From iris.algebra Require Export upred list. From iris.prelude Require Import gmap fin_collections functions. Import uPred. (** We define the following big operators: - The operators [ [★] Ps ] and [ [∧] Ps ] fold [★] and [∧] over the list [Ps]. This operator is not a quantifier, so it binds strongly. - The operator [ [★ map] k ↦ x ∈ m, P ] asserts that [P] holds separately for each [k ↦ x] in the map [m]. This operator is a quantifier, and thus has the same precedence as [∀] and [∃]. - The operator [ [★ set] x ∈ X, P ] asserts that [P] holds separately for each [x] in the set [X]. This operator is a quantifier, and thus has the same precedence as [∀] and [∃]. *) (** * Big ops over lists *) (* These are the basic building blocks for other big ops *) Fixpoint uPred_big_and {M} (Ps : list (uPred M)) : uPred M := match Ps with [] => True | P :: Ps => P ∧ uPred_big_and Ps end%I. Instance: Params (@uPred_big_and) 1. Notation "'[∧]' Ps" := (uPred_big_and Ps) (at level 20) : uPred_scope. Fixpoint uPred_big_sep {M} (Ps : list (uPred M)) : uPred M := match Ps with [] => True | P :: Ps => P ★ uPred_big_sep Ps end%I. Instance: Params (@uPred_big_sep) 1. Notation "'[★]' Ps" := (uPred_big_sep Ps) (at level 20) : uPred_scope. (** * Other big ops *) (** We use a type class to obtain overloaded notations *) Definition uPred_big_sepM {M} `{Countable K} {A} (m : gmap K A) (Φ : K → A → uPred M) : uPred M := [★] (curry Φ <\$> map_to_list m). Instance: Params (@uPred_big_sepM) 6. Notation "'[★' 'map' ] k ↦ x ∈ m , P" := (uPred_big_sepM m (λ k x, P)) (at level 200, m at level 10, k, x at level 1, right associativity, format "[★ map ] k ↦ x ∈ m , P") : uPred_scope. Definition uPred_big_sepS {M} `{Countable A} (X : gset A) (Φ : A → uPred M) : uPred M := [★] (Φ <\$> elements X). Instance: Params (@uPred_big_sepS) 5. Notation "'[★' 'set' ] x ∈ X , P" := (uPred_big_sepS X (λ x, P)) (at level 200, X at level 10, x at level 1, right associativity, format "[★ set ] x ∈ X , P") : uPred_scope. (** * Persistence of lists of uPreds *) Class PersistentL {M} (Ps : list (uPred M)) := persistentL : Forall PersistentP Ps. Arguments persistentL {_} _ {_}. (** * Properties *) Section big_op. Context {M : ucmraT}. Implicit Types Ps Qs : list (uPred M). Implicit Types A : Type. (** ** Big ops over lists *) Global Instance big_and_proper : Proper ((≡) ==> (⊣⊢)) (@uPred_big_and M). Proof. by induction 1 as [|P Q Ps Qs HPQ ? IH]; rewrite /= ?HPQ ?IH. Qed. Global Instance big_sep_proper : Proper ((≡) ==> (⊣⊢)) (@uPred_big_sep M). Proof. by