%Qp⌝ ∗ qg.[ν]) ∗ na_own tid (F ∖ ↑rc_invN) ={⊤}=∗ 
-                       na_own tid F) )
-        ) }}}.
-  Proof.
-    iIntros (? Φ) "[Hna [(Hl & H† & Hown)|Hown]] HΦ".
-    - wp_read. iApply "HΦ". auto with iFrame.
-    - iDestruct "Hown" as (γ ν q ty') "(#Hincl & #Hinv & Htok & #Hshr & Hν1 & #Hνend)".
-      iMod (na_inv_open with "Hinv Hna") as "(Hproto & Hna & Hclose)"; [solve_ndisj..|].
-      iDestruct "Hproto" as (st) "[>Hst Hproto]".
-      iDestruct (own_valid_2 with "Hst Htok")
-        as %[[Hval|(? &(qa,c) & [=<-] & -> & Hst)]%option_included _]%auth_valid_discrete_2;
-        first done. (* Oh my, what a pattern... *)
-      iDestruct "Hproto" as (q') "(>Hl & H† & >% & >Hν2 & Hν† & _)". iApply wp_fupd.
-      destruct (decide (c ≤ 1)%positive) as [Hle|Hnle].
-      + (* Tear down the protocol. *)
-        assert (c = 1%positive) as ->.
-        { apply Pos.le_antisym; first done. exact: Pos.le_1_l. } clear Hle.
-        destruct Hst as [[??]|[_ Hle%pos_included]%prod_included]; last first.
-        { exfalso. eapply Pos.nlt_1_r. done. }
-        setoid_subst. iMod (own_update_2 with "Hst Htok") as "Hst".
-        { apply auth_update_dealloc. rewrite -(right_id None _ (Some _)).
-          apply cancel_local_update_empty, _. }
-        iMod ("Hclose" with "[$Hna Hst]") as "Hna".
-        { iExists None. auto. }
-        iSpecialize ("Hνend" with "[Hν1 Hν2]").
-        { rewrite -H0. iFrame. }
-        iApply wp_mask_mono; last iApply (wp_step_fupd with "Hνend"); [done..|solve_ndisj|].
-        wp_read. iIntros "#Hν". iMod ("Hν†" with "Hν") as "Hown". iModIntro.
-        iApply "HΦ". iFrame. iLeft. iModIntro. iSplit; first done.
-        iDestruct "Hincl" as "(#Hsz & #Hincl & _)". iDestruct "Hsz" as %->. iFrame.
-        iApply (heap_mapsto_pred_wand with "Hown"). iApply "Hincl".
-      + destruct Hst as [[??%leibniz_equiv]|[[q'' Hqa%leibniz_equiv] ?%pos_included]%prod_included].
-        { exfalso. simpl in *. subst c. apply Hnle. done. }
-        simpl in *. subst qa. wp_read. iApply "HΦ". iFrame. iRight. iModIntro. iSplit.
-        { iPureIntro. apply Pos.lt_nle. done. }
-        iFrame "Hna". iExists _, _, q, q'', _. iFrame "#∗%".
-        iIntros (c' qx) "(Hst & Hl & Hq'' & Hna)". iApply "Hclose". iFrame "Hna".
-        iExists _. iFrame "Hst". iDestruct "Hq''" as "[%|Hq'']".
-        * iExists _. subst qx. iFrame "∗%". by iIntros "!> !#".
-        * iDestruct "Hq''" as (qg) "[% Hν']". iExists _.
-          iCombine "Hν2 Hν'" as "Hν". iFrame. iNext. iSplit; last by iAlways.
-          iPureIntro. rewrite [(q' + _)%Qp]comm_L assoc [(qx + _)%Qp]comm_L -H1. done.
-  Qed.
-
-  Definition rc_new ty : val :=
-    funrec: <> ["x"] :=
-      let: "rcbox" := new [ #(S ty.(ty_size)) ] in
-      let: "rc" := new [ #1 ] in
-      "rcbox" +â‚— #0 <- #1;;
-      "rcbox" +â‚— #1 <-{ty.(ty_size)} !"x";;
-      "rc" +â‚— #0 <- "rcbox";;
-      delete [ #ty.(ty_size); "x"];; return: ["rc"].
-
-  Lemma rc_new_type ty `{!TyWf ty} :
-    typed_val (rc_new ty) (fn(∅; ty) → rc ty).
-  Proof.
-    intros E L. iApply type_fn; [solve_typing..|]. iIntros "/= !#".
-      iIntros (_ ϝ ret arg). inv_vec arg=>x. simpl_subst.
-    iApply type_new; [solve_typing..|]; iIntros (rcbox); simpl_subst.
-    iApply type_new; [solve_typing..|]; iIntros (rc); simpl_subst.
-    iIntros (tid) "#LFT #HE Hna HL Hk [Hrc [Hrcbox [Hx _]]]".
-    rewrite (Nat2Z.id (S ty.(ty_size))) !tctx_hasty_val.
-    iDestruct (ownptr_own with "Hx") as (lx vlx) "(% & Hx↦ & Hx & Hx†)". subst x.
-    iDestruct (ownptr_uninit_own with "Hrcbox") as (lrcbox vlrcbox) "(% & Hrcbox↦ & Hrcbox†)". subst rcbox.
-    inv_vec vlrcbox=>??. iDestruct (heap_mapsto_vec_cons with "Hrcbox↦") as "[Hrcbox↦0 Hrcbox↦1]".
-    iDestruct (ownptr_uninit_own with "Hrc") as (lrc vlrc) "(% & Hrc↦ & Hrc†)". subst rc.
-    inv_vec vlrc=>?. rewrite heap_mapsto_vec_singleton.
-    (* All right, we are done preparing our context. Let's get going. *)
-    wp_op. rewrite shift_loc_0. wp_write. wp_op. iDestruct (ty.(ty_size_eq) with "Hx") as %Hsz.
-    wp_apply (wp_memcpy with "[$Hrcbox↦1 $Hx↦]"); [by auto using vec_to_list_length..|].
-    iIntros "[Hrcbox↦1 Hx↦]". wp_seq. wp_op. rewrite shift_loc_0. wp_write.
-    iApply (type_type _ _ _ [ #lx ◁ box (uninit (ty_size ty)); #lrc ◁ box (rc ty)]
-        with "[] LFT HE Hna HL Hk [-]"); last first.
-    { rewrite tctx_interp_cons tctx_interp_singleton !tctx_hasty_val' //=. iFrame.
-      iSplitL "Hx↦".
-      { iExists _. rewrite uninit_own. auto. }
-      iNext. iExists [_]. rewrite heap_mapsto_vec_singleton. iFrame. iFrame. iLeft.
-      rewrite freeable_sz_full_S. iFrame. iExists _. iFrame.  }
-    iApply type_delete; [solve_typing..|].
-    iApply type_jump; solve_typing.
-  Qed.
-
-  Definition rc_clone : val :=
-    funrec: <> ["rc"] :=
-      let: "rc2" := new [ #1 ] in
-      let: "rc'" := !"rc" in
-      let: "rc''" := !"rc'" in
-      let: "count" := !("rc''" +â‚— #0) in
-      "rc''" +â‚— #0 <- "count" +#1;;
-      "rc2" <- "rc''";;
-      delete [ #1; "rc" ];; return: ["rc2"].
-
-  Lemma rc_clone_type ty `{!TyWf ty} :
-    typed_val rc_clone (fn(∀ α, ∅; &shr{α} rc ty) → rc ty).
-  Proof.
-    intros E L. iApply type_fn; [solve_typing..|]. iIntros "/= !#".
-      iIntros (α ϝ ret arg). inv_vec arg=>x. simpl_subst.
-    iApply type_new; [solve_typing..|]; iIntros (rc2); simpl_subst.
-    rewrite (Nat2Z.id 1). (* Having to do this is rather annoying... *) 
-    iApply type_deref; [solve_typing..|]; iIntros (rc'); simpl_subst.
-    iIntros (tid) "#LFT #HE Hna HL Hk [Hx [Hrc' [Hrc2 _]]]".
-    rewrite !tctx_hasty_val [[x]]lock.
-    destruct rc' as [[|lrc|]|]; try done. iDestruct "Hrc'" as (l') "[#Hlrc #Hshr]".
-    iDestruct (ownptr_uninit_own with "Hrc2") as (lrc2 vlrc2) "(% & Hrc2 & Hrc2†)".
-    subst rc2. inv_vec vlrc2=>rc2. rewrite heap_mapsto_vec_singleton.
-    (* All right, we are done preparing our context. Let's get going. *)
-    iMod (lctx_lft_alive_tok α with "HE HL") as (q) "([Hα1 Hα2] & HL & Hclose1)"; [solve_typing..|].
-    wp_bind (!_)%E.
-    iSpecialize ("Hshr" with "[] Hα1"); last iApply (wp_step_fupd with "Hshr"); [done..|].
-    iMod (frac_bor_acc with "LFT Hlrc Hα2") as (q') "[Hlrc↦ Hclose]"; first solve_ndisj.
-    iApply wp_fupd. wp_read.
-    iMod ("Hclose" with "[$Hlrc↦]") as "Hα2". iIntros "!> [Hα1 Hproto]".
-    iDestruct "Hproto" as (γ ν q'' ty') "(#Hincl & #Hty & #Hinv & #Hrctokb & #Hshr)". iModIntro.
-    wp_let. wp_op. rewrite shift_loc_0.
-    (* Finally, finally... opening the thread-local Rc protocol. *)
-    iMod (na_inv_open with "Hinv Hna") as "(Hrcproto & Hna & Hclose2)"; [solve_ndisj..|].
-    iMod (na_bor_acc with "LFT Hrctokb Hα1 Hna") as "(>Hrctok & Hna & Hclose3)"; [solve_ndisj..|].
-    iDestruct "Hrcproto" as (st) "[>Hrc● Hrcst]".
-    iDestruct (own_valid_2 with "Hrc● Hrctok") as
-        %[[Hval|(_ & (qa, c) & _ & -> & _)]%option_included _]%auth_valid_discrete_2;
-      first done. (* Oh my, what a pattern... *)
-    iDestruct "Hrcst" as (qb) "(>Hl' & >Hl'† & >% & Hνtok & Hν† & #Hνend)".
-    wp_read. wp_let. wp_op. rewrite shift_loc_0. wp_op. wp_write. wp_write.
-    (* And closing it again. *)
-    iMod (own_update with "Hrc●") as "[Hrc● Hrctok2]".
-    { apply auth_update_alloc,
-      (op_local_update_discrete _ _ (Some ((qb/2)%Qp, 1%positive)))=>-[/= Hqa _].
-      split; simpl; last done. apply frac_valid'. rewrite -H comm_L -{2}(Qp_div_2 qb).
-      apply Qcplus_le_mono_l. rewrite -{1}(Qcplus_0_l (_ / _)%Qp).
-      apply Qcplus_le_mono_r, Qp_ge_0. }
-    rewrite right_id -Some_op pair_op. iDestruct "Hνtok" as "[Hνtok1 Hνtok2]".
-    iMod ("Hclose3" with "[$Hrctok] Hna") as "[Hα1 Hna]".
-    iMod ("Hclose2" with "[Hrc● Hl' Hl'† Hνtok2 Hν† $Hna]") as "Hna".
-    { iExists _. iFrame "Hrc●". iExists _. rewrite Z.add_comm. iFrame "∗ Hνend".
-      rewrite [_ â‹… _]comm frac_op' -[(_ + _)%Qp]assoc. rewrite Qp_div_2. auto. }
-    iMod ("Hclose1" with "[$Hα1 $Hα2] HL") as "HL".
-    (* Finish up the proof. *)
-    iApply (type_type _ _ _ [ x ◁ box (&shr{α} rc ty); #lrc2 ◁ box (rc ty)]
-        with "[] LFT HE Hna HL Hk [-]"); last first.
