diff --git a/theories/typing/examples/get_x.v b/theories/typing/examples/get_x.v index 54577cbf719a740aa5a5ae9010336ac219575041..75b78efc763e83a6eda0e1a18609ebd4e53b9d21 100644 --- a/theories/typing/examples/get_x.v +++ b/theories/typing/examples/get_x.v @@ -12,7 +12,7 @@ Section get_x. Lemma get_x_type : typed_instruction_ty [] [] [] get_x - (fn (λ α, [☀α])%EL (λ α, [# box (&uniq{α}Î [int; int])]) (λ α, box (&shr{α} int))). + (fn (λ α, [☀α])%EL (λ α, [# &uniq{α}Î [int; int]]%T) (λ α, &shr{α} int)%T). Proof. apply type_fn; try apply _. move=> /= α ret p. inv_vec p=>p. simpl_subst. eapply type_deref; [solve_typing..|by apply read_own_move|done|]. diff --git a/theories/typing/examples/init_prod.v b/theories/typing/examples/init_prod.v index 8893096ace2ede3ecf2789f100cf01ece7eab906..24c34b29da7f67bc90ba3730e5b57df00f794713 100644 --- a/theories/typing/examples/init_prod.v +++ b/theories/typing/examples/init_prod.v @@ -13,7 +13,7 @@ Section init_prod. Lemma init_prod_type : typed_instruction_ty [] [] [] init_prod - (fn (λ _, []) (λ _, [# box int; box int]) (λ (_ : ()), box (Î [int;int]))). + (fn (λ _, []) (λ _, [# int; int]) (λ (_ : ()), Î [int;int])). Proof. apply type_fn; try apply _. move=> /= [] ret p. inv_vec p=>x y. simpl_subst. eapply type_deref; [solve_typing..|apply read_own_move|done|]=>x'. simpl_subst. diff --git a/theories/typing/examples/lazy_lft.v b/theories/typing/examples/lazy_lft.v index aa147026c2c51b4ab7cf84e5213ca659a20c68df..d1d865bd7796deb9f7aeb006ac75c09049483ac1 100644 --- a/theories/typing/examples/lazy_lft.v +++ b/theories/typing/examples/lazy_lft.v @@ -18,7 +18,7 @@ Section lazy_lft. Lemma lazy_lft_type : typed_instruction_ty [] [] [] lazy_lft - (fn (λ _, [])%EL (λ _, [#]) (λ _:(), box unit)). + (fn (λ _, [])%EL (λ _, [#]) (λ _:(), unit)). Proof. apply type_fn; try apply _. move=> /= [] ret p. inv_vec p. simpl_subst. eapply (type_newlft []); [solve_typing|]=>α. diff --git a/theories/typing/examples/option_as_mut.v b/theories/typing/examples/option_as_mut.v index 93fac9532f3118ce990aa12437d60775f9ac3a5a..38df7ab70807801746914a6596dfeb09874d8c14 100644 --- a/theories/typing/examples/option_as_mut.v +++ b/theories/typing/examples/option_as_mut.v @@ -14,7 +14,7 @@ Section option_as_mut. Lemma option_as_mut_type Ï„ : typed_instruction_ty [] [] [] option_as_mut - (fn (λ α, [☀α])%EL (λ α, [# box (&uniq{α}Σ[unit; Ï„])]) (λ α, box (Σ[unit; &uniq{α}Ï„]))). + (fn (λ α, [☀α])%EL (λ α, [# &uniq{α}Σ[unit; Ï„]]%T) (λ α, Σ[unit; &uniq{α}Ï„])%T). Proof. apply type_fn; try apply _. move=> /= α ret p. inv_vec p=>o. simpl_subst. eapply (type_cont [_] [] (λ r, [o â— _; r!!!0 â— _])%TC) ; [solve_typing..