diff --git a/_CoqProject b/_CoqProject index 5098d4b6a402e3b6d57c33c703837c494671d7f1..e0d8ab8b51d57fd4b1b0be8831c10ec46a98d119 100644 --- a/_CoqProject +++ b/_CoqProject @@ -40,3 +40,4 @@ theories/typing/function.v theories/typing/programs.v theories/typing/borrow.v theories/typing/cont.v +theories/typing/fixpoint.v diff --git a/opam.pins b/opam.pins index cf8bb509d842804cfde671f6522730f9c60e5196..5c7302b34a1e97280d08790970e644cefb751a4f 100644 --- a/opam.pins +++ b/opam.pins @@ -1 +1 @@ -coq-iris https://gitlab.mpi-sws.org/FP/iris-coq 9c55bc2cb196512e08ad8756722ac127e539a1da +coq-iris https://gitlab.mpi-sws.org/FP/iris-coq 34eefd91027b10f99c930cbc15999fb7175a4168 diff --git a/theories/lifetime/definitions.v b/theories/lifetime/definitions.v index f93130b6886e66342ca4e022c129a4de784c16a2..d98f4dd120fc4f9cfb45fc821bd135a61df8047a 100644 --- a/theories/lifetime/definitions.v +++ b/theories/lifetime/definitions.v @@ -281,16 +281,22 @@ Proof. apply (ne_proper_2 _). Qed. Global Instance idx_bor_ne κ i n : Proper (dist n ==> dist n) (idx_bor κ i). Proof. solve_proper. Qed. +Global Instance idx_bor_contractive κ i : Contractive (idx_bor κ i). +Proof. solve_contractive. Qed. Global Instance idx_bor_proper κ i : Proper ((≡) ==> (≡)) (idx_bor κ i). Proof. apply (ne_proper _). Qed. Global Instance raw_bor_ne i n : Proper (dist n ==> dist n) (raw_bor i). Proof. solve_proper. Qed. +Global Instance raw_bor_contractive i : Contractive (raw_bor i). +Proof. solve_contractive. Qed. Global Instance raw_bor_proper i : Proper ((≡) ==> (≡)) (raw_bor i). Proof. apply (ne_proper _). Qed. Global Instance bor_ne κ n : Proper (dist n ==> dist n) (bor κ). Proof. solve_proper. Qed. +Global Instance bor_contractive κ : Contractive (bor κ). +Proof. solve_contractive. Qed. Global Instance bor_proper κ : Proper ((≡) ==> (≡)) (bor κ). Proof. apply (ne_proper _). Qed. diff --git a/theories/typing/bool.v b/theories/typing/bool.v index 65de7b92faae3a77fc36ab5e13bf422cb9597ae5..ea832478422d397d89291f9ca198bfe338cca331 100644 --- a/theories/typing/bool.v +++ b/theories/typing/bool.v @@ -27,8 +27,7 @@ Section typing. typed_body E L C T e1 → typed_body E L C T e2 → typed_body E L C (TCtx_hasty p bool :: T) (if: p then e1 else e2). Proof. - (* FIXME why can't I merge these two iIntros? *) - iIntros (He1 He2). iIntros (tid qE) "#HEAP #LFT Htl HE HL HC". + iIntros (He1 He2 tid qE) "#HEAP #LFT Htl HE HL HC". rewrite tctx_interp_cons. iIntros "[Hp HT]". wp_bind p. iApply (wp_hasty with "Hp"). iIntros (v) "_ Hown". iDestruct "Hown" as (b) "Hv". iDestruct "Hv" as %[=->]. diff --git a/theories/typing/borrow.v b/theories/typing/borrow.v index 5b1c1824b266a92a996adb36be58b9a373d14282..c61c66963ae838c7a83792787934302fefdd3c95 100644 --- a/theories/typing/borrow.v +++ b/theories/typing/borrow.v @@ -44,7 +44,7 @@ Section borrow. iMod (bor_sep _ _ _ (l' ↦∗: ty_own ty tid) with "LFT Hbor") as "[_ Hbor]". done. iMod ("Hclose" with "Htok") as "($ & $)". rewrite tctx_interp_singleton tctx_hasty_val' //. iExists _, _. - iFrame. iSplitR. done. by rewrite -uPred.iff_refl. + iFrame. iSplitR. done. rewrite -uPred.iff_refl. auto. - iFrame "H↦ H†Hown". - iIntros "!