-    { rewrite tctx_interp_cons tctx_interp_singleton tctx_hasty_val tctx_hasty_val' //.
-      unlock. iFrame "Hx". iFrame "Hrc2†". iExists [_]. rewrite heap_mapsto_vec_singleton.
-      iFrame "Hrc2". iNext. iRight. iExists _, ν, _, _. iFrame "#∗". }
-    iApply type_delete; [solve_typing..|].
-    iApply type_jump; solve_typing.
-  Qed.
-
-  Definition rc_deref : val :=
-    funrec: <> ["rc"] :=
-      let: "x" := new [ #1 ] in
-      let: "rc'" := !"rc" in
-      "x" <- (!"rc'" +â‚— #1);;
-      delete [ #1; "rc" ];; return: ["x"].
-
-  Lemma rc_deref_type ty `{!TyWf ty} :
-    typed_val rc_deref (fn(∀ α, ∅; &shr{α} rc ty) → &shr{α} ty).
-  Proof.
-    intros E L. iApply type_fn; [solve_typing..|]. iIntros "/= !#".
-      iIntros (α ϝ ret arg). inv_vec arg=>rcx. simpl_subst.
-    iApply type_new; [solve_typing..|]; iIntros (x); simpl_subst. rewrite (Nat2Z.id 1).
-    iApply type_deref; [solve_typing..|]; iIntros (rc'); simpl_subst.
-    iIntros (tid) "#LFT #HE Hna HL Hk [Hrcx [Hrc' [Hx _]]]".
-    rewrite !tctx_hasty_val [[rcx]]lock.
-    iDestruct (ownptr_uninit_own with "Hx") as (lrc2 vlrc2) "(% & Hx & Hx†)".
-    subst x. inv_vec vlrc2=>?. rewrite heap_mapsto_vec_singleton. 
-    destruct rc' as [[|rc'|]|]; try done. simpl of_val.
-    iDestruct "Hrc'" as (l') "[#Hrc' #Hdelay]".
-    (* All right, we are done preparing our context. Let's get going. *)
-    iMod (lctx_lft_alive_tok α with "HE HL") as (q) "([Hα1 Hα2] & HL & Hclose1)"; [solve_typing..|].
-    wp_bind (!_)%E.
-    iSpecialize ("Hdelay" with "[] Hα1"); last iApply (wp_step_fupd with "Hdelay"); [done..|].
-    iMod (frac_bor_acc with "LFT Hrc' Hα2") as (q') "[Hrc'↦ Hclose2]"; first solve_ndisj.
-    iApply wp_fupd. wp_read.
-    iMod ("Hclose2" with "[$Hrc'↦]") as "Hα2". iIntros "!> [Hα1 Hproto]".
-    iDestruct "Hproto" as (γ ν q'' ty') "(#? & #? & #Hinv & #Hrctokb & #Hshr)". iModIntro.
-    wp_op. wp_write.
-    iMod ("Hclose1" with "[$Hα1 $Hα2] HL") as "HL".
-    (* Finish up the proof. *)
-    iApply (type_type _ _ _ [ rcx ◁ box (&shr{α} rc ty); #lrc2 ◁ box (&shr{α} ty)]
-        with "[] LFT HE Hna HL Hk [-]"); last first.
-    { rewrite tctx_interp_cons tctx_interp_singleton !tctx_hasty_val tctx_hasty_val' //.
-      unlock. iFrame "Hrcx". iFrame "Hx†". iExists [_]. rewrite heap_mapsto_vec_singleton.
-      iFrame "Hx". iNext. iApply ty_shr_mono; done. }
-    iApply type_delete; [solve_typing..|].
-    iApply type_jump; solve_typing.
-  Qed.
-
-  Definition rc_try_unwrap ty : val :=
-    funrec: <> ["rc"] :=
-      let: "r" := new [ #(Σ[ ty; rc ty ]).(ty_size) ] in
-    withcont: "k":
-      let: "rc'" := !"rc" in
-      let: "count" := !("rc'" +â‚— #0) in
-      if: "count" = #1 then
-        (* Return content, delete Rc heap allocation. *)
-        "r" <-{ty.(ty_size),Σ 0} !("rc'" +ₗ #1);;
-        delete [ #(S ty.(ty_size)); "rc'" ];;
-        "k" []
-      else
-        "r" <-{Σ 1} "rc'";;
-        "k" []
-    cont: "k" [] :=
-      delete [ #1; "rc"];; return: ["r"].
-
-  Lemma rc_try_unwrap_type ty `{!TyWf ty} :
-    typed_val (rc_try_unwrap ty) (fn(∅; rc ty) → Σ[ ty; rc ty ]).
-  Proof.
-    (* TODO: There is a *lot* of duplication between this proof and the one for drop. *)
-    intros E L. iApply type_fn; [solve_typing..|]. iIntros "/= !#".
-    iIntros (_ ϝ ret arg). inv_vec arg=>rcx. simpl_subst.
-    iApply type_new; [solve_typing..|]; iIntros (x); simpl_subst.
-    rewrite (Nat2Z.id (Σ[ ty; rc ty ]).(ty_size)).
-    iApply (type_cont [] [ϝ ⊑ₗ []]
-                      (λ _, [rcx ◁ box (uninit 1); x ◁ box (Σ[ ty; rc ty ])])) ;
-      [solve_typing..| |]; last first.
-    { simpl. iAlways. iIntros (k arg). inv_vec arg. simpl_subst.
-      iApply type_delete; [solve_typing..|].
-      iApply type_jump; solve_typing. }
-    iIntros (k). simpl_subst.
-    iApply type_deref; [solve_typing..|]; iIntros (rc'); simpl_subst.
-    iIntros (tid) "#LFT #HE Hna HL Hk [Hrcx [Hrc' [Hx _]]]".
-    rewrite !tctx_hasty_val [[rcx]]lock [[x]]lock.
-    destruct rc' as [[|rc'|]|]; try done.
-    rewrite [[ #rc' ]]lock. wp_op. rewrite shift_loc_0 -(lock [ #rc' ]).
-    wp_apply (rc_check_unique with "[$Hna $Hrc']"); first solve_ndisj.
-    iIntros (c) "(Hrc & Hc)". wp_let.
-    iDestruct "Hc" as "[(% & Hrc† & Hna & Hown)|(% & Hna & Hproto)]".
-    - subst c. wp_op=>[_|?]; last done. wp_if.
-      iApply (type_type _ _ _ [ x ◁ own_ptr (ty_size Σ[ ty; rc ty ]) (uninit _);
-                                rcx ◁ box (uninit 1);
-                                #rc' +ₗ #1 ◁ own_ptr (S ty.(ty_size)) ty;
-                                #rc' +ₗ #0 ◁ own_ptr (S ty.(ty_size)) (uninit 1%nat)]
-        with "[] LFT HE Hna HL Hk [-]"); last first.
-      { unlock. rewrite 3!tctx_interp_cons tctx_interp_singleton.
-        rewrite 2!tctx_hasty_val tctx_hasty_val' // tctx_hasty_val' //.
-        rewrite -freeable_sz_full_S -(freeable_sz_split _ 1%nat).
-        iDestruct "Hrc†" as "[Hrc†1 Hrc†2]". iFrame.
-        rewrite shift_loc_0. iFrame. iExists [_].
-        rewrite uninit_own heap_mapsto_vec_singleton. auto with iFrame. }
-      iApply (type_sum_memcpy Σ[ ty; rc ty ]); [solve_typing..|].
-      iApply (type_delete (Π[uninit _; uninit _])); [solve_typing..|].
-      iApply type_jump; solve_typing.
-    - iDestruct "Hproto" as (γ ν q q' ty')
-          "(#Hincl & #Hinv & Hrctok & Hrc● & Hν & #Hν† & #Hshr & Hclose)".
-      wp_op; intros Hc.
-      { exfalso. move:Hc. move/Zpos_eq_iff. intros ->. exact: Pos.lt_irrefl. }
-      wp_if. iMod ("Hclose" with "[> $Hrc● $Hrc $Hna]") as "Hna"; first by eauto.
-      iApply (type_type _ _ _ [ x ◁ own_ptr (ty_size Σ[ ty; rc ty ]) (uninit _);
-                                rcx ◁ box (uninit 1);
-                                #rc' ◁ rc ty ]
-        with "[] LFT HE Hna HL Hk [-]"); last first.
-      { rewrite 2!tctx_interp_cons tctx_interp_singleton.
-        rewrite !tctx_hasty_val tctx_hasty_val' //. unlock. iFrame.
-        iRight. iExists _, _, _, _. iFrame "∗#". }
-      iApply (type_sum_assign Σ[ ty; rc ty ]); [solve_typing..|].
-      iApply type_jump; solve_typing.
-  Qed.
-
-  Definition rc_drop ty : val :=
-    funrec: <> ["rc"] :=
-      let: "x" := new [ #(option ty).(ty_size) ] in
-    withcont: "k":
-      let: "rc'" := !"rc" in
-      let: "count" := !("rc'" +â‚— #0) in
-      "rc'" +â‚— #0 <- "count" - #1;;
-      if: "count" = #1 then
-        (* Return content, delete Rc heap allocation. *)
-        "x" <-{ty.(ty_size),Σ some} !("rc'" +ₗ #1);;
-        delete [ #(S ty.(ty_size)); "rc'" ];;
-        "k" []
-      else
-        "x" <-{Σ none} ();;
-        "k" []
-    cont: "k" [] :=
-      delete [ #1; "rc"];; return: ["x"].
-
-  Lemma rc_drop_type ty `{!TyWf ty} :
-    typed_val (rc_drop ty) (fn(∅; rc ty) → option ty).
-  Proof.
-    intros E L. iApply type_fn; [solve_typing..|]. iIntros "/= !#".
-    iIntros (_ ϝ ret arg). inv_vec arg=>rcx. simpl_subst.
-    iApply type_new; [solve_typing..|]; iIntros (x); simpl_subst.
-    rewrite (Nat2Z.id (option ty).(ty_size)).
-    iApply (type_cont [] [ϝ ⊑ₗ []]
-                      (λ _, [rcx ◁ box (uninit 1); x ◁ box (option ty)]));
-      [solve_typing..| |]; last first.
-    { simpl. iAlways. iIntros (k arg). inv_vec arg. simpl_subst.
-      iApply type_delete; [solve_typing..|].
-      iApply type_jump; solve_typing. }
-    iIntros (k). simpl_subst.
-    iApply type_deref; [solve_typing..|]; iIntros (rc'); simpl_subst.
-    iIntros (tid) "#LFT #HE Hna HL Hk [Hrcx [Hrc' [Hx _]]]".
-    rewrite !tctx_hasty_val [[rcx]]lock [[x]]lock.
-    destruct rc' as [[|rc'|]|]; try done. rewrite [[ #rc' ]]lock.
-    wp_op. rewrite shift_loc_0. rewrite -(lock [ #rc' ]).
-    wp_apply (rc_check_unique with "[$Hna $Hrc']"); first solve_ndisj.
-    iIntros (c) "(Hrc & Hc)". wp_let. wp_op. rewrite shift_loc_0.
-    rewrite {3}[Z.pos c]lock. wp_op.
-    iDestruct "Hc" as "[(% & Hrc† & Hna & Hown)|(% & Hna & Hproto)]".
-    - subst c. wp_write. wp_op=>[_|?]; last done. wp_if.
-      iApply (type_type _ _ _ [ x ◁ own_ptr (ty_size (option ty)) (uninit _);
-                                rcx ◁ box (uninit 1);
-                                #rc' +ₗ #1 ◁ own_ptr (S ty.(ty_size)) ty;
-                                #rc' +ₗ #0 ◁ own_ptr (S ty.(ty_size)) (uninit 1%nat)]
-        with "[] LFT HE Hna HL Hk [-]"); last first.