| |]. diff --git a/theories/typing/examples/rebor.v b/theories/typing/examples/rebor.v index a30f43cb7dff0e744797804ba8e3c5a53f72a9ed..1a3237202f04687418850848bd8db1558488c849 100644 --- a/theories/typing/examples/rebor.v +++ b/theories/typing/examples/rebor.v @@ -17,8 +17,7 @@ Section rebor. Lemma rebor_type : typed_instruction_ty [] [] [] rebor - (fn (λ _, []) (λ _, [# box (Î [int; int]); box (Î [int; int])]) - (λ (_ : ()), box int)). + (fn (λ _, []) (λ _, [# Î [int; int]; Î [int; int]]) (λ (_ : ()), int)). Proof. apply type_fn; try apply _. move=> /= [] ret p. inv_vec p=>t1 t2. simpl_subst. eapply (type_newlft []). apply _. move=> α. diff --git a/theories/typing/examples/unbox.v b/theories/typing/examples/unbox.v index 3f9b02b4cd7866ba6e1175c545ac8378910a690e..ffdb94a7b7302eedc5eb87923e2243a17e726054 100644 --- a/theories/typing/examples/unbox.v +++ b/theories/typing/examples/unbox.v @@ -12,7 +12,7 @@ Section unbox. Lemma ubox_type : typed_instruction_ty [] [] [] unbox - (fn (λ α, [☀α])%EL (λ α, [# box (&uniq{α}box (Î [int; int]))]) (λ α, box (&uniq{α} int))). + (fn (λ α, [☀α])%EL (λ α, [# &uniq{α}box (Î [int; int])]%T) (λ α, &uniq{α} int)%T). Proof. apply type_fn; try apply _. move=> /= α ret b. inv_vec b=>b. simpl_subst. eapply type_deref; [solve_typing..|by apply read_own_move|done|]. diff --git a/theories/typing/examples/unwrap_or.v b/theories/typing/examples/unwrap_or.v index fabb11e02fb64f03ce5c93d1fb41b1a50fbbaca1..a14417f97970855e2669958dc80582519dc6a644 100644 --- a/theories/typing/examples/unwrap_or.v +++ b/theories/typing/examples/unwrap_or.v @@ -13,7 +13,7 @@ Section unwrap_or. Lemma unwrap_or_type Ï„ : typed_instruction_ty [] [] [] (unwrap_or Ï„) - (fn (λ _, [])%EL (λ _, [# box (Σ[unit; Ï„]); box Ï„]) (λ _:(), box Ï„)). + (fn (λ _, [])%EL (λ _, [# Σ[unit; Ï„]; Ï„])%T (λ _:(), Ï„)). Proof. apply type_fn; try apply _. move=> /= [] ret p. inv_vec p=>o def. simpl_subst. eapply type_case_own; [solve_typing..|]. constructor; last constructor; last constructor. diff --git a/theories/typing/function.v b/theories/typing/function.v index 9030e40814bf1afadd8bc2fc9a5d9b974598d89b..3808821a71e05168c776185e1558cb8df8513752 100644 --- a/theories/typing/function.v +++ b/theories/typing/function.v @@ -2,7 +2,7 @@ From iris.base_logic Require Import big_op. From iris.proofmode Require Import tactics. From iris.algebra Require Import vector. From lrust.typing Require Export type. -From lrust.typing Require Import programs cont. +From lrust.typing Require Import own programs cont. Set Default Proof Using "Type". Section fn. @@ -14,8 +14,9 @@ Section fn. ⌜vl = [@RecV fb (kb::xb) e H]⌠∗ ⌜length xb = n⌠∗ â–· ∀ (x : A) (k : val) (xl : vec val (length xb)), typed_body (E x) [] - [kâ—cont([], λ v : vec _ 1, [v!!!0 â— ty x])] - (zip_with (TCtx_hasty ∘ of_val) xl (tys x)) + [kâ—cont([], λ v : vec _ 1, [v!!!0 â— box (ty x)])] + (zip_with (TCtx_hasty ∘ of_val) xl + ((λ ty, box ty) <$> (vec_to_list (tys x)))) (subst_v (fb::kb::xb) (RecV fb (kb::xb) e:::k:::xl) e))%I |}. Next Obligation. iIntros (E tys ty tid vl) "H". iDestruct "H" as (fb kb xb e ?) "[% _]". by subst. @@ -32,11 +33,13 @@ Section fn. f_contractive=>tid vl. unfold typed_body. do 12 f_equiv. f_contractive. do 18 f_equiv. - rewrite !cctx_interp_singleton /=. do 5 f_equiv. - rewrite !tctx_interp_singleton /tctx_elt_interp. do 3 f_equiv. apply Hty. + rewrite !tctx_interp_singleton /tctx_elt_interp /=. repeat f_equiv. apply Hty. + by rewrite (ty_size_proper_d _ _ _ (Hty _)). - rewrite /tctx_interp !big_sepL_zip_with /=. do 3 f_equiv. - assert (Hprop : ∀ n tid p i, Proper (dist (S n) ==> dist n) - (λ (l : list _), ∀ ty, ⌜l !! i = Some ty⌠→ tctx_elt_interp tid (p â— ty))%I); - last by apply Hprop, Htys. + cut (∀ n tid p i, Proper (dist (S n) ==> dist n) + (λ (l : list _), ∀ ty, ⌜l !! i = Some ty⌠→ tctx_elt_interp tid (p â— ty))%I). + { intros Hprop. apply Hprop, list_fmap_ne, Htys. intros ty1 ty2 Hty12. + rewrite (ty_size_proper_d _ _ _ Hty12). by rewrite Hty12. } clear. intros n tid p i x y. rewrite list_dist_lookup=>Hxy. specialize (Hxy i). destruct (x !! i) as [tyx|], (y !! i) as [tyy|]; inversion_clear Hxy; last done. @@ -86,7 +89,9 @@ Section typing. { by apply elem_of_list_singleton. } rewrite /tctx_interp !big_sepL_singleton /=. iDestruct "HT" as (v) "[HP Hown]". iExists v. iFrame "HP". - iDestruct (Hty x with "LFT [HE0 HEp] HL0") as "(_ & #Hty & _)". + assert (Hst : subtype (E0 ++ E x) L0 (box (ty x)) (box (ty' x))) + by by rewrite ->Hty. + iDestruct (Hst with "LFT [HE0 HEp] HL0") as "(_ & Hty & _)". { rewrite /elctx_interp_0 big_sepL_app. by iSplit. } by iApply "Hty". - rewrite /tctx_interp @@ -100,9 +105,11 @@ Section typing. iDestruct "Hzip" as %(? & ? & ([? ?] & (? & Hty'1 & (? & Hty'2 & [=->->])%bind_Some)%bind_Some & [=->->->])%bind_Some)%bind_Some. specialize (Htys x). eapply Forall2_lookup_lr in Htys; try done. - iDestruct (Htys with "* [] [] []") as "(_ & #Ho & _)"; [done| |done|]. - + rewrite /elctx_interp_0 big_sepL_app. by iSplit. - + by iApply "Ho". + assert (Hst : subtype (E0 ++ E x) L0 (box ty2') (box ty1')) + by by rewrite ->Htys. + iDestruct (Hst with "* [] [] []") as "(_ & #Ho & _)"; [done| |done|]. + { rewrite /elctx_interp_0 big_sepL_app. by iSplit. } + by iApply "Ho". Qed. Lemma fn_subtype_ty {A n} E0 L0 E (tys1 tys2 : A → vec type n) ty1 ty2 : @@ -159,19 +166,21 @@ Section typing. Lemma type_call' {A} E L E' T p (ps : list path) (tys : A → vec type (length ps)) ty k x : elctx_sat E L (E' x) → - typed_body E L [k â—cont(L, λ v : vec _ 1, (v!!!0 â— ty x) :: T)] - ((p â— fn E' tys ty) :: zip_with TCtx_hasty ps (tys x) ++ T) + typed_body E L [k â—cont(L, λ v : vec _ 1, (v!!!0 â— box (ty x)) :: T)] + ((p â— fn E' tys ty) :: + zip_with TCtx_hasty ps ((λ ty, box ty) <$> (vec_to_list (tys x))) ++ + T) (call: p ps → k). Proof. iIntros (HE) "!