induction 1 as [|P Q Ps Qs HPQ ? IH]; rewrite /= ?HPQ ?IH. Qed. Global Instance big_and_ne n : Proper (dist n ==> dist n) (@uPred_big_and M). Proof. by induction 1 as [|P Q Ps Qs HPQ ? IH]; rewrite /= ?HPQ ?IH. Qed. Global Instance big_sep_ne n : Proper (dist n ==> dist n) (@uPred_big_sep M). Proof. by induction 1 as [|P Q Ps Qs HPQ ? IH]; rewrite /= ?HPQ ?IH. Qed. Global Instance big_and_mono' : Proper (Forall2 (⊢) ==> (⊢)) (@uPred_big_and M). Proof. by induction 1 as [|P Q Ps Qs HPQ ? IH]; rewrite /= ?HPQ ?IH. Qed. Global Instance big_sep_mono' : Proper (Forall2 (⊢) ==> (⊢)) (@uPred_big_sep M). Proof. by induction 1 as [|P Q Ps Qs HPQ ? IH]; rewrite /= ?HPQ ?IH. Qed. Global Instance big_and_perm : Proper ((≡ₚ) ==> (⊣⊢)) (@uPred_big_and M). Proof. induction 1 as [|P Ps Qs ? IH|P Q Ps|]; simpl; auto. - by rewrite IH. - by rewrite !assoc (comm _ P). - etrans; eauto. Qed. Global Instance big_sep_perm : Proper ((≡ₚ) ==> (⊣⊢)) (@uPred_big_sep M). Proof. induction 1 as [|P Ps Qs ? IH|P Q Ps|]; simpl; auto. - by rewrite IH. - by rewrite !assoc (comm _ P). - etrans; eauto. Qed. Lemma big_and_app Ps Qs : [∧] (Ps ++ Qs) ⊣⊢ [∧] Ps ∧ [∧] Qs. Proof. induction Ps as [|?? IH]; by rewrite /= ?left_id -?assoc ?IH. Qed. Lemma big_sep_app Ps Qs : [★] (Ps ++ Qs) ⊣⊢ [★] Ps ★ [★] Qs. Proof. by induction Ps as [|?? IH]; rewrite /= ?left_id -?assoc ?IH. Qed. Lemma big_and_contains Ps Qs : Qs `contains` Ps → [∧] Ps ⊢ [∧] Qs. Proof. intros [Ps' ->]%contains_Permutation. by rewrite big_and_app and_elim_l. Qed. Lemma big_sep_contains Ps Qs : Qs `contains` Ps → [★] Ps ⊢ [★] Qs. Proof. intros [Ps' ->]%contains_Permutation. by rewrite big_sep_app sep_elim_l. Qed. Lemma big_sep_and Ps : [★] Ps ⊢ [∧] Ps. Proof. by induction Ps as [|P Ps IH]; simpl; auto with I. Qed. Lemma big_and_elem_of Ps P : P ∈ Ps → [∧] Ps ⊢ P. Proof. induction 1; simpl; auto with I. Qed. Lemma big_sep_elem_of Ps P : P ∈ Ps → [★] Ps ⊢ P. Proof. induction 1; simpl; auto with I. Qed. (** ** Big ops over finite maps *) Section gmap. Context `{Countable K} {A : Type}. Implicit Types m : gmap K A. Implicit Types Φ Ψ : K → A → uPred M. Lemma big_sepM_mono Φ Ψ m1 m2 : m2 ⊆ m1 → (∀ k x, m2 !! k = Some x → Φ k x ⊢ Ψ k x) → ([★ map] k ↦ x ∈ m1, Φ k x) ⊢ [★ map] k ↦ x ∈ m2, Ψ k x. Proof. intros HX HΦ. trans ([★ map] k↦x ∈ m2, Φ k x)%I. - by apply big_sep_contains, fmap_contains, map_to_list_contains. - apply big_sep_mono', Forall2_fmap, Forall_Forall2. apply Forall_forall=> -[i x] ? /=. by apply HΦ, elem_of_map_to_list. Qed. Lemma big_sepM_proper Φ Ψ m1 m2 : m1 ≡ m2 → (∀ k x, m1 !! k = Some x → m2 !! k = Some x → Φ k x ⊣⊢ Ψ k x) → ([★ map] k ↦ x ∈ m1, Φ k x) ⊣⊢ ([★ map] k ↦ x ∈ m2, Ψ k x). Proof. (* FIXME: Coq bug since 8.5pl1. Without the @ in [@lookup_weaken] it gives File "./algebra/upred_big_op.v", line 114, characters 4-131: Anomaly: Uncaught exception Univ.AlreadyDeclared. Please report. *) intros [??] ?; apply (anti_symm (⊢)); apply big_sepM_mono; eauto using equiv_entails, equiv_entails_sym, @lookup_weaken. Qed. Global Instance big_sepM_ne m n : Proper (pointwise_relation _ (pointwise_relation _ (dist n)) ==> (dist n)) (uPred_big_sepM (M:=M) m). Proof. intros Φ1 Φ2 HΦ. apply big_sep_ne, Forall2_fmap. apply Forall_Forall2, Forall_true=> -[i x]; apply HΦ. Qed. Global Instance big_sepM_proper' m : Proper (pointwise_relation _ (pointwise_relation _ (⊣⊢)) ==> (⊣⊢)) (uPred_big_sepM (M:=M) m). Proof. intros Φ1 Φ2 HΦ. by apply big_sepM_proper; intros; last apply HΦ. Qed. Global Instance big_sepM_mono' m : Proper (pointwise_relation _ (pointwise_relation _ (⊢)) ==> (⊢)) (uPred_big_sepM (M:=M) m). Proof. intros Φ1 Φ2 HΦ. by apply big_sepM_mono; intros; last apply HΦ. Qed. Lemma big_sepM_empty Φ : ([★ map] k↦x ∈ ∅, Φ k x) ⊣⊢ True. Proof. by rewrite /uPred_big_sepM map_to_list_empty. Qed. Lemma big_sepM_insert Φ m i x : m !! i = None → ([★ map] k↦y ∈ <[i:=x]> m, Φ k y) ⊣⊢ Φ i x ★ [★ map] k↦y ∈ m, Φ k y. Proof. intros ?; by rewrite /uPred_big_sepM map_to_list_insert. Qed. Lemma big_sepM_delete Φ m i x : m !! i = Some x → ([★ map] k↦y ∈ m, Φ k y) ⊣⊢ Φ i x ★ [★ map] k↦y ∈ delete i m, Φ k y. Proof. intros. rewrite -big_sepM_insert ?lookup_delete //. by rewrite insert_delete insert_id. Qed. Lemma big_sepM_lookup Φ m i x : m !! i = Some x → ([★ map] k↦y ∈ m, Φ k y) ⊢ Φ i x. Proof. intros. by rewrite big_sepM_delete // sep_elim_l. Qed. Lemma big_sepM_singleton Φ i x : ([★ map] k↦y ∈ {[i:=x]}, Φ k y) ⊣⊢ Φ i x. Proof. rewrite -insert_empty big_sepM_insert/=; last auto using lookup_empty. by rewrite big_sepM_empty right_id. Qed. Lemma big_sepM_fmap {B} (f : A → B) (Φ : K → B → uPred M) m : ([★ map] k↦y ∈ f <\$> m, Φ k y) ⊣⊢ ([★ map] k↦y ∈ m, Φ k (f y)). Proof. rewrite /uPred_big_sepM map_to_list_fmap -list_fmap_compose. f_equiv; apply reflexive_eq, list_fmap_ext. by intros []. done. Qed. Lemma big_sepM_insert_override (Φ : K → uPred M) m i x y : m !! i = Some x → ([★ map] k↦_ ∈ <[i:=y]> m, Φ k) ⊣⊢ ([★ map] k↦_ ∈ m, Φ k). Proof. intros. rewrite -insert_delete big_sepM_insert ?lookup_delete //. by rewrite -big_sepM_delete. Qed. Lemma big_sepM_fn_insert {B} (Ψ : K → A → B → uPred M) (f : K → B) m i x b : m !! i = None → ([★ map] k↦y ∈ <[i:=x]> m, Ψ k y (<[i:=b]> f k)) ⊣⊢ (Ψ i x b ★ [★ map] k↦y ∈ m, Ψ k y (f k)). Proof. intros. rewrite big_sepM_insert // fn_lookup_insert. apply sep_proper, big_sepM_proper; auto=> k y ??. by rewrite fn_lookup_insert_ne; last set_solver. Qed. Lemma big_sepM_fn_insert' (Φ : K → uPred M) m i x P : m !! i = None → ([★ map] k↦y ∈ <[i:=x]> m, <[i:=P]> Φ k) ⊣⊢ (P ★ [★ map] k↦y ∈ m, Φ k). Proof. apply (big_sepM_fn_insert (λ _ _, id)). Qed. Lemma big_sepM_sepM Φ Ψ m : ([★ map] k↦x ∈ m, Φ k x ★ Ψ k x) ⊣⊢ ([★ map] k↦x ∈ m, Φ k x) ★ ([★ map] k↦x ∈ m, Ψ k x). Proof. rewrite /uPred_big_sepM. induction (map_to_list m) as [|[i x] l IH]; csimpl; rewrite ?right_id //. by rewrite IH -!assoc (assoc _ (Ψ _ _)) [(Ψ _ _ ★ _)%I]comm -!assoc. Qed. Lemma big_sepM_later Φ m : ▷ ([★ map] k↦x ∈ m, Φ k x) ⊣⊢ ([★ map] k↦x ∈ m, ▷ Φ k x). Proof. rewrite /uPred_big_sepM. induction (map_to_list m) as [|[i x] l IH]; csimpl; rewrite ?later_True //. by rewrite later_sep IH. Qed. Lemma big_sepM_always Φ m : (□ [★ map] k↦x ∈ m, Φ k x) ⊣⊢ ([★ map] k↦x ∈ m, □ Φ k x). Proof. rewrite /uPred_big_sepM. induction (map_to_list m) as [|[i x] l IH]; csimpl; rewrite ?always_pure //. by rewrite always_sep IH. Qed. Lemma big_sepM_always_if p Φ m : □?p ([★ map] k↦x ∈ m, Φ k x) ⊣⊢ ([★ map] k↦x ∈ m, □?p Φ k x). Proof. destruct p; simpl; auto using big_sepM_always. Qed. Lemma big_sepM_forall Φ m : (∀ k x, PersistentP (Φ k x)) → ([★ map] k↦x ∈ m, Φ k x) ⊣⊢ (∀ k x, m !! k = Some x → Φ k x). Proof. intros. apply (anti_symm _). { apply forall_intro=> k; apply forall_intro=> x. apply impl_intro_l, pure_elim_l=> ?; by apply big_sepM_lookup. } rewrite /uPred_big_sepM. setoid_rewrite <-elem_of_map_to_list. induction (map_to_list m) as [|[i x] l IH]; csimpl; auto. rewrite -always_and_sep_l; apply and_intro. - rewrite (forall_elim i) (forall_elim x) pure_equiv; last by left. by rewrite True_impl. - rewrite -IH. apply forall_mono=> k; apply forall_mono=> y. apply impl_intro_l, pure_elim_l=> ?. rewrite pure_equiv; last by right. by rewrite True_impl. Qed. Lemma big_sepM_impl Φ Ψ m : □ (∀ k x, m !! k = Some x → Φ k x → Ψ k x) ∧ ([★ map] k↦x ∈ m, Φ k x) ⊢ [★ map] k↦x ∈ m, Ψ k x. Proof. rewrite always_and_sep_l. do 2 setoid_rewrite always_forall. setoid_rewrite always_impl; setoid_rewrite always_pure. rewrite -big_sepM_forall -big_sepM_sepM. apply big_sepM_mono; auto=> k x ?. by rewrite -always_wand_impl always_elim wand_elim_l. Qed. End gmap. (** ** Big ops over finite sets *) Section