-      { unlock. rewrite 3!tctx_interp_cons tctx_interp_singleton.
-        rewrite 2!tctx_hasty_val tctx_hasty_val' // tctx_hasty_val' //.
-        rewrite -freeable_sz_full_S -(freeable_sz_split _ 1%nat).
-        iDestruct "Hrc†" as "[Hrc†1 Hrc†2]". iFrame.
-        rewrite shift_loc_0. iFrame. iExists [_].
-        rewrite uninit_own heap_mapsto_vec_singleton. auto with iFrame. }
-      iApply (type_sum_memcpy (option _)); [solve_typing..|].
-      iApply (type_delete (Π[uninit _; uninit _])); [solve_typing..|].
-      iApply type_jump; solve_typing.
-    - iDestruct "Hproto" as (γ ν q q' ty')
-                              "(#Hincl & #Hinv & Hrctok & Hrc● & Hν & _ & _ & Hclose)".
-      wp_write. wp_op; intros Hc.
-      { exfalso. move:Hc. move/Zpos_eq_iff. intros ->. exact: Pos.lt_irrefl. }
-      wp_if. iMod ("Hclose" $! (c-1)%positive q' with "[> Hrc● Hrctok Hrc Hν $Hna]") as "Hna".
-      { unlock. iMod (own_update_2 with "Hrc● Hrctok") as "$".
-        { apply auth_update_dealloc. rewrite -{1}(Pplus_minus c 1%positive); last first.
-          { apply Pos.lt_gt. done. }
-          rewrite -pair_op Some_op. apply: cancel_local_update_empty.
-          (* For some reason, Coq's apply doesn't work here. whatever. *) }
-        rewrite Pos2Z.inj_sub //. iFrame "Hrc". iRight. iExists _.
-        auto with iFrame. }
-      iApply (type_type _ _ _ [ x ◁ own_ptr (ty_size (option ty)) (uninit _);
-                                rcx ◁ box (uninit 1)]
-        with "[] LFT HE Hna HL Hk [-]"); last first.
-      { rewrite tctx_interp_cons tctx_interp_singleton.
-        rewrite !tctx_hasty_val. unlock. iFrame. }
-      iApply (type_sum_unit (option ty)); [solve_typing..|].
-      iApply type_jump; solve_typing.
-  Qed.
-
-  Definition rc_get_mut : val :=
-    funrec: <> ["rc"] :=
-      let: "x" := new [ #2 ] in
-    withcont: "k":
-      let: "rc'" := !"rc" in
-      let: "rc''" := !"rc'" in
-      let: "count" := !("rc''" +â‚— #0) in
-      if: "count" = #1 then
-        "x" <-{Σ some} ("rc''" +ₗ #1);;
-        "k" []
-      else
-        "x" <-{Σ none} ();;
-        "k" []
-    cont: "k" [] :=
-      delete [ #1; "rc"];; return: ["x"].
-
-  Lemma rc_get_mut_type ty `{!TyWf ty} :
-    typed_val rc_get_mut (fn(∀ α, ∅; &uniq{α} rc ty) → option (&uniq{α} ty)).
-  Proof.
-    intros E L. iApply type_fn; [solve_typing..|]. iIntros "/= !#".
-      iIntros (α ϝ ret arg). inv_vec arg=>rcx. simpl_subst.
-    iApply type_new; [solve_typing..|]; iIntros (x); simpl_subst. rewrite (Nat2Z.id 2%nat).
-    iApply (type_cont [] [ϝ ⊑ₗ []]
-                      (λ r, [rcx ◁ box (uninit 1); x ◁ box (option $ &uniq{α} ty)]));
-      [solve_typing..| |]; last first.
-    { simpl. iAlways. iIntros (k arg). inv_vec arg. simpl_subst.
-      iApply type_delete; [solve_typing..|].
-      iApply type_jump; solve_typing. }
-    iIntros (k). simpl_subst.
-    iApply type_deref; [solve_typing..|]; iIntros (rc'); simpl_subst.
-    iIntros (tid) "#LFT #HE Hna HL Hk [Hrcx [Hrc' [Hx _]]]".
-    rewrite !tctx_hasty_val  [[rcx]]lock [[x]]lock.
-    destruct rc' as [[|rc'|]|]; try done.
-    iMod (lctx_lft_alive_tok α with "HE HL") as (q) "(Hα & HL & Hclose1)"; [solve_typing..|].
-    iMod (bor_acc_cons with "LFT Hrc' Hα") as "[Hrc' Hclose2]"; first solve_ndisj.
-    iDestruct (heap_mapsto_ty_own with "Hrc'") as (vl) "[>Hrc' Hrcown]".
-    inv_vec vl=>l. rewrite heap_mapsto_vec_singleton.
-    wp_read. destruct l as [[|l|]|]; try done.
-    wp_let. wp_op. rewrite shift_loc_0.
-    wp_apply (rc_check_unique with "[$Hna Hrcown]"); first done.
-    { (* Boy this is silly... *) iDestruct "Hrcown" as "[(?&?&?)|?]"; last by iRight.
-      iLeft. by iFrame. }
-    iIntros (c) "(Hrc & Hc)". wp_let. wp_op; intros Hc.
-    - wp_if. iDestruct "Hc" as "[(% & Hl† & Hna & Hown)|(% & _)]"; last first.
-      { exfalso. move:Hc. move/Zpos_eq_iff. intros->. exact: Pos.lt_irrefl. }
-      subst c. iMod ("Hclose2" with "[Hrc Hrc' Hl†] [Hown]") as "[Hown Hα]"; [|iNext; iExact "Hown"|].
-      { iIntros "!> Hown". iExists [_]. rewrite heap_mapsto_vec_singleton. iFrame "Hrc'".
-        iLeft. by iFrame. }
-      iMod ("Hclose1" with "Hα HL") as "HL".
-      iApply (type_type _ _ _ [ x ◁ box (uninit 2);
-                                 #l +ₗ #1 ◁ &uniq{α} ty;
-                                rcx ◁ box (uninit 1)]
-        with "[] LFT HE Hna HL Hk [-]"); last first.
-      { rewrite 2!tctx_interp_cons tctx_interp_singleton !tctx_hasty_val tctx_hasty_val' //.
-        unlock. iFrame. }
-      iApply (type_sum_assign (option (&uniq{_} _))); [solve_typing..|].
-      iApply type_jump; solve_typing.
-    - wp_if. iDestruct "Hc" as "[(% & _)|(% & Hna & Hproto)]".
-      { exfalso. subst c. done. }
-      iDestruct "Hproto" as (γ ν q' q'' ty')
-              "(#Hincl & #Hinv & Hrctok & Hrc● & Hν & #Hshr & #Hν† & Hclose3)".
-      iMod ("Hclose3" with "[$Hrc● $Hrc $Hna]") as "Hna"; first by auto.
-      iMod ("Hclose2" with "[] [Hrc' Hrctok Hν]") as "[Hrc' Hα]".
-      { iIntros "!> HX". iModIntro. iExact "HX". }
-      { iExists [_]. rewrite heap_mapsto_vec_singleton. iFrame "Hrc'".
-        iRight. iExists _, _, _, _. iFrame "#∗". }
-      iMod ("Hclose1" with "Hα HL") as "HL".
-      iApply (type_type _ _ _ [ x ◁ box (uninit 2);
-                                rcx ◁ box (uninit 1)]
-        with "[] LFT HE Hna HL Hk [-]"); last first.
-      { rewrite tctx_interp_cons tctx_interp_singleton !tctx_hasty_val.
-        unlock. iFrame. }
-      iApply (type_sum_unit (option (&uniq{_} _))); [solve_typing..|].
-      iApply type_jump; solve_typing.
-  Qed.
-
-  (* TODO: * fn make_mut(this: &mut Rc<T>) -> &mut T
-             Needs a Clone bound, how do we model this?
-           * Weak references?
-   *)
-
-End code.
diff --git a/theories/typing/lib/rc/rc.v b/theories/typing/lib/rc/rc.v
new file mode 100644
index 00000000..56e7bce3
--- /dev/null
+++ b/theories/typing/lib/rc/rc.v
@@ -0,0 +1,758 @@
+From Coq.QArith Require Import Qcanon.
+From iris.proofmode Require Import tactics.
+From iris.algebra Require Import auth csum frac agree.
+From iris.base_logic Require Import big_op.
+From lrust.lang.lib Require Import memcpy.
+From lrust.lifetime Require Import na_borrow.
+From lrust.typing Require Export type.
+From lrust.typing Require Import typing option.
+Set Default Proof Using "Type".
+
+Definition rc_stR :=
+  prodUR (optionUR (csumR (prodR fracR positiveR) (exclR unitC))) natUR.
+Class rcG Σ :=
+  RcG :> inG Σ (authR rc_stR).
+Definition rcΣ : gFunctors := #[GFunctor (authR rc_stR)].
+Instance subG_rcΣ {Σ} : subG rcΣ Σ → rcG Σ.
+Proof. solve_inG. Qed.
+
+Definition rc_tok q : authR rc_stR :=
+  â—¯ (Some $ Cinl (q, 1%positive), 0%nat).
+Definition rc_dropping_tok : authR rc_stR :=
+  â—¯ (Some $ Cinr $ Excl (), 0%nat).
+Definition weak_tok : authR rc_stR := â—¯ (None, 1%nat).
+
+Definition rcN := lrustN .@ "rc".
+Definition rc_invN := rcN .@ "inv".
+Definition rc_shrN := rcN .@ "shr".
+
+Section rc.
+  Context `{!typeG Σ, !rcG Σ}.
+
+  Definition rc_inv tid ν (γ : gname) (l : loc) (ty : type) : iProp Σ :=
+    (∃ st : rc_stR, own γ (● st) ∗
+      match st with
+      | (Some (Cinl (q, strong)), weak) => ∃ q',
+        l ↦ #(Zpos strong) ∗ shift_loc l 1 ↦ #(S weak) ∗ † l…(2 + ty.(ty_size)) ∗
+          ⌜(q + q')%Qp = 1%Qp⌝ ∗ q'.[ν] ∗
+          (* We keep this view shift decomposed because we store the persistent
+             part in ty_own, to make it available with one step less. *)
+          ([†ν] ={↑lftN}=∗ ▷ shift_loc l 2 ↦∗: ty.(ty_own) tid)
+      | (Some (Cinr _), weak) =>
+        l ↦ #0 ∗ shift_loc l 1 ↦ #(S weak)
+      | (None, (S _) as weak) =>
+        l ↦ #0 ∗ shift_loc l 1 ↦ #weak ∗ † l…(2 + ty.(ty_size)) ∗
+          shift_loc l 2 ↦∗: λ vl, ⌜length vl = ty.(ty_size)⌝
+      | _ => True
+      end)%I.
+
+  Global Instance rc_type_ne ν γ l n :
+    Proper (type_dist2 n ==> dist n) (rc_inv tid ν γ l).
+  Proof.
+    solve_proper_core ltac:(fun _ => f_type_equiv || f_contractive || f_equiv).
+  Qed.
+
+  Definition rc_persist tid ν (γ : gname) (l : loc) (ty : type) : iProp Σ :=
+    (∃ ty', ▷ type_incl ty' ty ∗
+              na_inv tid rc_invN (rc_inv tid ν γ l ty') ∗
+              ty.(ty_shr) ν tid (shift_loc l 2) ∗
+              □ (1.[ν] ={↑lftN,∅}▷=∗ [†ν]))%I.
+
+  Global Instance rc_persist_ne ν γ l n :
+    Proper (type_dist2 n ==> dist n) (rc_persist tid ν γ l).
+  Proof.
+    solve_proper_core ltac:(fun _ => exact: type_dist2_S || exact: type_dist2_dist ||
+                                     f_type_equiv || f_contractive || f_equiv).
+  Qed.