# * #HEAP #LFT Htl HE HL HC". rewrite tctx_interp_cons tctx_interp_app. iIntros "(Hf & Hargs & HT)". wp_bind p. iApply (wp_hasty with "Hf"). iIntros (v) "% Hf". iApply (wp_app_vec _ _ (_::_) ((λ v, ⌜v = kâŒ)::: - vmap (λ ty (v : val), tctx_elt_interp tid (v â— ty)) (tys x))%I + vmap (λ ty (v : val), tctx_elt_interp tid (v â— box ty)) (tys x))%I with "* [Hargs]"); first wp_done. - rewrite /= big_sepL_cons. iSplitR "Hargs"; first by iApply wp_value'. clear dependent ty k p. - rewrite /tctx_interp vec_to_list_map zip_with_fmap_r + rewrite /tctx_interp vec_to_list_map !zip_with_fmap_r (zip_with_zip (λ e ty, (e, _))) zip_with_zip !big_sepL_fmap. iApply (big_sepL_mono' with "Hargs"). iIntros (i [p ty]) "HT/=". iApply (wp_hasty with "HT"). setoid_rewrite tctx_hasty_val. iIntros (?) "? $". @@ -192,7 +201,7 @@ Section typing. iSpecialize ("HC" with "* []"); first by (iPureIntro; apply elem_of_list_singleton). iApply ("HC" $! args with "Htl HL"). rewrite tctx_interp_singleton tctx_interp_cons. iFrame. - + rewrite /tctx_interp vec_to_list_map zip_with_fmap_r + + rewrite /tctx_interp vec_to_list_map !zip_with_fmap_r (zip_with_zip (λ v ty, (v, _))) zip_with_zip !big_sepL_fmap. iApply (big_sepL_mono' with "Hvl"). by iIntros (i [v ty']). Qed. @@ -201,9 +210,10 @@ Section typing. (tys : A → vec type (length ps)) ty k : (p â— fn E' tys ty)%TC ∈ T → elctx_sat E L (E' x) → - tctx_extract_ctx E L (zip_with TCtx_hasty ps (tys x)) T T' → + tctx_extract_ctx E L (zip_with TCtx_hasty ps + ((λ ty, box ty) <$> vec_to_list (tys x))) T T' → (k â—cont(L, T''))%CC ∈ C → - (∀ ret : val, tctx_incl E L ((ret â— ty x)::T') (T'' [# ret])) → + (∀ ret : val, tctx_incl E L ((ret â— box (ty x))::T') (T'' [# ret])) → typed_body E L C T (call: p ps → k). Proof. intros Hfn HE HTT' HC HT'T''. @@ -219,11 +229,12 @@ Section typing. Closed (b :b: []) e → Closed [] p → Forall (Closed []) ps → (p â— fn E' tys ty)%TC ∈ T → elctx_sat E L (E' x) → - tctx_extract_ctx E L (zip_with TCtx_hasty ps (tys x)) T T' → - (∀ ret : val, typed_body E L C ((ret â— ty x)::T') (subst' b ret e)) → + tctx_extract_ctx E L (zip_with TCtx_hasty ps + ((λ ty, box ty) <$> vec_to_list (tys x))) T T' → + (∀ ret : val, typed_body E L C ((ret â— box (ty x))::T') (subst' b ret e)) → typed_body E L C T (letcall: b := p ps in e). Proof. - intros ?? Hpsc ????. eapply (type_cont [_] _ (λ r, (r!!!0 â— ty x) :: T')%TC). + intros ?? Hpsc ????. eapply (type_cont [_] _ (λ r, (r!!!0 â— box (ty x)) :: T')%TC). - (* TODO : make [solve_closed] work here. *) eapply is_closed_weaken; first done. set_solver+. - (* TODO : make [solve_closed] work here. *) @@ -249,9 +260,10 @@ Section typing. T `{!CopyC T, !SendC T} : Closed (fb :b: "return" :b: argsb +b+ []) e → (∀ x (f : val) k (args : vec val (length argsb)), - typed_body (E' x) [] [k â—cont([], λ v : vec _ 