>(?&?&?)!>". iNext. iExists _. rewrite -heap_mapsto_vec_singleton. iFrame. iExists _. by iFrame. @@ -123,5 +123,4 @@ Section borrow. rewrite tctx_interp_singleton tctx_hasty_val' //. iExists _. iSplitR. done. by iApply (ty_shr_mono with "LFT Hincl' Hshr"). Qed. - End borrow. diff --git a/theories/typing/fixpoint.v b/theories/typing/fixpoint.v new file mode 100644 index 0000000000000000000000000000000000000000..4d527fd0c0cef825e42fb66e6310eb0913b1596e --- /dev/null +++ b/theories/typing/fixpoint.v @@ -0,0 +1,67 @@ +From lrust.lifetime Require Import definitions. +From lrust.typing Require Export type bool. + +Section fixpoint. + Context `{typeG Σ}. + + Global Instance type_inhabited : Inhabited type := populate bool. + + Context (T : type → type) `{Contractive T}. + + (* FIXME : Contrarily to the rule on paper, these rules are + coinductive: they let one assume [ty] is [Copy]/[Send]/[Sync] to + prove that [T ty] is [Copy]/[Send]/[Sync]. *) + Global Instance fixpoint_copy : + (∀ `(!Copy ty), Copy (T ty)) → Copy (fixpoint T). + Proof. + intros ?. apply fixpoint_ind. + - intros ??[[EQsz%leibniz_equiv EQown]EQshr]. + specialize (λ tid vl, EQown tid vl). specialize (λ κ tid l, EQshr κ tid l). + simpl in *=>-[Hp Hsh]; (split; [intros ??|intros ???]). + + revert Hp. by rewrite /PersistentP -EQown. + + intros F l q. rewrite -EQsz -EQshr. setoid_rewrite <-EQown. auto. + - exists bool. apply _. + - done. + - intros c Hc. split. + + intros tid vl. apply uPred.equiv_entails, equiv_dist=>n. + by rewrite conv_compl uPred.always_always. + + intros κ tid E F l q ? ?. + apply uPred.entails_equiv_and, equiv_dist=>n. etrans. + { apply equiv_dist, uPred.entails_equiv_and, (copy_shr_acc κ tid E F)=>//. + by rewrite -conv_compl. } + do 2 f_equiv; first by rewrite conv_compl. do 8 (f_contractive || f_equiv). + * by rewrite -conv_compl. + * destruct n. done. by setoid_rewrite conv_compl. + * by rewrite -conv_compl. + * f_equiv. f_contractive. unfold dist_later. destruct n=>//. + by setoid_rewrite conv_compl. + Qed. + + Global Instance fixpoint_send : + (∀ `(!Send ty), Send (T ty)) → Send (fixpoint T). + Proof. + intros ?. apply fixpoint_ind. + - intros ?? EQ ????. by rewrite -EQ. + - exists bool. apply _. + - done. + - intros c Hc ???. apply uPred.entails_equiv_and, equiv_dist=>n. + rewrite conv_compl. apply equiv_dist, uPred.entails_equiv_and; apply Hc. + Qed. + + Global Instance fixpoint_sync : + (∀ `(!Sync ty), Sync (T ty)) → Sync (fixpoint T). + Proof. + intros ?. apply fixpoint_ind. + - intros ?? EQ ?????. by rewrite -EQ. + - exists bool. apply _. + - done. + - intros c Hc ????. apply uPred.entails_equiv_and, equiv_dist=>n. + rewrite conv_compl. apply equiv_dist, uPred.entails_equiv_and; apply Hc. + Qed. + + Lemma fixpoint_unfold_eqtype E L : eqtype E L (fixpoint T) (T (fixpoint T)). + Proof. + unfold eqtype, subtype, type_incl. setoid_rewrite <-fixpoint_unfold. + split; iIntros "_ _ _"; (iSplit; first done); iSplit; iIntros "!