gset. Context `{Countable A}. Implicit Types X : gset A. Implicit Types Φ : A → uPred M. Lemma big_sepS_mono Φ Ψ X Y : Y ⊆ X → (∀ x, x ∈ Y → Φ x ⊢ Ψ x) → ([★ set] x ∈ X, Φ x) ⊢ [★ set] x ∈ Y, Ψ x. Proof. intros HX HΦ. trans ([★ set] x ∈ Y, Φ x)%I. - by apply big_sep_contains, fmap_contains, elements_contains. - apply big_sep_mono', Forall2_fmap, Forall_Forall2. apply Forall_forall=> x ? /=. by apply HΦ, elem_of_elements. Qed. Lemma big_sepS_proper Φ Ψ X Y : X ≡ Y → (∀ x, x ∈ X → x ∈ Y → Φ x ⊣⊢ Ψ x) → ([★ set] x ∈ X, Φ x) ⊣⊢ ([★ set] x ∈ Y, Ψ x). Proof. intros [??] ?; apply (anti_symm (⊢)); apply big_sepS_mono; eauto using equiv_entails, equiv_entails_sym. Qed. Lemma big_sepS_ne X n : Proper (pointwise_relation _ (dist n) ==> dist n) (uPred_big_sepS (M:=M) X). Proof. intros Φ1 Φ2 HΦ. apply big_sep_ne, Forall2_fmap. apply Forall_Forall2, Forall_true=> x; apply HΦ. Qed. Lemma big_sepS_proper' X : Proper (pointwise_relation _ (⊣⊢) ==> (⊣⊢)) (uPred_big_sepS (M:=M) X). Proof. intros Φ1 Φ2 HΦ. apply big_sepS_proper; naive_solver. Qed. Lemma big_sepS_mono' X : Proper (pointwise_relation _ (⊢) ==> (⊢)) (uPred_big_sepS (M:=M) X). Proof. intros Φ1 Φ2 HΦ. apply big_sepS_mono; naive_solver. Qed. Lemma big_sepS_empty Φ : ([★ set] x ∈ ∅, Φ x) ⊣⊢ True. Proof. by rewrite /uPred_big_sepS elements_empty. Qed. Lemma big_sepS_insert Φ X x : x ∉ X → ([★ set] y ∈ {[ x ]} ∪ X, Φ y) ⊣⊢ (Φ x ★ [★ set] y ∈ X, Φ y). Proof. intros. by rewrite /uPred_big_sepS elements_union_singleton. Qed. Lemma big_sepS_fn_insert {B} (Ψ : A → B → uPred M) f X x b : x ∉ X → ([★ set] y ∈ {[ x ]} ∪ X, Ψ y (<[x:=b]> f y)) ⊣⊢ (Ψ x b ★ [★ set] y ∈ X, Ψ y (f y)). Proof. intros. rewrite big_sepS_insert // fn_lookup_insert. apply sep_proper, big_sepS_proper; auto=> y ??. by rewrite fn_lookup_insert_ne; last set_solver. Qed. Lemma big_sepS_fn_insert' Φ X x P : x ∉ X → ([★ set] y ∈ {[ x ]} ∪ X, <[x:=P]> Φ y) ⊣⊢ (P ★ [★ set] y ∈ X, Φ y). Proof. apply (big_sepS_fn_insert (λ y, id)). Qed. Lemma big_sepS_delete Φ X x : x ∈ X → ([★ set] y ∈ X, Φ y) ⊣⊢ Φ x ★ [★ set] y ∈ X ∖ {[ x ]}, Φ y. Proof. intros. rewrite -big_sepS_insert; last set_solver. by rewrite -union_difference_L; last set_solver. Qed. Lemma big_sepS_elem_of Φ X x : x ∈ X → ([★ set] y ∈ X, Φ y) ⊢ Φ x. Proof. intros. by rewrite big_sepS_delete // sep_elim_l. Qed. Lemma big_sepS_singleton Φ x : ([★ set] y ∈ {[ x ]}, Φ y) ⊣⊢ Φ x. Proof. intros. by rewrite /uPred_big_sepS elements_singleton /= right_id. Qed. Lemma big_sepS_sepS Φ Ψ X : ([★ set] y ∈ X, Φ y ★ Ψ y) ⊣⊢ ([★ set] y ∈ X, Φ y) ★ ([★ set] y ∈ X, Ψ y). Proof. rewrite /uPred_big_sepS. induction (elements X) as [|x l IH]; csimpl; first by rewrite ?right_id. by rewrite IH -!assoc (assoc _ (Ψ _)) [(Ψ _ ★ _)%I]comm -!assoc. Qed. Lemma big_sepS_later Φ X : ▷ ([★ set] y ∈ X, Φ y) ⊣⊢ ([★ set] y ∈ X, ▷ Φ y). Proof. rewrite /uPred_big_sepS. induction (elements X) as [|x l IH]; csimpl; first by rewrite ?later_True. by rewrite later_sep IH. Qed. Lemma big_sepS_always Φ X : □ ([★ set] y ∈ X, Φ y) ⊣⊢ ([★ set] y ∈ X, □ Φ y). Proof. rewrite /uPred_big_sepS. induction (elements X) as [|x l IH]; csimpl; first by rewrite ?always_pure. by rewrite always_sep IH. Qed. Lemma big_sepS_always_if q Φ X : □?q ([★ set] y ∈ X, Φ y) ⊣⊢ ([★ set] y ∈ X, □?q Φ y). Proof. destruct q; simpl; auto using big_sepS_always. Qed. Lemma big_sepS_forall Φ X : (∀ x, PersistentP (Φ x)) → ([★ set] x ∈ X, Φ x) ⊣⊢ (∀ x, ■ (x ∈ X) → Φ x). Proof. intros. apply (anti_symm _). { apply forall_intro=> x. apply impl_intro_l, pure_elim_l=> ?; by apply big_sepS_elem_of. } rewrite /uPred_big_sepS. setoid_rewrite <-elem_of_elements. induction (elements X) as [|x l IH]; csimpl; auto. rewrite -always_and_sep_l; apply and_intro. - rewrite (forall_elim x) pure_equiv; last by left. by rewrite True_impl. - rewrite -IH. apply forall_mono=> y. apply impl_intro_l, pure_elim_l=> ?. rewrite pure_equiv; last by right. by rewrite True_impl. Qed. Lemma big_sepS_impl Φ Ψ X : □ (∀ x, ■ (x ∈ X) → Φ x → Ψ x) ∧ ([★ set] x ∈ X, Φ x) ⊢ [★ set] x ∈ X, Ψ x. Proof. rewrite always_and_sep_l always_forall. setoid_rewrite always_impl; setoid_rewrite always_pure. rewrite -big_sepS_forall -big_sepS_sepS. apply big_sepS_mono; auto=> x ?. by rewrite -always_wand_impl always_elim wand_elim_l. Qed. End gset. (** ** Persistence *) Global Instance big_and_persistent Ps : PersistentL Ps → PersistentP ([∧] Ps). Proof. induction 1; apply _. Qed. Global Instance big_sep_persistent Ps : PersistentL Ps → PersistentP ([★] Ps). Proof. induction 1; apply _. Qed. Global Instance nil_persistent : PersistentL (@nil (uPred M)). Proof. constructor. Qed. Global Instance cons_persistent P Ps : PersistentP P → PersistentL Ps → PersistentL (P :: Ps). Proof. by constructor. Qed. Global Instance app_persistent Ps Ps' : PersistentL Ps → PersistentL Ps' → PersistentL (Ps ++ Ps'). Proof. apply Forall_app_2. Qed. Global Instance zip_with_persistent {A B} (f : A → B → uPred M) xs ys : (∀ x y, PersistentP (f x y)) → PersistentL (zip_with f xs ys). Proof. unfold PersistentL=> ?; revert ys; induction xs=> -[|??]; constructor; auto. Qed. End big_op.