1, [v!!!0 â— ty x])] + typed_body (E' x) [] [k â—cont([], λ v : vec _ 1, [v!!!0 â— box (ty x)])] ((f â— fn E' tys ty) :: - zip_with (TCtx_hasty ∘ of_val) args (tys x) ++ T) + zip_with (TCtx_hasty ∘ of_val) args + ((λ ty, box ty) <$> vec_to_list (tys x)) ++ T) (subst_v (fb :: BNamed "return" :: argsb) (f ::: k ::: args) e)) → typed_instruction_ty E L T (funrec: fb argsb := e) (fn E' tys ty). Proof. @@ -271,8 +283,9 @@ Section typing. T `{!CopyC T, !SendC T} : Closed ("return" :b: argsb +b+ []) e → (∀ x k (args : vec val (length argsb)), - typed_body (E' x) [] [k â—cont([], λ v : vec _ 1, [v!!!0 â— ty x])] - (zip_with (TCtx_hasty ∘ of_val) args (tys x) ++ T) + typed_body (E' x) [] [k â—cont([], λ v : vec _ 1, [v!!!0 â— box (ty x)])] + (zip_with (TCtx_hasty ∘ of_val) args + ((λ ty, box ty) <$> vec_to_list (tys x)) ++ T) (subst_v (BNamed "return" :: argsb) (k ::: args) e)) → typed_instruction_ty E L T (funrec: <> argsb := e) (fn E' tys ty). Proof. diff --git a/theories/typing/own.v b/theories/typing/own.v index 914a1ba997c89c6cefad6f0f5355acdd151bfd69..f4fe9539535cab1b360e075a4de812445ca2c587 100644 --- a/theories/typing/own.v +++ b/theories/typing/own.v @@ -95,32 +95,35 @@ Section own. by iApply (ty.(ty_shr_mono) with "LFT Hκ"). Qed. - Global Instance own_mono E L n : - Proper (subtype E L ==> subtype E L) (own_ptr n). + Global Instance own_mono E L : + Proper (ctx_eq E L ==> subtype E L ==> subtype E L) own_ptr. Proof. - intros ty1 ty2 Hincl. iIntros. iSplit; first done. + intros n1 n2 Hn12 ty1 ty2 Hincl. iIntros. iSplit; first done. iDestruct (Hincl with "* [] [] []") as "(_ & #Ho & #Hs)"; [done..|clear Hincl]. iSplit; iAlways. - iIntros (??) "H". iDestruct "H" as (l) "(%&Hmt&H†)". subst. iExists _. iSplit. done. iDestruct "Hmt" as (vl') "[Hmt Hown]". iNext. iDestruct (ty_size_eq with "Hown") as %<-. iDestruct ("Ho" with "* Hown") as "Hown". - iDestruct (ty_size_eq with "Hown") as %<-. iFrame. + iDestruct (ty_size_eq with "Hown") as %<-. + iDestruct (Hn12 with "[] [] []") as %->; [done..|]. iFrame. iExists _. by iFrame. - iIntros (???) "H". iDestruct "H" as (l') "[Hfb #Hvs]". iExists l'. iFrame. iIntros "!#". iIntros (F' q) "% Htok". iMod ("Hvs" with "* [%] Htok") as "Hvs'". done. iModIntro. iNext. iMod "Hvs'" as "[Hshr $]". iApply ("Hs" with "Hshr"). Qed. - Lemma own_mono' E L n ty1 ty2 : - subtype E L ty1 ty2 → subtype E L (own_ptr n ty1) (own_ptr n ty2). - Proof. apply own_mono. Qed. - Global Instance own_proper E L n : - Proper (eqtype E L ==> eqtype E L) (own_ptr n). - Proof. intros ?? Heq. split; f_equiv; apply Heq. Qed. - Lemma own_proper' E L n ty1 ty2 : - eqtype E L ty1 ty2 → eqtype E L (own_ptr n ty1) (own_ptr n ty2). - Proof. apply own_proper. Qed. + Lemma own_mono' E L n1 n2 ty1 ty2 : + ctx_eq E L n1 n2 → subtype E L ty1 ty2 → + subtype E L (own_ptr n1 ty1) (own_ptr