#*$". + Qed. +End fixpoint. diff --git a/theories/typing/function.v b/theories/typing/function.v index eeea31facbc0b892f1cfd555252873304b83d9c5..76c6fe6beb5f82adaf626d1cb5421cbc076924c0 100644 --- a/theories/typing/function.v +++ b/theories/typing/function.v @@ -4,6 +4,9 @@ From lrust.lifetime Require Import borrow. From lrust.typing Require Export type. From lrust.typing Require Import programs. +(* TODO : prove contractiveness. + Prerequisite : cofe structure on lists and vectors. *) + Section fn. Context `{typeG Σ}. diff --git a/theories/typing/own.v b/theories/typing/own.v index e02642a1b64b9b5f50594577a29b24658997c65f..9bec068d45e5ad765f049ddca8f55c2c2babe4a7 100644 --- a/theories/typing/own.v +++ b/theories/typing/own.v @@ -116,6 +116,17 @@ Section own. Proper (eqtype E L ==> eqtype E L) (own n). Proof. intros ?? Heq. split; f_equiv; apply Heq. Qed. + Global Instance own_contractive n : Contractive (own n). + Proof. + intros m ?? EQ. split; [split|]; simpl. + - done. + - destruct m=>// tid vl /=. repeat (apply EQ || f_contractive || f_equiv). + - intros κ tid l. repeat (apply EQ || f_contractive || f_equiv). + Qed. + + Global Instance own_ne n m : Proper (dist m ==> dist m) (own n). + Proof. apply contractive_ne, _. Qed. + Global Instance own_send n ty : Send ty → Send (own n ty). Proof. @@ -198,5 +209,4 @@ Section typing. iApply (wp_delete with "[-]"); try (by auto); []. rewrite freeable_sz_full. by iFrame. Qed. - End typing. diff --git a/theories/typing/product.v b/theories/typing/product.v index e1d8f2ce3ed62d24afb3cfa28ef7d2ed59443bda..bc59d38f7052aad033e3aa7cc7cc54b7062909c0 100644 --- a/theories/typing/product.v +++ b/theories/typing/product.v @@ -2,6 +2,9 @@ From iris.proofmode Require Import tactics. From lrust.lifetime Require Import borrow frac_borrow. From lrust.typing Require Export type. +(* TODO : prove contractiveness. + Prerequisite : cofe structure on lists and vectors. *) + Section product. Context `{typeG Σ}. @@ -66,6 +69,16 @@ Section product. iSplitL "H1"; by iApply (ty_shr_mono with "LFT H⊑"). Qed. + Global Instance product2_ne n: + Proper (dist n ==> dist n ==> dist n) product2. + Proof. + intros ?? EQ1 ?? EQ2. split; [split|]; simpl. + - by rewrite EQ1 EQ2. + - f_contractive. destruct n=>// tid vl. + by setoid_rewrite EQ1; setoid_rewrite EQ2. + - intros ???. by rewrite EQ1 EQ2. + Qed. + Global Instance product2_mono E L: Proper (subtype E L ==> subtype E L ==> subtype E L) product2. Proof. @@ -216,5 +229,4 @@ Section typing. Lemma prod_app E L tyl1 tyl2 : eqtype E L (Π[Πtyl1; Πtyl2]) (Π(tyl1 ++ tyl2)). Proof. by rewrite -prod_flatten_r -prod_flatten_l. Qed. - End typing. diff --git a/theories/typing/shr_bor.v b/theories/typing/shr_bor.v index eb7f2f4cc325c5eec0fd276281599cdfc4a2c873..be0262334a488a58db7a6a0c1402028c340bc320 100644 --- a/theories/typing/shr_bor.v +++ b/theories/typing/shr_bor.v @@ -8,8 +8,7 @@ Section shr_bor. Context `{typeG Σ}. Program Definition shr_bor (κ : lft) (ty : type) : type := - {| st_own tid vl := - (∃ (l:loc), ⌜vl = [ #l ]⌠∗ ty.