+
+  Lemma rc_persist_type_incl tid ν γ l ty1 ty2:
+    type_incl ty1 ty2 -∗ rc_persist tid ν γ l ty1 -∗ rc_persist tid ν γ l ty2.
+  Proof.
+    iIntros "#Hincl H". iDestruct "H" as (ty) "#(?&?&?&?)". iExists ty.
+    iFrame "#". iSplit.
+    - iNext. by iApply type_incl_trans.
+    - iDestruct "Hincl" as "(_&_&Hincls)". by iApply "Hincls".
+  Qed.
+
+  Program Definition rc (ty : type) :=
+    {| ty_size := 1;
+       ty_own tid vl :=
+         match vl return _ with
+         | [ #(LitLoc l) ] =>
+           (* The ty_own part of the rc type cointains either the
+              shared protocol or the full ownership of the
+              content. The reason is that get_mut does not have the
+              masks to rebuild the invariants. *)
+           (l ↦ #1 ∗ shift_loc l 1 ↦ #1 ∗ † l…(2 + ty.(ty_size)) ∗
+            ▷ shift_loc l 2 ↦∗: ty.(ty_own) tid) ∨
+           (∃ γ ν q, rc_persist tid ν γ l ty ∗ own γ (rc_tok q) ∗ q.[ν])
+         | _ => False end;
+       ty_shr κ tid l :=
+         ∃ (l' : loc), &frac{κ} (λ q, l ↦{q} #l') ∗
+           □ ∀ F q, ⌜↑shrN ∪ lftE ⊆ F⌝ -∗ q.[κ]
+             ={F, F∖↑shrN}▷=∗ q.[κ] ∗ ∃ γ ν q', κ ⊑ ν ∗
+                rc_persist tid ν γ l' ty ∗
+                &na{κ, tid, rc_shrN}(own γ (rc_tok q'))
+    |}%I.
+  Next Obligation. by iIntros (ty tid [|[[]|][]]) "H". Qed.
+  Next Obligation.
+    iIntros (ty E κ l tid q ?) "#LFT Hb Htok".
+    iMod (bor_exists with "LFT Hb") as (vl) "Hb"; first done.
+    iMod (bor_sep with "LFT Hb") as "[H↦ Hb]"; first done.
+    (* Ideally, we'd change ty_shr to say "l ↦{q} #l" in the fractured borrow,
+       but that would be additional work here... *)
+    iMod (bor_fracture (λ q, l ↦∗{q} vl)%I with "LFT H↦") as "#H↦"; first done.
+    destruct vl as [|[[|l'|]|][|]];
+      try by iMod (bor_persistent_tok with "LFT Hb Htok") as "[>[] _]".
+    setoid_rewrite heap_mapsto_vec_singleton.
+    iFrame "Htok". iExists _. iFrame "#". rewrite bor_unfold_idx.
+    iDestruct "Hb" as (i) "(#Hpb&Hpbown)".
+    set (C := (∃ _ _ _, _ ∗ _ ∗ &na{_,_,_} _)%I).
+    iMod (inv_alloc shrN _ (idx_bor_own 1 i ∨ C)%I
+          with "[Hpbown]") as "#Hinv"; first by iLeft.
+    iIntros "!> !# * % Htok".
+    iMod (inv_open with "Hinv") as "[INV Hclose1]"; first solve_ndisj.
+    iDestruct "INV" as "[>Hbtok|#Hshr]".
+    - iAssert (&{κ} _)%I with "[Hbtok]" as "Hb".
+      { rewrite bor_unfold_idx. iExists _. by iFrame. }
+      iClear "H↦ Hinv Hpb".
+      iMod (bor_acc_cons with "LFT Hb Htok") as "[HP Hclose2]"; first solve_ndisj.
+      set (X := (∃ _ _ _, _)%I).
+      iModIntro. iNext. iAssert X with "[>HP]" as "HX".
+      { iDestruct "HP" as "[(Hl'1 & Hl'2 & H† & Hown)|$]"; last done.
+        iMod (lft_create with "LFT") as (ν) "[[Hν1 Hν2] #Hν†]"; first solve_ndisj.
+        (* TODO: We should consider changing the statement of
+           bor_create to dis-entangle the two masks such that this is no
+          longer necessary. *)
+        iApply (fupd_mask_mono (↑lftN)); first solve_ndisj.
+        iMod (bor_create with "LFT Hown") as "[HP HPend]"; first solve_ndisj.
+        iMod (own_alloc (● (Some $ Cinl ((1/2)%Qp, 1%positive), 0%nat) ⋅
+                         ◯ (Some $ Cinl ((1/2)%Qp, 1%positive), 0%nat))) as (γ) "[Ha Hf]".
+        { by apply auth_valid_discrete_2. }
+        iMod (na_inv_alloc tid _ _ (rc_inv tid ν γ l' ty)
+              with "[Ha Hν2 Hl'1 Hl'2 H† HPend]") as "#?".
+        { rewrite /rc_inv. iExists (Some $ Cinl (_, _), _). iFrame. iExists _.
+          iFrame "#∗". rewrite Qp_div_2; auto. }
+        iMod (ty_share with "LFT HP Hν1") as "[??]"; first solve_ndisj.
+        iExists _, _, _. iFrame. iExists ty. iFrame "#". by iApply type_incl_refl. }
+      iDestruct "HX" as (γ ν q') "(#Hpersist & Hrctok)".
+      iMod ("Hclose2" with "[] Hrctok") as "[HX $]"; first by (unfold X; auto 10).
+      iAssert C with "[>HX]" as "#$".
+      { iExists _, _, _. iFrame "Hpersist".
+        iMod (bor_sep with "LFT HX") as "[Hrc Hlft]"; first solve_ndisj.
+        iDestruct (frac_bor_lft_incl with "LFT [> Hlft]") as "$".
+        { iApply (bor_fracture with "LFT"); first solve_ndisj. by rewrite Qp_mult_1_r. }
+        iApply (bor_na with "Hrc"); solve_ndisj. }
+      iApply ("Hclose1" with "[]"). by auto.
+    - iMod ("Hclose1" with "[]") as "_"; first by auto.
+      iApply step_fupd_intro; first solve_ndisj. by iFrame.
+  Qed.
+  Next Obligation.
+    iIntros (ty κ κ' tid l) "#Hincl H". iDestruct "H" as (l') "[#Hl #Hshr]".
+    iExists _. iSplit; first by iApply frac_bor_shorten.
+    iAlways. iIntros (F q) "% Htok".
+    iMod (lft_incl_acc with "Hincl Htok") as (q'') "[Htok Hclose]"; first solve_ndisj.
+    iMod ("Hshr" with "[] Htok") as "Hshr2"; first done.
+    iModIntro. iNext. iMod "Hshr2" as "[Htok HX]".
+    iMod ("Hclose" with "Htok") as "$". iDestruct "HX" as (? ν ?) "(? & ? & ?)".
+    iExists _, _, _. iModIntro. iFrame. iSplit.
+    - by iApply lft_incl_trans.
+    - by iApply na_bor_shorten.
+  Qed.
+
+  Global Instance rc_wf ty `{!TyWf ty} : TyWf (rc ty) :=
+    { ty_lfts := ty.(ty_lfts); ty_wf_E := ty.(ty_wf_E) }.
+
+  Global Instance rc_type_contractive : TypeContractive rc.
+  Proof.
+    constructor;
+      solve_proper_core ltac:(fun _ => exact: type_dist2_S || exact: type_dist2_dist ||
+                                       f_type_equiv || f_contractive || f_equiv).
+  Qed.
+
+  Global Instance rc_ne : NonExpansive rc.
+  Proof. apply type_contractive_ne, _. Qed.
+
+  Lemma rc_subtype ty1 ty2 :
+    type_incl ty1 ty2 -∗ type_incl (rc ty1) (rc ty2).
+  Proof.
+    iIntros "#Hincl". iPoseProof "Hincl" as "(#Hsz & #Hoincl & #Hsincl)".
+    iSplit; first done. iSplit; iAlways.
+    - iIntros "* Hvl". destruct vl as [|[[|vl|]|] [|]]; try done.
+      iDestruct "Hvl" as "[(Hl1 & Hl2 & H† & Hc) | Hvl]".
+      { iLeft. iFrame. iDestruct "Hsz" as %->.
+        iFrame. iApply (heap_mapsto_pred_wand with "Hc"). iApply "Hoincl". }
+      iDestruct "Hvl" as (γ ν q) "(#Hpersist & Htk & Hν)".
+      iRight. iExists _, _, _. iFrame "#∗". by iApply rc_persist_type_incl.
+    - iIntros "* #Hshr". iDestruct "Hshr" as (l') "[Hfrac Hshr]". iExists l'.
+      iFrame "Hfrac". iIntros "!# * % Htok". iMod ("Hshr" with "[% //] Htok") as "{Hshr} H".
+      iModIntro. iNext. iMod "H" as "[$ H]".
+      iDestruct "H" as (γ ν q') "(Hlft & Hpersist & Hna)".
+      iExists _, _, _. iFrame. by iApply rc_persist_type_incl.
+  Qed.
+
+  Global Instance rc_mono E L :
+    Proper (subtype E L ==> subtype E L) rc.
+  Proof.
+    iIntros (ty1 ty2 Hsub ?) "HL". iDestruct (Hsub with "HL") as "#Hsub".
+    iIntros "!# #HE". iApply rc_subtype. by iApply "Hsub".
+  Qed.
+  Global Instance rc_proper E L :
+    Proper (eqtype E L ==> eqtype E L) rc.
+  Proof. intros ??[]. by split; apply rc_mono. Qed.
+End rc.
+
+Section code.
+  Context `{!typeG Σ, !rcG Σ}.
+
+  Lemma rc_check_unique ty F tid (l : loc) :
+    ↑rc_invN ⊆ F →
+    {{{ na_own tid F ∗ ty_own (rc ty) tid [ #l ] }}}
+    !#l
+    {{{ strong, RET #(Zpos strong); l ↦ #(Zpos strong) ∗
+        (((⌜strong = 1%positive⌝ ∗
+           (∃ weak : Z, shift_loc l 1 ↦ #weak ∗
+             ((⌜weak = 1⌝ ∗
+               |={⊤,∅}▷=> † l…(2 + ty.(ty_size)) ∗
+                          ▷ shift_loc l 2 ↦∗: ty.(ty_own) tid ∗ na_own tid F) ∨
+             (⌜weak > 1⌝ ∗
+              (l ↦ #1 -∗ shift_loc l 1 ↦ #weak
+               ={⊤}=∗ na_own tid F ∗ ty_own (rc ty) tid [ #l ])))) ∧
+           (l ↦ #0 ={⊤,∅}▷=∗
+             ▷shift_loc l 2 ↦∗: ty.(ty_own) tid ∗ † l…(2 + ty.(ty_size)) ∗ na_own tid F ∗
+             (na_own tid F ={⊤}=∗ ∃ weak : Z,
+                shift_loc l 1 ↦ #weak ∗
+                ((⌜weak = 1⌝ ∗ l ↦ #0 ∗ na_own tid F) ∨
+                 (⌜weak > 1⌝ ∗
+                   († l…(2 + ty.(ty_size)) -∗ shift_loc l 1 ↦ #(weak-1) -∗
+                    shift_loc l 2 ↦∗: (λ vl, ⌜length vl = ty.(ty_size)⌝)
+                    ={⊤}=∗ na_own tid F))))))
+         ) ∨
+         (⌜(1 < strong)%positive⌝ ∗
+           ((l ↦ #(Zpos strong) ={⊤}=∗ na_own tid F ∗ ty_own (rc ty) tid [ #l ]) ∧
+            (l ↦ #(Zpos strong - 1) ={⊤}=∗ na_own tid F))))
+     }}}.
+  Proof.
+    iIntros (? Φ) "[Hna [(Hl1 & Hl2 & H† & Hown)|Hown]] HΦ".