n2 ty2). + Proof. intros. by apply own_mono. Qed. + Global Instance own_proper E L : + Proper (ctx_eq E L ==> eqtype E L ==> eqtype E L) own_ptr. + Proof. intros ?? ??? Heq. split; f_equiv; try done; apply Heq. Qed. + Lemma own_proper' E L n1 n2 ty1 ty2 : + ctx_eq E L n1 n2 → eqtype E L ty1 ty2 → + eqtype E L (own_ptr n1 ty1) (own_ptr n2 ty2). + Proof. intros. by apply own_proper. Qed. Global Instance own_contractive n : Contractive (own_ptr n). Proof. diff --git a/theories/typing/type.v b/theories/typing/type.v index 979af897b555b8e431be990bae3bf814fd375e9e..e2114448b66ab47b1e954246813d9d26e2961d3a 100644 --- a/theories/typing/type.v +++ b/theories/typing/type.v @@ -352,15 +352,12 @@ Section subtyping. Context (E : elctx) (L : llctx). Definition subtype (ty1 ty2 : type) : Prop := - lft_ctx -∗ elctx_interp_0 E -∗ ⌜llctx_interp_0 L⌠-∗ - type_incl ty1 ty2. + lft_ctx -∗ elctx_interp_0 E -∗ ⌜llctx_interp_0 L⌠-∗ type_incl ty1 ty2. + Definition ctx_eq {A} (x1 x2 : A) : Prop := + lft_ctx -∗ elctx_interp_0 E -∗ ⌜llctx_interp_0 L⌠-∗ ⌜x1 = x2âŒ. Lemma subtype_refl ty : subtype ty ty. Proof. iIntros. iApply type_incl_refl. Qed. - - Lemma equiv_subtype ty1 ty2 : ty1 ≡ ty2 → subtype ty1 ty2. - Proof. unfold subtype, type_incl=>EQ. setoid_rewrite EQ. apply subtype_refl. Qed. - Global Instance subtype_preorder : PreOrder subtype. Proof. split; first by intros ?; apply subtype_refl. @@ -370,6 +367,31 @@ Section subtyping. - iApply (H23 with "[] []"); done. Qed. + Lemma ctx_eq_refl {A} (x : A) : ctx_eq x x. + Proof. by iIntros "_ _ _". Qed. + Global Instance ctx_eq_equivalent {A} : Equivalence (@ctx_eq A). + Proof. + split. + - by iIntros (?) "_ _ _". + - iIntros (x y Hxy) "LFT HE HL". by iDestruct (Hxy with "LFT HE HL") as %->. + - iIntros (x y z Hxy Hyz) "LFT HE HL". + iDestruct (Hxy with "LFT HE HL") as %->. by iApply (Hyz with "LFT HE HL"). + Qed. + + Lemma equiv_subtype ty1 ty2 : ty1 ≡ ty2 → subtype ty1 ty2. + Proof. unfold subtype, type_incl=>EQ. setoid_rewrite EQ. apply subtype_refl. Qed. + + Global Instance ty_size_proper : Proper (subtype ==> ctx_eq) ty_size. + Proof. iIntros (?? Hst) "LFT HE HL". iDestruct (Hst with "LFT HE HL") as "[$ ?]". Qed. + Global Instance ty_size_proper_flip : Proper (flip subtype ==> ctx_eq) ty_size. + Proof. by intros ?? ->. Qed. + Lemma ty_size_proper' ty1 ty2 : + subtype ty1 ty2 → ctx_eq (ty_size ty1) (ty_size ty2). + Proof. apply ty_size_proper. Qed. + Lemma ty_size_proper_flip' ty1 ty2 : + subtype ty2 ty1 → ctx_eq (ty_size ty1) (ty_size ty2). + Proof. apply ty_size_proper_flip. Qed. + (* TODO: The prelude should have a symmetric closure. *) Definition eqtype (ty1 ty2 : type) : Prop := subtype ty1 ty2 ∧ subtype ty2 ty1. @@ -417,6 +439,9 @@ Section subtyping. - intros ??? H1 H2. split; etrans; (apply H1 || apply H2). Qed. + Global Instance ty_size_proper_eq : Proper (eqtype ==> ctx_eq) ty_size. + Proof. by intros ?? [-> _]. Qed. + Lemma subtype_simple_type (st1 st2 : simple_type) : (∀ tid vl, lft_ctx -∗ elctx_interp_0 E -∗ ⌜llctx_interp_0 L⌠-∗ st1.