(ty_shr) κ tid l)%I |}. + {| st_own tid vl := (∃ (l:loc), ⌜vl = [ #l ]⌠∗ ty.(ty_shr) κ tid l)%I |}. Next Obligation. iIntros (κ ty tid vl) "H". iDestruct "H" as (l) "[% _]". by subst. Qed. @@ -20,7 +19,7 @@ Section shr_bor. intros κ1 κ2 Hκ ty1 ty2 Hty. apply subtype_simple_type. iIntros (??) "#LFT #HE #HL H". iDestruct (Hκ with "HE HL") as "#Hκ". iDestruct "H" as (l) "(% & H)". subst. iExists _. iSplit. done. - iApply (ty2.(ty_shr_mono) with "LFT Hκ"). + iApply (ty2.(ty_shr_mono) with "LFT Hκ"). iDestruct (Hty with "* [] [] []") as "(_ & _ & #Hs1)"; [done..|clear Hty]. by iApply "Hs1". Qed. @@ -31,6 +30,15 @@ Section shr_bor. Proper (eqtype E L ==> eqtype E L) (shr_bor κ). Proof. intros ??[]. by split; apply subtype_shr_bor_mono. Qed. + Global Instance shr_contractive κ : Contractive (shr_bor κ). + Proof. + intros n ?? EQ. apply ty_of_st_ne. apply Next_contractive. + destruct n=>// tid vl /=. apply uPred.exist_ne. + repeat (apply EQ || f_contractive || f_equiv). + Qed. + Global Instance shr_ne κ n : Proper (dist n ==> dist n) (shr_bor κ). + Proof. apply contractive_ne, _. Qed. + Global Instance shr_send κ ty : Sync ty → Send (shr_bor κ ty). Proof. diff --git a/theories/typing/sum.v b/theories/typing/sum.v index a55d5ee10ab60d9325ea51ac4ec88f00b4b6baee..2f33dc402f5010b668a9078bf048d7ce1d43ecd1 100644 --- a/theories/typing/sum.v +++ b/theories/typing/sum.v @@ -3,6 +3,9 @@ From iris.base_logic Require Import fractional. From lrust.lifetime Require Import borrow frac_borrow. From lrust.typing Require Export type. +(* TODO : prove contractiveness. + Prerequisite : cofe structure on lists and vectors. *) + Section sum. Context `{typeG Σ}. diff --git a/theories/typing/type.v b/theories/typing/type.v index 51a4d8c963db81eb482d4af12806e6616a4d68b5..3d3ddae374b6ed40436a7f68ffc2365f14e78c7c 100644 --- a/theories/typing/type.v +++ b/theories/typing/type.v @@ -35,7 +35,7 @@ Section type. invariants, which does not need the mask. Moreover, it is more consistent with thread-local tokens, which we do not give any. - + The lifetime token is needed (a) to make the definition of simple types nicer (they would otherwise require a "∨ □|=>[†κ]"), and (b) so that we can have emp == sum []. @@ -62,7 +62,7 @@ Section type. - rewrite -Nat.add_1_l Nat2Z.inj_add /= IHn shift_loc_assoc. set_solver+. Qed. - + Lemma shr_locsE_disj l n m : shr_locsE l n ⊥ shr_locsE (shift_loc l n) m. Proof. @@ -202,6 +202,146 @@ Coercion ty_of_st : simple_type >-> type. Delimit Scope lrust_type_scope with T. Bind Scope lrust_type_scope with type. +(* OFE and COFE structures on types and simple types. *) +Section ofe. + Context `{typeG Σ}. + + Section def. + Definition tuple_of_type (ty : type) : prodC (prodC _ _) _ := + (ty.