+    - wp_read. iApply "HΦ". iFrame "Hl1". iLeft. iSplit. done. iSplit.
+      + iExists _. iFrame "Hl2". iLeft. iFrame. iSplit; first done.
+        iApply step_fupd_intro; auto.
+      + iIntros "Hl1". iFrame. iApply step_fupd_intro; first done.
+        auto 10 with iFrame.
+    - iDestruct "Hown" as (γ ν q) "(#Hpersist & Htok & Hν1)".
+      iPoseProof "Hpersist" as (ty') "(Hincl & Hinv & _ & #Hνend)".
+      iMod (na_inv_open with "Hinv Hna") as "(Hproto & Hna & Hclose)"; [solve_ndisj..|].
+      iDestruct "Hproto" as ([st weak]) "[>Hst Hproto]".
+      iDestruct (own_valid_2 with "Hst Htok") as %[[[[=]|(?&st'&[=<-]&EQst'&Hincl)]
+        %option_included _]%prod_included [Hval _]]%auth_valid_discrete_2.
+      simpl in EQst'. subst st. destruct Hincl as [Hincl|Hincl].
+      + destruct st' as [[]| |]; try by inversion Hincl. apply (inj Cinl) in Hincl.
+        apply (inj2 pair) in Hincl. destruct Hincl as [<-%leibniz_equiv <-%leibniz_equiv].
+        iDestruct "Hproto" as (q') "(Hl1 & Hl2 & Hl† & >Hqq' & Hν & Hν†)".
+        iDestruct "Hqq'" as %Hqq'. iPoseProof "Hincl" as "(>Hincls & Hinclo & _)".
+        iDestruct "Hincls" as %Hincls.
+        wp_read. iApply "HΦ". iFrame "Hl1". iLeft. iSplit; first done. iSplit.
+        * iExists _. iFrame "Hl2". destruct weak.
+          -- iLeft. iSplit; first done. rewrite Hincls. iFrame "Hl†".
+             iMod (own_update_2 with "Hst Htok") as "Hst".
+             { apply auth_update_dealloc. rewrite -{1}(right_id (None, 0%nat) _ (_, _)).
+               apply cancel_local_update_empty, _. }
+             rewrite -[in (1).[ν]%I]Hqq' -[(|={∅,⊤}=>_)%I]fupd_trans.
+             iApply step_fupd_mask_mono;
+               last iMod ("Hνend" with "[$Hν $Hν1]") as "H†"; try done.
+             iModIntro. iNext. iMod "H†". iMod ("Hν†" with "H†") as "Hty". iModIntro.
+             iMod ("Hclose" with "[Hst $Hna]") as "$"; first by iExists _; iFrame.
+             iModIntro. iNext. iDestruct "Hty" as (vl) "[??]". iExists _. iFrame.
+             by iApply "Hinclo".
+          -- iRight. iSplit; first by auto with lia. iIntros "Hl1 Hl2".
+             iMod ("Hclose" with "[-Htok Hν1]") as "$"; last by auto 10 with iFrame.
+             iFrame. iExists _. auto with iFrame.
+        * iIntros "Hl1".
+          iMod (own_update_2 with "Hst Htok") as "[Hst Htok]".
+          { apply auth_update. etrans.
+            - rewrite [(Some _, weak)]pair_split. apply cancel_local_update_empty, _.
+            - apply (op_local_update _ _ (Some (Cinr (Excl tt)), 0%nat)). auto. }
+          rewrite -[(|={∅,⊤}=>_)%I]fupd_trans -[in (1).[ν]%I]Hqq'.
+          iApply step_fupd_mask_mono;
+            last iMod ("Hνend" with "[$Hν $Hν1]") as "H†"; try done.
+          iModIntro. iNext. iMod "H†". iMod ("Hν†" with "H†") as "Hty". iModIntro.
+          iMod ("Hclose" with "[Hst $Hna Hl1 Hl2]") as "$";
+            first by iExists _; iFrame; iFrame.
+          rewrite Hincls. iFrame. iSplitL "Hty".
+          { iDestruct "Hty" as (vl) "[??]". iExists _. iFrame. by iApply "Hinclo". }
+          iIntros "!> Hna". iClear "Hνend". clear q' Hqq' weak Hval.
+          iMod (na_inv_open with "Hinv Hna") as "(Hproto & Hna & Hclose)"; [solve_ndisj..|].
+          iDestruct "Hproto" as ([st weak]) "[>Hst Hproto]".
+          iDestruct (own_valid_2 with "Hst Htok") as %[[[[=]|(?&st'&[=<-]&EQst'&Hincl)]
+            %option_included _]%prod_included [Hval _]]%auth_valid_discrete_2.
+          simpl in EQst'. subst st. destruct Hincl as [Hincl|Hincl]; first last.
+          { apply csum_included in Hincl. destruct Hincl as
+             [->|[(?&?&[=]&?)|(?&?&[=<-]&->&?%exclusive_included)]]; try done. apply _. }
+          setoid_subst. iDestruct "Hproto" as ">(Hl1 & Hl2)". iExists _. iFrame.
+          rewrite right_id. destruct weak as [|weak].
+          -- iLeft. iFrame. iSplitR; first done.
+             iApply ("Hclose" with "[>- $Hna]"). iExists (None, 0%nat).
+             iMod (own_update_2 with "Hst Htok") as "$"; last done.
+             apply auth_update_dealloc. rewrite -{1}(right_id (None, 0%nat) _ (_, _)).
+             apply cancel_local_update_empty, _.
+          -- iRight. iSplitR; first by auto with lia. iIntros "!> Hl† Hl2 Hvl".
+             iApply ("Hclose" with "[>- $Hna]"). iExists (None, S weak).
+             rewrite Hincls. iFrame. iSplitR "Hl2"; last first.
+             { simpl. destruct Pos.of_succ_nat; rewrite /= ?Pos.pred_double_succ //. }
+             iMod (own_update_2 with "Hst Htok") as "$"; last done.
+             apply auth_update_dealloc, prod_local_update', reflexivity.
+             rewrite -{1}(right_id None _ (Some _)). apply cancel_local_update_empty, _.
+      + apply csum_included in Hincl.
+        destruct Hincl as [->|[(?&(?,?)&[=<-]&->&(q',strong)&[]%(inj2 pair))|
+                               (?&?&[=]&?)]]; first done. setoid_subst.
+        iDestruct "Hproto" as (q'') "(Hl1 & Hl2 & Hl† & >Hqq' & Hν & Hν†)".
+        iDestruct "Hqq'" as %Hqq'. wp_read. iApply "HΦ". iFrame "Hl1". iRight.
+        iSplit; first by rewrite !pos_op_plus; auto with lia. iSplit; iIntros "H↦".
+        * iMod ("Hclose" with "[- Htok Hν1]") as "$"; last by auto 10 with iFrame.
+          iFrame. iExists _. iFrame. auto with iFrame.
+        * iMod (own_update_2 with "Hst Htok") as "Hst".
+          { apply auth_update_dealloc.
+            rewrite -pair_op -Cinl_op Some_op -{1}(left_id 0%nat _ weak) -pair_op.
+            apply (cancel_local_update_empty _ (_, _)). }
+          iApply "Hclose". iFrame. iExists _. iFrame. iExists (q+q'')%Qp. iFrame.
+          iSplitL; first last.
+          { rewrite [(_+_)%Qp]assoc [(q'+_)%Qp]comm. auto. }
+          destruct strong=>//=. by rewrite Pos.pred_double_succ.
+  Qed.
+
+  Definition rc_new ty : val :=
+    funrec: <> ["x"] :=
+      let: "rcbox" := new [ #(2 + ty.(ty_size))%nat ] in
+      let: "rc" := new [ #1 ] in
+      "rcbox" +â‚— #0 <- #1;;
+      "rcbox" +â‚— #1 <- #1;;
+      "rcbox" +â‚— #2 <-{ty.(ty_size)} !"x";;
+      "rc" +â‚— #0 <- "rcbox";;
+      delete [ #ty.(ty_size); "x"];; return: ["rc"].
+
+  Lemma rc_new_type ty `{!TyWf ty} :
+    typed_val (rc_new ty) (fn(∅; ty) → rc ty).
+  Proof.
+    intros E L. iApply type_fn; [solve_typing..|]. iIntros "/= !#".
+      iIntros (_ ϝ ret arg). inv_vec arg=>x. simpl_subst.
+    iApply type_new; [solve_typing..|]; iIntros (rcbox); simpl_subst.
+    iApply type_new; [solve_typing..|]; iIntros (rc); simpl_subst.
+    iIntros (tid) "#LFT #HE Hna HL Hk [Hrc [Hrcbox [Hx _]]]".
+    rewrite (Nat2Z.id (2 + ty.(ty_size))) !tctx_hasty_val.
+    iDestruct (ownptr_own with "Hx") as (lx vlx) "(% & Hx↦ & Hx & Hx†)". subst x.
+    iDestruct (ownptr_uninit_own with "Hrcbox")
+      as (lrcbox vlrcbox) "(% & Hrcbox↦ & Hrcbox†)". subst rcbox. inv_vec vlrcbox=>???.
+    iDestruct (heap_mapsto_vec_cons with "Hrcbox↦") as "[Hrcbox↦0 Hrcbox↦1]".
+    iDestruct (heap_mapsto_vec_cons with "Hrcbox↦1") as "[Hrcbox↦1 Hrcbox↦2]".
+    rewrite shift_loc_assoc.
+    iDestruct (ownptr_uninit_own with "Hrc") as (lrc vlrc) "(% & Hrc↦ & Hrc†)". subst rc.
+    inv_vec vlrc=>?. rewrite heap_mapsto_vec_singleton.
+    (* All right, we are done preparing our context. Let's get going. *)
+    wp_op. rewrite shift_loc_0. wp_write. wp_op. wp_write.
+    wp_op. iDestruct (ty.(ty_size_eq) with "Hx") as %Hsz.
+    wp_apply (wp_memcpy with "[$Hrcbox↦2 $Hx↦]"); [by auto using vec_to_list_length..|].
+    iIntros "[Hrcbox↦2 Hx↦]". wp_seq. wp_op. rewrite shift_loc_0. wp_write.
+    iApply (type_type _ _ _ [ #lx ◁ box (uninit (ty_size ty)); #lrc ◁ box (rc ty)]
+        with "[] LFT HE Hna HL Hk [-]"); last first.
+    { rewrite tctx_interp_cons tctx_interp_singleton !tctx_hasty_val' //=. iFrame.
+      iSplitL "Hx↦".
+      { iExists _. rewrite uninit_own. auto. }
+      iNext. iExists [_]. rewrite heap_mapsto_vec_singleton. iFrame. iLeft.
+      rewrite freeable_sz_full_S. iFrame. iExists _. iFrame. }
+    iApply type_delete; [solve_typing..|].
+    iApply type_jump; solve_typing.
+  Qed.
+
+  Definition rc_clone : val :=
+    funrec: <> ["rc"] :=
+      let: "rc2" := new [ #1 ] in
+      let: "rc'" := !"rc" in
+      let: "rc''" := !"rc'" in
+      let: "count" := !("rc''" +â‚— #0) in
+      "rc''" +â‚— #0 <- "count" +#1;;
+      "rc2" <- "rc''";;
+      delete [ #1; "rc" ];; return: ["rc2"].
+
+  Lemma rc_clone_type ty `{!TyWf ty} :
+    typed_val rc_clone (fn(∀ α, ∅; &shr{α} rc ty) → rc ty).
+  Proof.
+    intros E L. iApply type_fn; [solve_typing..|]. iIntros "/= !#".
+      iIntros (α ϝ ret arg). inv_vec arg=>x. simpl_subst.
+    iApply type_new; [solve_typing..|]; iIntros (rc2); simpl_subst.
+    rewrite (Nat2Z.id 1). (* Having to do this is rather annoying... *)
+    iApply type_deref; [solve_typing..|]; iIntros (rc'); simpl_subst.