(st_own) tid vl -∗ st2.(st_own) tid vl) → @@ -446,5 +471,6 @@ Section weakening. Qed. End weakening. -Hint Resolve subtype_refl eqtype_refl : lrust_typing. -Hint Opaque subtype eqtype : lrust_typing. \ No newline at end of file +Hint Resolve subtype_refl eqtype_refl ctx_eq_refl ty_size_proper' + ty_size_proper_flip': lrust_typing. +Hint Opaque ctx_eq subtype eqtype : lrust_typing. \ No newline at end of file diff --git a/theories/typing/unsafe/cell.v b/theories/typing/unsafe/cell.v index 65e9def8e3a926a67b35033512d7f5643fbc3f65..679a50a83a7f08d52d8ee7fca595e4289a389c4b 100644 --- a/theories/typing/unsafe/cell.v +++ b/theories/typing/unsafe/cell.v @@ -87,7 +87,7 @@ Section typing. Lemma cell_new_type ty : typed_instruction_ty [] [] [] cell_new - (fn (λ _, [])%EL (λ _, [# box ty]) (λ _:(), box (cell ty))). + (fn (λ _, [])%EL (λ _, [# ty]) (λ _:(), cell ty)). Proof. apply type_fn; [apply _..|]. move=>/= _ ret arg. inv_vec arg=>x. simpl_subst. eapply (type_jump [_]); first solve_typing. @@ -100,7 +100,7 @@ Section typing. Lemma cell_into_inner_type ty : typed_instruction_ty [] [] [] cell_into_inner - (fn (λ _, [])%EL (λ _, [# box (cell ty)]) (λ _:(), box ty)). + (fn (λ _, [])%EL (λ _, [# cell ty]) (λ _:(), ty)). Proof. apply type_fn; [apply _..|]. move=>/= _ ret arg. inv_vec arg=>x. simpl_subst. eapply (type_jump [_]); first solve_typing. @@ -116,7 +116,7 @@ Section typing. Lemma cell_get_type `(!Copy ty) : typed_instruction_ty [] [] [] (cell_get ty) - (fn (λ α, [☀α])%EL (λ α, [# box (&shr{α} (cell ty))])%T (λ _, box ty)). + (fn (λ α, [☀α])%EL (λ α, [# &shr{α} (cell ty)])%T (λ _, ty)). Proof. apply type_fn; [apply _..|]. move=>/= α ret arg. inv_vec arg=>x. simpl_subst. eapply type_deref; [solve_typing..|apply read_own_move|done|]=>x'. simpl_subst. @@ -136,8 +136,7 @@ Section typing. Lemma cell_set_type ty : typed_instruction_ty [] [] [] (cell_set ty) - (fn (λ α, [☀α])%EL (λ α, [# box (&shr{α} cell ty); box ty]) - (λ α, box unit)). + (fn (λ α, [☀α])%EL (λ α, [# &shr{α} cell ty; ty]%T) (λ α, unit)). Proof. apply type_fn; try apply _. move=> /= α ret arg. inv_vec arg=>c x. simpl_subst. eapply type_deref; [solve_typing..|by apply read_own_move|done|]. @@ -180,8 +179,7 @@ Section typing. Lemma cell_get_mut_type `(!Copy ty) : typed_instruction_ty [] [] [] cell_get_mut - (fn (λ α, [☀α])%EL (λ α, [# box (&uniq{α} (cell ty))])%T - (λ α, box (&uniq{α} ty))%T). + (fn (λ α, [☀α])%EL (λ α, [# &uniq{α} (cell ty)])%T (λ α, &uniq{α} ty)%T). Proof. apply type_fn; [apply _..|]. move=>/= α ret arg. inv_vec arg=>x. simpl_subst. eapply (type_jump [_]). solve_typing. rewrite /tctx_incl /=.