(ty_size), + Next (ty.(ty_own) : _ -c> _ -c> _), + ty.(ty_shr) : _ -c> _ -c> _ -c> _). + + Instance type_equiv : Equiv type := λ ty1 ty2, + tuple_of_type ty1 ≡ tuple_of_type ty2. + Instance type_dist : Dist type := λ n ty1 ty2, + tuple_of_type ty1 ≡{n}≡ tuple_of_type ty2. + + Definition type_ofe_mixin : OfeMixin type. + Proof. + split; [|split|]; unfold equiv, dist, type_equiv, type_dist. + - intros. apply equiv_dist. + - by intros ?. + - by intros ???. + - by intros ???->. + - by intros ????; apply dist_S. + Qed. + + Canonical Structure typeC : ofeT := OfeT type type_ofe_mixin. + + Instance st_equiv : Equiv simple_type := λ st1 st2, + @Next (_ -c> _ -c> _) st1.(st_own) ≡ Next st2.(st_own). + Instance st_dist : Dist simple_type := λ n st1 st2, + @Next (_ -c> _ -c> _) st1.(st_own) ≡{n}≡ Next st2.(st_own). + + Definition st_ofe_mixin : OfeMixin simple_type. + Proof. + split; [|split|]; unfold equiv, dist, st_equiv, st_dist. + - intros. apply equiv_dist. + - by intros ?. + - by intros ???. + - by intros ???->. + - by intros ????; apply dist_S. + Qed. + + Canonical Structure simple_typeC : ofeT := OfeT simple_type st_ofe_mixin. + End def. + + Global Instance ty_size_proper_d n: + Proper (dist n ==> eq) ty_size. + Proof. intros ?? EQ. apply EQ. Qed. + Global Instance ty_size_proper_e : + Proper ((≡) ==> eq) ty_size. + Proof. intros ?? EQ. apply EQ. Qed. + Global Instance ty_own_ne n: + Proper (dist (S n) ==> eq ==> eq ==> dist n) ty_own. + Proof. intros ?? EQ ??-> ??->. apply EQ. Qed. + Global Instance ty_own_proper_e: + Proper ((≡) ==> eq ==> eq ==> (≡)) ty_own. + Proof. intros ?? EQ ??-> ??->. apply EQ. Qed. + Global Instance ty_shr_ne n: + Proper (dist n ==> eq ==> eq ==> eq ==> dist n) ty_shr. + Proof. intros ?? EQ ??-> ??-> ??->. apply EQ. Qed. + Global Instance ty_shr_proper_e : + Proper ((≡) ==> eq ==> eq ==> eq ==> (≡)) ty_shr. + Proof. intros ?? EQ ??-> ??-> ??->. apply EQ. Qed. + Global Instance st_own_ne n: + Proper (dist (S n) ==> eq ==> eq ==> dist n) st_own. + Proof. intros ?? EQ ??-> ??->. apply EQ. Qed. + Global Instance st_own_proper_e : + Proper ((≡) ==> eq ==> eq ==> (≡)) st_own. + Proof. intros ?? EQ ??-> ??->. apply EQ. Qed. + + Global Program Instance type_cofe : Cofe typeC := + {| compl c := + let '(ty_size, Next ty_own, ty_shr) := + compl {| chain_car := tuple_of_type ∘ c |} + in + {| ty_size := ty_size; ty_own := ty_own; ty_shr := ty_shr |} + |}. + Next Obligation. intros [c Hc]. apply Hc. Qed. + Next Obligation. + simpl. intros c _ _ shr [=_ _ ->] κ tid l. + apply uPred.equiv_entails, equiv_dist=>n. + by rewrite (λ c, conv_compl (A:=_ -c> _ -c> _ -c> _) n c κ tid l) /= + uPred.always_always. + Qed. + Next Obligation. + simpl. intros c sz own _ [=-> -> _] tid vl. + apply uPred.entails_equiv_and, equiv_dist=>n. + rewrite (λ c, conv_compl (A:=_ -c> _ -c> _) n c tid vl) /= conv_compl /=. + apply equiv_dist, uPred.entails_equiv_and, ty_size_eq. + Qed. + Next Obligation. + simpl. intros c _ own shr [=_ -> ->] E κ l tid q ?. + apply uPred.entails_equiv_and, equiv_dist=>n. + rewrite (λ c, conv_compl (A:=_ -c> _ -c> _ -c> _) n c κ tid l) /=. + setoid_rewrite (λ c vl, conv_compl (A:=_ -c> _ -c> _) n c tid vl). simpl. + etrans. { by apply equiv_dist, uPred.entails_equiv_and, (c n).