+    iIntros (tid) "#LFT #HE Hna HL Hk [Hx [Hrc' [Hrc2 _]]]".
+    rewrite !tctx_hasty_val [[x]]lock.
+    destruct rc' as [[|lrc|]|]; try done. iDestruct "Hrc'" as (l') "[#Hlrc #Hshr]".
+    iDestruct (ownptr_uninit_own with "Hrc2") as (lrc2 vlrc2) "(% & Hrc2 & Hrc2†)".
+    subst rc2. inv_vec vlrc2=>rc2. rewrite heap_mapsto_vec_singleton.
+    (* All right, we are done preparing our context. Let's get going. *)
+    iMod (lctx_lft_alive_tok α with "HE HL") as (q) "([Hα1 Hα2] & HL & Hclose1)"; [solve_typing..|].
+    wp_bind (!_)%E.
+    iSpecialize ("Hshr" with "[] Hα1"); last iApply (wp_step_fupd with "Hshr"); [done..|].
+    iMod (frac_bor_acc with "LFT Hlrc Hα2") as (q') "[Hlrc↦ Hclose]"; first solve_ndisj.
+    iApply wp_fupd. wp_read.
+    iMod ("Hclose" with "[$Hlrc↦]") as "Hα2". iIntros "!> [Hα1 Hproto]".
+    iDestruct "Hproto" as (γ ν q'') "#(Hαν & Hpersist & Hrctokb)".
+    iModIntro. wp_let. wp_op. rewrite shift_loc_0.
+    (* Finally, finally... opening the thread-local Rc protocol. *)
+    iPoseProof "Hpersist" as (ty') "(_ & Hinv & _ & _)".
+    iMod (na_inv_open with "Hinv Hna") as "(Hrcproto & Hna & Hclose2)"; [solve_ndisj..|].
+    iMod (na_bor_acc with "LFT Hrctokb Hα1 Hna") as "(>Hrctok & Hna & Hclose3)"; [solve_ndisj..|].
+    iDestruct "Hrcproto" as ([st weak]) "[>Hrc● Hrcst]".
+    iDestruct (own_valid_2 with "Hrc● Hrctok") as %[[[[=]|(?&[[q0 weak0]| |]&[=<-]&?&Hincl)]
+               %option_included _]%prod_included [Hval _]]%auth_valid_discrete_2;
+    setoid_subst; try done; last first.
+    { exfalso. destruct Hincl as [Hincl|Hincl]. by inversion Hincl.
+      apply csum_included in Hincl. naive_solver. }
+    iDestruct "Hrcst" as (qb) "(Hl'1 & Hl'2 & Hl'† & >% & Hνtok & Hν†)".
+    wp_read. wp_let. wp_op. rewrite shift_loc_0. wp_op. wp_write. wp_write.
+    (* And closing it again. *)
+    iMod (own_update with "Hrc●") as "[Hrc● Hrctok2]".
+    { apply auth_update_alloc, prod_local_update_1,
+      (op_local_update_discrete _ _ (Some (Cinl ((qb/2)%Qp, 1%positive))))=>-[/= Hqa _].
+      split; simpl; last done. apply frac_valid'. rewrite -H comm_L -{2}(Qp_div_2 qb).
+      apply Qcplus_le_mono_l. rewrite -{1}(Qcplus_0_l (_ / _)%Qp).
+      apply Qcplus_le_mono_r, Qp_ge_0. }
+    rewrite right_id -Some_op Cinl_op pair_op. iDestruct "Hνtok" as "[Hνtok1 Hνtok2]".
+    iMod ("Hclose3" with "[$Hrctok] Hna") as "[Hα1 Hna]".
+    iMod ("Hclose2" with "[Hrc● Hl'1 Hl'2 Hl'† Hνtok2 Hν† $Hna]") as "Hna".
+    { iExists _. iFrame "Hrc●". iExists _. rewrite Z.add_comm. iFrame.
+      rewrite [_ â‹… _]comm frac_op' -[(_ + _)%Qp]assoc Qp_div_2. auto. }
+    iMod ("Hclose1" with "[$Hα1 $Hα2] HL") as "HL".
+    (* Finish up the proof. *)
+    iApply (type_type _ _ _ [ x ◁ box (&shr{α} rc ty); #lrc2 ◁ box (rc ty)]
+        with "[] LFT HE Hna HL Hk [-]"); last first.
+    { rewrite tctx_interp_cons tctx_interp_singleton tctx_hasty_val tctx_hasty_val' //.
+      unlock. iFrame "Hx". iFrame "Hrc2†". iExists [_].
+      rewrite heap_mapsto_vec_singleton /=. eauto 10 with iFrame. }
+    iApply type_delete; [solve_typing..|].
+    iApply type_jump; solve_typing.
+  Qed.
+
+  Definition rc_deref : val :=
+    funrec: <> ["rc"] :=
+      let: "x" := new [ #1 ] in
+      let: "rc'" := !"rc" in
+      "x" <- (!"rc'" +â‚— #2);;
+      delete [ #1; "rc" ];; return: ["x"].
+
+  Lemma rc_deref_type ty `{!TyWf ty} :
+    typed_val rc_deref (fn(∀ α, ∅; &shr{α} rc ty) → &shr{α} ty).
+  Proof.
+    intros E L. iApply type_fn; [solve_typing..|]. iIntros "/= !#".
+      iIntros (α ϝ ret arg). inv_vec arg=>rcx. simpl_subst.
+    iApply type_new; [solve_typing..|]; iIntros (x); simpl_subst. rewrite (Nat2Z.id 1).
+    iApply type_deref; [solve_typing..|]; iIntros (rc'); simpl_subst.
+    iIntros (tid) "#LFT #HE Hna HL Hk [Hrcx [#Hrc' [Hx _]]]".
+    rewrite !tctx_hasty_val [[rcx]]lock.
+    iDestruct (ownptr_uninit_own with "Hx") as (lrc2 vlrc2) "(% & Hx & Hx†)".
+    subst x. inv_vec vlrc2=>?. rewrite heap_mapsto_vec_singleton.
+    destruct rc' as [[|rc'|]|]; try done. simpl of_val.
+    iDestruct "Hrc'" as (l') "[Hrc' #Hdelay]".
+    (* All right, we are done preparing our context. Let's get going. *)
+    iMod (lctx_lft_alive_tok α with "HE HL") as (q) "([Hα1 Hα2] & HL & Hclose1)"; [solve_typing..|].
+    wp_bind (!_)%E.
+    iSpecialize ("Hdelay" with "[] Hα1"); last iApply (wp_step_fupd with "Hdelay"); [done..|].
+    iMod (frac_bor_acc with "LFT Hrc' Hα2") as (q') "[Hrc'↦ Hclose2]"; first solve_ndisj.
+    iApply wp_fupd. wp_read.
+    iMod ("Hclose2" with "[$Hrc'↦]") as "Hα2". iIntros "!> [Hα1 #Hproto] !>".
+    iDestruct "Hproto" as (γ ν q'') "#(Hαν & Hpersist & _)".
+    iDestruct "Hpersist" as (ty') "(_ & _ & Hshr & _)".
+    wp_op. wp_write. iMod ("Hclose1" with "[$Hα1 $Hα2] HL") as "HL".
+    (* Finish up the proof. *)
+    iApply (type_type _ _ _ [ rcx ◁ box (&shr{α} rc ty); #lrc2 ◁ box (&shr{α} ty)]
+        with "[] LFT HE Hna HL Hk [-]"); last first.
+    { rewrite tctx_interp_cons tctx_interp_singleton !tctx_hasty_val tctx_hasty_val' //.
+      unlock. iFrame "Hrcx". iFrame "Hx†". iExists [_]. rewrite heap_mapsto_vec_singleton.
+      iFrame "Hx". by iApply ty_shr_mono. }
+    iApply type_delete; [solve_typing..|].
+    iApply type_jump; solve_typing.
+  Qed.
+
+  Definition rc_try_unwrap ty : val :=
+    funrec: <> ["rc"] :=
+      let: "r" := new [ #(Σ[ ty; rc ty ]).(ty_size) ] in
+    withcont: "k":
+      let: "rc'" := !"rc" in
+      let: "strong" := !("rc'" +â‚— #0) in
+      if: "strong" = #1 then
+        (* Decrement strong *)
+        "rc'" +â‚— #0 <- #0;;
+        Skip;;
+        (* Return content *)
+        "r" <-{ty.(ty_size),Σ 0} !("rc'" +ₗ #2);;
+        (* Decrement weak, and deallocate if appropriate *)
+        let: "weak" := !("rc'" +â‚— #1) in
+        if: "weak" = #1 then
+          delete [ #(2 + ty.(ty_size)); "rc'" ];;
+          "k" []
+        else
+          "rc'" +â‚— #1 <- "weak" - #1;;
+          "k" []
+      else
+        "r" <-{Σ 1} "rc'";;
+        "k" []
+    cont: "k" [] :=
+      delete [ #1; "rc"];; return: ["r"].
+
+  Lemma rc_try_unwrap_type ty `{!TyWf ty} :
+    typed_val (rc_try_unwrap ty) (fn(∅; rc ty) → Σ[ ty; rc ty ]).
+  Proof.
+    (* TODO: There is a *lot* of duplication between this proof and the one for drop. *)
+    intros E L. iApply type_fn; [solve_typing..|]. iIntros "/= !#".
+    iIntros (_ ϝ ret arg). inv_vec arg=>rcx. simpl_subst.
+    iApply type_new; [solve_typing..|]; iIntros (r); simpl_subst.
+    rewrite (Nat2Z.id (Σ[ ty; rc ty ]).(ty_size)).
+    iApply (type_cont [] [ϝ ⊑ₗ []]
+                      (λ _, [rcx ◁ box (uninit 1); r ◁ box (Σ[ ty; rc ty ])])) ;
+      [solve_typing..| |]; last first.
+    { simpl. iAlways. iIntros (k arg). inv_vec arg. simpl_subst.
+      iApply type_delete; [solve_typing..|].
+      iApply type_jump; solve_typing. }
+    iIntros (k). simpl_subst.
+    iApply type_deref; [solve_typing..|]; iIntros (rc'); simpl_subst.
+    iIntros (tid) "#LFT #HE Hna HL Hk [Hrcx [Hrc' [Hr _]]]".
+    rewrite !tctx_hasty_val [[rcx]]lock [[r]]lock.
+    destruct rc' as [[|rc'|]|]; try done.
+    rewrite [[ #rc' ]]lock. wp_op. rewrite shift_loc_0 -(lock [ #rc' ]).
+    wp_apply (rc_check_unique with "[$Hna $Hrc']"); first solve_ndisj.
+    iIntros (strong) "[Hrc Hc]". wp_let.
+    iDestruct "Hc" as "[[% [_ Hproto]]|[% [Hproto _]]]".
+    - subst strong. wp_op=>[_|?]; last done. wp_if. wp_op.
+      rewrite shift_loc_0. wp_write. wp_bind (#();;#())%E.
+      iApply (wp_step_fupd with "[Hproto Hrc]");
+        [| |by iApply ("Hproto" with "Hrc")|];
+        [done..|wp_seq; iIntros "(Hty&H†&Hna&Hproto) !>"].
+      rewrite <-freeable_sz_full_S, <-(freeable_sz_split _ 2 ty.(ty_size)).
+      iDestruct "H†" as "[H†1 H†2]". wp_seq. wp_bind (_<-_;;_)%E.
+      iApply (wp_wand with "[Hna HL Hty Hr H†2]").
+      { iApply (type_sum_memcpy_instr 0 [_; (rc ty)] with "LFT HE Hna HL"); first done.
+        { by eapply (write_own _ (uninit _)). } { apply read_own_move. }
+        iSplitL "Hr"; first by unlock; rewrite tctx_hasty_val. iSplitL; last done.