(ty_share). } + simpl. destruct n; repeat (simpl; (f_contractive || f_equiv)). + rewrite (c.(chain_cauchy) (S n) (S (S n))) //. lia. + Qed. + Next Obligation. + simpl. intros c _ _ shr [=_ _ ->] κ κ' tid l. + apply uPred.entails_equiv_and, equiv_dist=>n. + rewrite !(λ c, conv_compl (A:=_ -c> _ -c> _ -c> _) n c _ tid l) /=. + apply equiv_dist, uPred.entails_equiv_and. apply ty_shr_mono. + Qed. + Next Obligation. + intros n c. split; [split|]; simpl; try by rewrite conv_compl. + f_contractive. destruct n; first done. rewrite /= conv_compl //. + Qed. + + Global Program Instance simple_type_cofe : Cofe simple_typeC := + {| compl c := + let 'Next st_own := compl + {| chain_car := Next ∘ (st_own : _ -> _ -c> _ -c> _) ∘ c |} in + {| st_own := st_own |} + |}. + Next Obligation. intros [c Hc]. apply Hc. Qed. + Next Obligation. + simpl. intros c own [=->] tid vl. + apply uPred.entails_equiv_and, equiv_dist=>n. + rewrite (λ c, conv_compl (A:=_ -c> _ -c> _) n c tid vl) /=. + apply equiv_dist, uPred.entails_equiv_and, st_size_eq. + Qed. + Next Obligation. + simpl. intros c own [=->] tid vl. + apply uPred.equiv_entails, equiv_dist=>n. + by rewrite (λ c, conv_compl (A:=_ -c> _ -c> _) n c tid vl) /= + uPred.always_always. + Qed. + Next Obligation. + intros n c. apply Next_contractive. destruct n=>//=. rewrite conv_compl //. + Qed. + + Global Instance ty_of_st_ne n : Proper (dist n ==> dist n) ty_of_st. + Proof. + intros [][]EQ. split;[split|]=>//= κ tid l. + repeat (f_contractive || f_equiv). apply EQ. + Qed. +End ofe. + Section subtyping. Context `{typeG Σ}. Definition type_incl (ty1 ty2 : type) : iProp Σ := diff --git a/theories/typing/uninit.v b/theories/typing/uninit.v index f25c3d1f1415fd98b56b5db032d1e698257a8085..6153466d31c78feb7a2f2101a1d2d5124b5091a8 100644 --- a/theories/typing/uninit.v +++ b/theories/typing/uninit.v @@ -11,7 +11,7 @@ Section uninit. Global Instance uninit_1_send : Send uninit_1. Proof. iIntros (tid1 tid2 vl) "H". done. Qed. - + Definition uninit (n : nat) : type := Π(replicate n uninit_1). @@ -44,5 +44,5 @@ Section uninit. + iIntros (Heq). destruct n; first done. simpl. iExists [v], vl. iSplit; first done. iSplit; first done. iApply "IH". by inversion Heq. - Qed. + Qed. End uninit. diff --git a/theories/typing/uniq_bor.v b/theories/typing/uniq_bor.v index 1f2ca93a026ada43c707c0b62a8ae7c987f73184..3d21619697f3072b5317c85ff3fce5b703bfc1ac 100644 --- a/theories/typing/uniq_bor.v +++ b/theories/typing/uniq_bor.v @@ -20,7 +20,7 @@ Section uniq_bor. The trouble with this definition is that bor_unnest as proven is too weak. The original unnesting with open borrows was strong enough. *) ty_own tid vl := - (∃ (l:loc) P, (⌜vl = [ #l ]⌠∗ □ (P ↔ l ↦∗: ty.(ty_own) tid)) ∗ &{κ} P)%I; + (∃ (l:loc) P, (⌜vl = [ #l ]⌠∗ ▷ □ (P ↔ l ↦∗: ty.(ty_own) tid)) ∗ &{κ} P)%I; ty_shr κ' tid l := (∃ l':loc, &frac{κ'}(λ q', l ↦{q'} #l') ∗ □ ∀ F q, ⌜↑shrN ∪ lftE ⊆ F⌠-∗ q.[κ∪κ'] @@ -81,7 +81,7 @@ Section uniq_bor. iSplit; iAlways. - iIntros (??) "H". iDestruct "H" as (l P) "[[% #HPiff] Hown]". subst. iExists _, _. iSplitR; last by iApply (bor_shorten with "Hκ"). iSplit. done. - iIntros "!#". iSplit; iIntros "H". + iNext. iIntros "!#". iSplit; iIntros "H". + iDestruct ("HPiff" with "H") as (vl) "[??]". iExists vl. iFrame. by iApply "Ho1". + iDestruct "H" as (vl) "[??]". iApply "HPiff". iExists vl. iFrame. @@ -104,11 +104,21 @@ Section uniq_bor. Proper (eqtype E L ==> eqtype E L) (uniq_bor κ). Proof. split; by apply subtype_uniq_mono. Qed. + Global Instance uniq_contractive κ : Contractive (uniq_bor κ). + Proof. + intros n ?? EQ. split; [split|]; simpl. + - done. + - destruct n=>// tid vl /=. repeat (apply EQ || f_contractive || f_equiv). + - intros κ' tid l. repeat (apply EQ || f_contractive || f_equiv). + Qed. + Global Instance uniq_ne κ n : Proper (dist n ==> dist n) (uniq_bor κ). + Proof. apply contractive_ne, _. Qed. + Global Instance uniq_send κ ty : Send ty → Send (uniq_bor κ ty). Proof. iIntros (Hsend tid1 tid2 vl) "H". iDestruct "H" as (l P) "[[% #HPiff] H]". - iExists _, _. iFrame "H". iSplit; first done. iAlways. iSplit. + iExists _, _. iFrame "H". iSplit; first done. iNext. iAlways. iSplit. - iIntros "HP". iApply (heap_mapsto_pred_wand with "[HP]"). { by iApply "HPiff". } clear dependent vl. iIntros (vl) "?". by iApply Hsend. @@ -138,14 +148,14 @@ Section typing. iIntros (Hκ ???) "#LFT HE HL Huniq". iMod (Hκ with "HE HL") as (q) "[Htok Hclose]"; [try done..|]. rewrite /tctx_interp !big_sepL_singleton /=. - iDestruct "Huniq" as (v) "[% Huniq]". + iDestruct "Huniq" as (v) "[% Huniq]". iDestruct "Huniq" as (l P) "[[% #HPiff] HP]". iMod (bor_iff with "LFT [] HP") as "H↦". set_solver. by eauto. iMod (ty.(ty_share) with "LFT H↦ Htok") as "[Hown Htok]"; [solve_ndisj|]. iMod ("Hclose" with "Htok") as "[$ $]". iExists _. iFrame "%". iIntros "!>/=". eauto. Qed. - + Lemma tctx_reborrow_uniq E L p ty κ κ' : lctx_lft_incl E L κ' κ → tctx_incl E L [TCtx_hasty p (&uniq{κ}ty)] @@ -185,7 +195,7 @@ Section typing. Lemma write_uniq E L κ ty : lctx_lft_alive E L κ → typed_write E L (&uniq{κ}ty) ty (&uniq{κ}ty). Proof. - iIntros (Halive p tid F qE qL ?) "#LFT HE HL Hown". + iIntros (Halive p tid F qE qL ?) "#LFT HE HL Hown". iMod (Halive with "HE HL") as (q) "[Htok Hclose]"; first set_solver. iDestruct "Hown" as (l P) "[[EQ #HP] H↦]". iDestruct "EQ" as %[=->]. iMod (bor_iff with "LFT [] H↦") as "H↦". set_solver. by eauto. @@ -197,5 +207,4 @@ Section typing. iMod ("Hclose" with "Htok") as "($ & $ & $)". iExists _, _. erewrite <-uPred.iff_refl. auto. Qed. - End typing.