+        rewrite tctx_hasty_val'; last done. iFrame. }
+      iIntros (?) "(Hna & HL & [Hr [Hrc _]])". wp_seq.
+      iMod ("Hproto" with "Hna") as (weak) "[H↦weak Hproto]". wp_op. wp_read. wp_let.
+      iDestruct "Hproto" as "[(% & H↦strong & Hna)|[% Hproto]]".
+      + subst. wp_op=>[_|[]//]. wp_if.
+        iApply (type_type _ _ _
+             [ r ◁ own_ptr (ty_size Σ[ ty; rc ty ]) (Σ[ ty; rc ty]);
+               rcx ◁ box (uninit 1);
+               #rc' +ₗ #2 ◁ own_ptr (2 + ty.(ty_size)) (uninit (ty.(ty_size)));
+               #rc' +ₗ #0 ◁ own_ptr (2 + ty.(ty_size)) (uninit 2)]
+        with "[] LFT HE Hna HL Hk [-]"); last first.
+        { unlock. rewrite 3!tctx_interp_cons tctx_interp_singleton. iFrame "Hr Hrc".
+          rewrite 1!tctx_hasty_val tctx_hasty_val' //. iFrame "Hrcx".
+          rewrite shift_loc_0 /=. iFrame. iExists [_; _].
+          rewrite heap_mapsto_vec_cons heap_mapsto_vec_singleton uninit_own.
+          auto with iFrame. }
+        iApply (type_delete (Π[uninit 2;uninit ty.(ty_size)])); [solve_typing..|].
+        iApply type_jump; solve_typing.
+      + rewrite (tctx_hasty_val' _ (#rc' +â‚— #2)); last done.
+        iDestruct "Hrc" as "[Hrc H†2]". wp_op=>[?|_]. lia. wp_if. wp_op. wp_op. wp_write.
+        setoid_rewrite uninit_own. iMod ("Hproto" with "[H†1 H†2] H↦weak Hrc") as "Hna".
+        { rewrite -freeable_sz_full_S -(freeable_sz_split _ 2 ty.(ty_size)). iFrame. }
+        iApply (type_type _ _ _
+             [ r ◁ own_ptr (ty_size Σ[ ty; rc ty ]) (Σ[ ty; rc ty]);
+               rcx ◁ box (uninit 1) ]
+        with "[] LFT HE Hna HL Hk [-]"); last first.
+        { unlock. rewrite tctx_interp_cons tctx_interp_singleton !tctx_hasty_val. iFrame. }
+        iApply type_jump; solve_typing.
+    - wp_op; intros Hc; first lia. wp_if. iMod ("Hproto" with "Hrc") as "[Hna Hrc]".
+      iApply (type_type _ _ _ [ r ◁ own_ptr (ty_size Σ[ ty; rc ty ]) (uninit _);
+                                rcx ◁ box (uninit 1); #rc' ◁ rc ty ]
+        with "[] LFT HE Hna HL Hk [-]"); last first.
+      { rewrite 2!tctx_interp_cons tctx_interp_singleton.
+        rewrite !tctx_hasty_val tctx_hasty_val' //. unlock. iFrame. }
+      iApply (type_sum_assign Σ[ ty; rc ty ]); [solve_typing..|].
+      iApply type_jump; solve_typing.
+  Qed.
+
+  Definition rc_drop ty : val :=
+    funrec: <> ["rc"] :=
+      let: "r" := new [ #(option ty).(ty_size) ] in
+    withcont: "k":
+      let: "rc'" := !"rc" in
+      let: "strong" := !("rc'" +â‚— #0) in
+      "rc'" +â‚— #0 <- "strong" - #1;;
+      if: "strong" = #1 then
+        (* Return content. *)
+        "r" <-{ty.(ty_size),Σ some} !("rc'" +ₗ #2);;
+        (* Decrement weak, and deallocate if appropriate *)
+        let: "weak" := !("rc'" +â‚— #1) in
+        if: "weak" = #1 then
+          delete [ #(2 + ty.(ty_size)); "rc'" ];;
+          "k" []
+        else
+          "rc'" +â‚— #1 <- "weak" - #1;;
+          "k" []
+      else
+        "r" <-{Σ none} ();;
+        "k" []
+    cont: "k" [] :=
+      delete [ #1; "rc"];; return: ["r"].
+
+  Lemma rc_drop_type ty `{!TyWf ty} :
+    typed_val (rc_drop ty) (fn(∅; rc ty) → option ty).
+  Proof.
+    intros E L. iApply type_fn; [solve_typing..|]. iIntros "/= !#".
+    iIntros (_ ϝ ret arg). inv_vec arg=>rcx. simpl_subst.
+    iApply type_new; [solve_typing..|]; iIntros (r); simpl_subst.
+    rewrite (Nat2Z.id (option ty).(ty_size)).
+    iApply (type_cont [] [ϝ ⊑ₗ []]
+                      (λ _, [rcx ◁ box (uninit 1); r ◁ box (option ty)]));
+      [solve_typing..| |]; last first.
+    { simpl. iAlways. iIntros (k arg). inv_vec arg. simpl_subst.
+      iApply type_delete; [solve_typing..|].
+      iApply type_jump; solve_typing. }
+    iIntros (k). simpl_subst.
+    iApply type_deref; [solve_typing..|]; iIntros (rc'); simpl_subst.
+    iIntros (tid) "#LFT #HE Hna HL Hk [Hrcx [Hrc' [Hr _]]]".
+    rewrite !tctx_hasty_val [[rcx]]lock [[r]]lock.
+    destruct rc' as [[|rc'|]|]; try done. rewrite [[ #rc' ]]lock.
+    wp_op. rewrite shift_loc_0. rewrite -(lock [ #rc' ]).
+    wp_apply (rc_check_unique with "[$Hna $Hrc']"); first solve_ndisj.
+    iIntros (strong) "[Hrc Hc]". wp_let. wp_op. rewrite shift_loc_0.
+    rewrite {3}[Z.pos strong]lock. wp_op. unlock. wp_write.
+    iDestruct "Hc" as "[[% [_ Hproto]]|[% [_ Hproto]]]".
+    - subst strong. wp_bind (#1 = #1)%E.
+      iApply (wp_step_fupd with "[Hproto Hrc]");
+        [| |by iApply ("Hproto" with "Hrc")|];
+        [done..|wp_op=>[_|//]; iIntros "(Hty&H†&Hna&Hproto) !>"; wp_if].
+      rewrite <-freeable_sz_full_S, <-(freeable_sz_split _ 2 ty.(ty_size)).
+      iDestruct "H†" as "[H†1 H†2]". wp_bind (_<-_;;_)%E.
+      iApply (wp_wand with "[Hna HL Hty Hr H†2]").
+      { iApply (type_sum_memcpy_instr 1 [unit; _] with "LFT HE Hna HL"); first done.
+        { by eapply (write_own _ (uninit _)). } { apply read_own_move. }
+        iSplitL "Hr"; first by unlock; rewrite tctx_hasty_val. iSplitL; last done.
+        rewrite tctx_hasty_val'; last done. iFrame. }
+      iIntros (?) "(Hna & HL & [Hr [Hrc _]])". wp_seq.
+      iMod ("Hproto" with "Hna") as (weak) "[H↦weak Hproto]". wp_op. wp_read. wp_let.
+      iDestruct "Hproto" as "[(% & H↦strong & Hna)|[% Hproto]]".
+      + subst. wp_op=>[_|[]//]. wp_if.
+        iApply (type_type _ _ _
+             [ r ◁ own_ptr (ty_size (option ty)) (option ty);
+               rcx ◁ box (uninit 1);
+               #rc' +ₗ #2 ◁ own_ptr (2 + ty.(ty_size)) (uninit (ty.(ty_size)));
+               #rc' +ₗ #0 ◁ own_ptr (2 + ty.(ty_size)) (uninit 2)]
+        with "[] LFT HE Hna HL Hk [-]"); last first.
+        { unlock. rewrite 3!tctx_interp_cons tctx_interp_singleton. iFrame "Hr Hrc".
+          rewrite 1!tctx_hasty_val tctx_hasty_val' //. iFrame "Hrcx".
+          rewrite shift_loc_0 /=. iFrame. iExists [_; _].
+          rewrite heap_mapsto_vec_cons heap_mapsto_vec_singleton uninit_own.
+          auto with iFrame. }
+        iApply (type_delete (Π[uninit 2;uninit ty.(ty_size)])); [solve_typing..|].
+        iApply type_jump; solve_typing.
+      + rewrite (tctx_hasty_val' _ (#rc' +â‚— #2)); last done.
+        iDestruct "Hrc" as "[Hrc H†2]". wp_op=>[?|_]. lia. wp_if. wp_op. wp_op. wp_write.
+        setoid_rewrite uninit_own. iMod ("Hproto" with "[H†1 H†2] H↦weak Hrc") as "Hna".
+        { rewrite -freeable_sz_full_S -(freeable_sz_split _ 2 ty.(ty_size)). iFrame. }
+        iApply (type_type _ _ _
+             [ r ◁ own_ptr (ty_size (option ty)) (option ty); rcx ◁ box (uninit 1) ]
+        with "[] LFT HE Hna HL Hk [-]"); last first.
+        { unlock. rewrite tctx_interp_cons tctx_interp_singleton !tctx_hasty_val. iFrame. }
+        iApply type_jump; solve_typing.
+    - wp_op; intros Hc; first lia. wp_if. iMod ("Hproto" with "Hrc") as "Hna".
+      iApply (type_type _ _ _ [ r ◁ own_ptr (ty_size (option ty)) (uninit _);
+                                rcx ◁ box (uninit 1) ]
+        with "[] LFT HE Hna HL Hk [-]"); last first.
+      { rewrite tctx_interp_cons tctx_interp_singleton.
+        rewrite !tctx_hasty_val. iFrame. }
+      iApply (type_sum_unit (option ty)); [solve_typing..|].
+      iApply type_jump; solve_typing.
+  Qed.
+
+  Definition rc_get_mut : val :=
+    funrec: <> ["rc"] :=
+      let: "r" := new [ #2 ] in
+    withcont: "k":
+      let: "rc'" := !"rc" in
+      let: "rc''" := !"rc'" in
+      let: "strong" := !("rc''" +â‚— #0) in
+      if: "strong" = #1 then
+        let: "weak" := !("rc''" +â‚— #1) in
+        if: "weak" = #1 then
+          "r" <-{Σ some} ("rc''" +ₗ #2);;
+          "k" []
+        else
+          "r" <-{Σ none} ();;
+          "k" []
+      else
+        "r" <-{Σ none} ();;
+        "k" []
+    cont: "k" [] :=
+      delete [ #1; "rc"];; return: ["r"].
+
+  Lemma rc_get_mut_type ty `{!TyWf ty} :
+    typed_val rc_get_mut (fn(∀ α, ∅; &uniq{α} rc ty) → option (&uniq{α} ty)).
+  Proof.
+    intros E L. iApply type_fn; [solve_typing..|]. iIntros "/= !#".
+      iIntros (α ϝ ret arg). inv_vec arg=>rcx. simpl_subst.
+    iApply type_new; [solve_typing..|]; iIntros (r); simpl_subst. rewrite (Nat2Z.id 2%nat).
+    iApply (type_cont [] [ϝ ⊑ₗ []]
+                      (λ _, [rcx ◁ box (uninit 1); r ◁ box (option $ &uniq{α} ty)]));
+      [solve_typing..| |]; last first.
+    { simpl. iAlways. iIntros (k arg). inv_vec arg. simpl_subst.
+      iApply type_delete; [solve_typing..|].
+      iApply type_jump; solve_typing. }
+    iIntros (k). simpl_subst.
+    iApply type_deref; [solve_typing..|]; iIntros (rc'); simpl_subst.
+    iIntros (tid) "#LFT #HE Hna HL Hk [Hrcx [Hrc' [Hx _]]]".
+    rewrite !tctx_hasty_val  [[rcx]]lock [[r]]lock.
+    destruct rc' as [[|rc'|]|]; try done.
+    iMod (lctx_lft_alive_tok α with "HE HL") as (q) "(Hα & HL & Hclose1)"; [solve_typing..|].
+    iMod (bor_acc_cons with "LFT Hrc' Hα") as "[Hrc' Hclose2]"; first solve_ndisj.
+    iDestruct (heap_mapsto_ty_own with "Hrc'") as (vl) "[>Hrc' Hrcown]".
+    inv_vec vl=>l. rewrite heap_mapsto_vec_singleton.
+    wp_read. destruct l as [[|l|]|]; try done.
+    wp_let. wp_op. rewrite shift_loc_0.
+    wp_apply (rc_check_unique with "[$Hna Hrcown]"); first done.
+    { (* Boy this is silly... *) iDestruct "Hrcown" as "[(?&?&?&?)|?]"; last by iRight.
+      iLeft. by iFrame. }
+    iIntros (c) "(Hl1 & Hc)". wp_let. wp_op; intros Hc.
+    - wp_if. iDestruct "Hc" as "[[% [Hc _]]|[% _]]"; last lia. subst.
+      iDestruct "Hc" as (weak) "[Hl2 Hweak]". wp_op. wp_read. wp_let.
+      iDestruct "Hweak" as "[[% Hrc]|[% Hrc]]".
+      + subst. wp_bind (#1 = #1)%E. iApply (wp_step_fupd with "Hrc"); [done..|].
+        wp_op=>[_|//]. iIntros "(Hl† & Hty & Hna)!>". wp_if.
+        iMod ("Hclose2" with "[Hrc' Hl1 Hl2 Hl†] [Hty]") as "[Hty Hα]"; [|iNext; iExact "Hty"|].
+        { iIntros "!> Hty". iExists [_]. rewrite heap_mapsto_vec_singleton. iFrame "Hrc'".
+          iLeft. by iFrame. }
+        iMod ("Hclose1" with "Hα HL") as "HL".
+        iApply (type_type _ _ _ [ r ◁ box (uninit 2); #l +ₗ #2 ◁ &uniq{α} ty;
+                                  rcx ◁ box (uninit 1)]
+                with "[] LFT HE Hna HL Hk [-]"); last first.
+        { rewrite 2!tctx_interp_cons tctx_interp_singleton !tctx_hasty_val tctx_hasty_val' //.
+          unlock. iFrame. }
+        iApply (type_sum_assign (option (&uniq{_} _))); [solve_typing..|].
+        iApply type_jump; solve_typing.
+      + wp_op=>[?|_]; first lia. wp_if. iMod ("Hrc" with "Hl1 Hl2") as "[Hna Hrc]".
+        iMod ("Hclose2" with "[] [Hrc' Hrc]") as "[Hrc' Hα]".
+        { iIntros "!> HX". iModIntro. iExact "HX". }
+        { iExists [_]. rewrite heap_mapsto_vec_singleton. iFrame. auto. }
+        iMod ("Hclose1" with "Hα HL") as "HL".
+        iApply (type_type _ _ _ [ r ◁ box (uninit 2); rcx ◁ box (uninit 1)]
+                with "[] LFT HE Hna HL Hk [-]"); last first.
+        { rewrite tctx_interp_cons tctx_interp_singleton !tctx_hasty_val.
+          unlock. iFrame. }
+        iApply (type_sum_unit (option (&uniq{_} _))); [solve_typing..|].
+        iApply type_jump; solve_typing.
+    - wp_if. iDestruct "Hc" as "[(% & _)|[% [Hproto _]]]"; first lia.
+      iMod ("Hproto" with "Hl1") as "[Hna Hrc]".
+      iMod ("Hclose2" with "[] [Hrc' Hrc]") as "[Hrc' Hα]".
+      { iIntros "!> HX". iModIntro. iExact "HX". }
+      { iExists [_]. rewrite heap_mapsto_vec_singleton. iFrame. auto. }
+      iMod ("Hclose1" with "Hα HL") as "HL".
+      iApply (type_type _ _ _ [ r ◁ box (uninit 2); rcx ◁ box (uninit 1)]
+              with "[] LFT HE Hna HL Hk [-]"); last first.
+      { rewrite tctx_interp_cons tctx_interp_singleton !tctx_hasty_val.
+        unlock. iFrame. }
+      iApply (type_sum_unit (option (&uniq{_} _))); [solve_typing..|].
+      iApply type_jump; solve_typing.
+  Qed.
+
+  (* TODO: * fn make_mut(this: &mut Rc<T>) -> &mut T
+             Needs a Clone bound, how do we model this?
+           * Weak references?
+   *)
+End code.
diff --git a/theories/typing/lib/rc/weak.v b/theories/typing/lib/rc/weak.v
new file mode 100644
index 00000000..56e8c6a9
--- /dev/null
+++ b/theories/typing/lib/rc/weak.v
@@ -0,0 +1,109 @@
+From Coq.QArith Require Import Qcanon.
+From iris.proofmode Require Import tactics.
+From iris.algebra Require Import auth csum frac agree.
+From iris.base_logic Require Import big_op.
+From lrust.lang.lib Require Import memcpy.
+From lrust.lifetime Require Import na_borrow.
+From lrust.typing Require Export type.
+From lrust.typing Require Import typing option.
+From lrust.typing.lib Require Export rc.
+Set Default Proof Using "Type".
+
+Section weak.
+  Context `{!typeG Σ, !rcG Σ}.
+
+  Program Definition weak (ty : type) :=
+    {| ty_size := 1;
+       ty_own tid vl :=
+         match vl return _ with
+         | [ #(LitLoc l) ] => ∃ γ ν, rc_persist tid ν γ l ty ∗ own γ weak_tok
+         | _ => False end;
+       ty_shr κ tid l :=
+         ∃ (l' : loc), &frac{κ} (λ q, l ↦{q} #l') ∗
+           □ ∀ F q, ⌜↑shrN ∪ lftE ⊆ F⌝ -∗ q.[κ]
+             ={F, F∖↑shrN}▷=∗ q.[κ] ∗ ∃ γ ν, rc_persist tid ν γ l' ty ∗
+                &na{κ, tid, rc_shrN}(own γ weak_tok)
+    |}%I.
+  Next Obligation. by iIntros (ty tid [|[[]|][]]) "H". Qed.
+  Next Obligation.
+    iIntros (ty E κ l tid q ?) "#LFT Hb Htok".
+    iMod (bor_exists with "LFT Hb") as (vl) "Hb"; first done.
+    iMod (bor_sep with "LFT Hb") as "[H↦ Hb]"; first done.
+    (* Ideally, we'd change ty_shr to say "l ↦{q} #l" in the fractured borrow,
+       but that would be additional work here... *)
+    iMod (bor_fracture (λ q, l ↦∗{q} vl)%I with "LFT H↦") as "#H↦"; first done.
+    destruct vl as [|[[|l'|]|][|]];
+      try by iMod (bor_persistent_tok with "LFT Hb Htok") as "[>[] _]".
+    setoid_rewrite heap_mapsto_vec_singleton.
+    iFrame "Htok". iExists _. iFrame "#". rewrite bor_unfold_idx.
+    iDestruct "Hb" as (i) "(#Hpb&Hpbown)".
+    set (C := (∃ _ _, _ ∗ &na{_,_,_} _)%I).
+    iMod (inv_alloc shrN _ (idx_bor_own 1 i ∨ C)%I with "[Hpbown]") as "#Hinv";
+      first by iLeft.
+    iIntros "!> !# * % Htok".
+    iMod (inv_open with "Hinv") as "[INV Hclose1]"; first solve_ndisj.
+    iDestruct "INV" as "[>Hbtok|#Hshr]".
+    - iAssert (&{κ} _)%I with "[Hbtok]" as "Hb".
+      { rewrite bor_unfold_idx. iExists _. by iFrame. }
+      iClear "H↦ Hinv Hpb".
+      iMod (bor_acc_cons with "LFT Hb Htok") as "[HP Hclose2]"; first solve_ndisj.
+      iDestruct "HP" as (γ ν) "(#Hpersist & Hweak)".
+      iModIntro. iNext. iMod ("Hclose2" with "[] Hweak") as "[Hb $]"; first by auto 10.
+      iAssert C with "[>Hb]" as "#HC".
+      { iExists _, _. iFrame "Hpersist". iApply (bor_na with "Hb"). solve_ndisj. }
+      iMod ("Hclose1" with "[]") as "_"; by auto.
+    - iMod ("Hclose1" with "[]") as "_"; first by auto.
+      iApply step_fupd_intro; first solve_ndisj. auto.
+  Qed.
+  Next Obligation.
+    iIntros (ty κ κ' tid l) "#Hincl H". iDestruct "H" as (l') "[#Hl #Hshr]".
+    iExists _. iSplit; first by iApply frac_bor_shorten.
+    iAlways. iIntros (F q) "% Htok".
+    iMod (lft_incl_acc with "Hincl Htok") as (q'') "[Htok Hclose]"; first solve_ndisj.
+    iMod ("Hshr" with "[] Htok") as "Hshr2"; first done.
+    iModIntro. iNext. iMod "Hshr2" as "[Htok HX]".
+    iMod ("Hclose" with "Htok") as "$". iDestruct "HX" as (? ν) "(? & ?)".
+    iExists _, _. iFrame. by iApply na_bor_shorten.
+  Qed.
+
+  Global Instance weak_wf ty `{!TyWf ty} : TyWf (weak ty) :=
+    { ty_lfts := ty.(ty_lfts); ty_wf_E := ty.(ty_wf_E) }.
+
+  Global Instance weak_type_contractive : TypeContractive weak.
+  Proof.
+    constructor;
+      solve_proper_core ltac:(fun _ => exact: type_dist2_S || exact: type_dist2_dist ||
+                                       f_type_equiv || f_contractive || f_equiv).
+  Qed.
+
+  Global Instance weak_ne : NonExpansive weak.
+  Proof. apply type_contractive_ne, _. Qed.
+
+  Lemma weak_subtype ty1 ty2 :
+    type_incl ty1 ty2 -∗ type_incl (weak ty1) (weak ty2).
+  Proof.
+    iIntros "#Hincl". iPoseProof "Hincl" as "(Hsz & #Hoincl & #Hsincl)".
+    iSplit; first done. iSplit; iAlways.
+    - iIntros "* Hvl". destruct vl as [|[[|vl|]|] [|]]; try done.
+      iDestruct "Hvl" as (γ ν) "(#Hpersist & Htok)".
+      iExists _, _. iFrame "Htok". by iApply rc_persist_type_incl.
+    - iIntros "* #Hshr". iDestruct "Hshr" as (l') "[Hfrac Hshr]". iExists l'.
+      iIntros "{$Hfrac} !# * % Htok". iMod ("Hshr" with "[% //] Htok") as "{Hshr} H".
+      iModIntro. iNext. iMod "H" as "[$ H]". iDestruct "H" as (γ ν) "(Hpersist & Hshr)".
+      iExists _, _. iFrame "Hshr". by iApply rc_persist_type_incl.
+  Qed.
+
+  Global Instance weak_mono E L :
+    Proper (subtype E L ==> subtype E L) weak.
+  Proof.
+    iIntros (ty1 ty2 Hsub ?) "HL". iDestruct (Hsub with "HL") as "#Hsub".
+    iIntros "!# #HE". iApply weak_subtype. iApply "Hsub"; done.
+  Qed.
+  Global Instance weak_proper E L :
+    Proper (eqtype E L ==> eqtype E L) weak.
+  Proof. intros ??[]. by split; apply weak_mono. Qed.
+End weak.
+
+Section code.
+
+End code.
-- 
GitLab