%\section{Derived constructions} % TODO: These need syncing with Coq % \subsection{STSs with interpretation}\label{sec:stsinterp} % Building on \Sref{sec:stsmon}, after constructing the monoid $\STSMon{\STSS}$ for a particular STS, we can use an invariant to tie an interpretation, $\pred : \STSS \to \Prop$, to the STS's current state, recovering CaReSL-style reasoning~\cite{caresl}. % An STS invariant asserts authoritative ownership of an STS's current state and that state's interpretation: % \begin{align*} % \STSInv(\STSS, \pred, \gname) \eqdef{}& \Exists s \in \STSS. \ownGhost{\gname}{(s, \STSS, \emptyset):\STSMon{\STSS}} * \pred(s) \\ % \STS(\STSS, \pred, \gname, \iname) \eqdef{}& \knowInv{\iname}{\STSInv(\STSS, \pred, \gname)} % \end{align*} % We can specialize \ruleref{NewInv}, \ruleref{InvOpen}, and \ruleref{InvClose} to STS invariants: % \begin{mathpar} % \inferH{NewSts} % {\infinite(\mask)} % {\later\pred(s) \vs[\mask] \Exists \iname \in \mask, \gname. \STS(\STSS, \pred, \gname, \iname) * \ownGhost{\gname}{(s, \STST \setminus \STSL(s)) : \STSMon{\STSS}}} % \and % \axiomH{StsOpen} % { \STS(\STSS, \pred, \gname, \iname) \vdash \ownGhost{\gname}{(s_0, T) : \STSMon{\STSS}} \vsE[\{\iname\}][\emptyset] \Exists s\in \upclose(\{s_0\}, T). \later\pred(s) * \ownGhost{\gname}{(s, \upclose(\{s_0\}, T), T):\STSMon{\STSS}}} % \and % \axiomH{StsClose} % { \STS(\STSS, \pred, \gname, \iname), (s, T) \ststrans (s', T') \proves \later\pred(s') * \ownGhost{\gname}{(s, S, T):\STSMon{\STSS}} \vs[\emptyset][\{\iname\}] \ownGhost{\gname}{(s', T') : \STSMon{\STSS}} } % \end{mathpar} % \begin{proof} % \ruleref{NewSts} uses \ruleref{NewGhost} to allocate $\ownGhost{\gname}{(s, \upclose(s, T), T) : \STSMon{\STSS}}$ where $T \eqdef \STST \setminus \STSL(s)$, and \ruleref{NewInv}. % \ruleref{StsOpen} just uses \ruleref{InvOpen} and \ruleref{InvClose} on $\iname$, and the monoid equality $(s, \upclose(\{s_0\}, T), T) = (s, \STSS, \emptyset) \mtimes (\munit, \upclose(\{s_0\}, T), T)$. % \ruleref{StsClose} applies \ruleref{StsStep} and \ruleref{InvClose}. % \end{proof} % Using these view shifts, we can prove STS variants of the invariant rules \ruleref{Inv} and \ruleref{VSInv}~(compare the former to CaReSL's island update rule~\cite{caresl}): % \begin{mathpar} % \inferH{Sts} % {\All s \in \upclose(\{s_0\}, T). \hoare{\later\pred(s) * P}{\expr}{\Ret \val. \Exists s', T'. (s, T) \ststrans (s', T') * \later\pred(s') * Q}[\mask] % \and \physatomic{\expr}} % { \STS(\STSS, \pred, \gname, \iname) \vdash \hoare{\ownGhost{\gname}{(s_0, T):\STSMon{\STSS}} * P}{\expr}{\Ret \val. \Exists s', T'. \ownGhost{\gname}{(s', T'):\STSMon{\STSS}} * Q}[\mask \uplus \{\iname\}]} % \and % \inferH{VSSts} % {\forall s \in \upclose(\{s_0\}, T).\; \later\pred(s) * P \vs[\mask_1][\mask_2] \exists s', T'.\; (s, T) \ststrans (s', T') * \later\pred(s') * Q} % { \STS(\STSS, \pred, \gname, \iname) \vdash \ownGhost{\gname}{(s_0, T):\STSMon{\STSS}} * P \vs[\mask_1 \uplus \{\iname\}][\mask_2 \uplus \{\iname\}] \Exists s', T'. \ownGhost{\gname}{(s', T'):\STSMon{\STSS}} * Q} % \end{mathpar} % \begin{proof}[Proof of \ruleref{Sts}]\label{pf:sts} % We have to show % \[\hoare{\ownGhost{\gname}{(s_0, T):\STSMon{\STSS}} * P}{\expr}{\Ret \val. \Exists s', T'. \ownGhost{\gname}{(s', T'):\STSMon{\STSS}} * Q}[\mask \uplus \{\iname\}]\] % where $\val$, $s'$, $T'$ are free in $Q$. % First, by \ruleref{ACsq} with \ruleref{StsOpen} and \ruleref{StsClose} (after moving $(s, T) \ststrans (s', T')$ into the view shift using \ruleref{VSBoxOut}), it suffices to show % \[\hoareV{\Exists s\in \upclose(\{s_0\}, T). \later\pred(s) * \ownGhost{\gname}{(s, \upclose(\{s_0\}, T), T)} * P}{\expr}{\Ret \val. \Exists s, T, S, s', T'. (s, T) \ststrans (s', T') * \later\pred(s') * \ownGhost{\gname}{(s, S, T):\STSMon{\STSS}} * Q(\val, s', T')}[\mask]\] % Now, use \ruleref{Exist} to move the $s$ from the precondition into the context and use \ruleref{Csq} to (i)~fix the $s$ and $T$ in the postcondition to be the same as in the precondition, and (ii)~fix $S \eqdef \upclose(\{s_0\}, T)$. % It remains to show: % \[\hoareV{s\in \upclose(\{s_0\}, T) * \later\pred(s) * \ownGhost{\gname}{(s, \upclose(\{s_0\}, T), T)} * P}{\expr}{\Ret \val. \Exists s', T'. (s, T) \ststrans (s', T') * \later\pred(s') * \ownGhost{\gname}{(s, \upclose(\{s_0\}, T), T)} * Q(\val, s', T')}[\mask]\] % Finally, use \ruleref{BoxOut} to move $s\in \upclose(\{s_0\}, T)$ into the context, and \ruleref{Frame} on $\ownGhost{\gname}{(s, \upclose(\{s_0\}, T), T)}$: % \[s\in \upclose(\{s_0\}, T) \vdash \hoare{\later\pred(s) * P}{\expr}{\Ret \val. \Exists s', T'. (s, T) \ststrans (s', T') * \later\pred(s') * Q(\val, s', T')}[\mask]\] % This holds by our premise. % \end{proof} % % \begin{proof}[Proof of \ruleref{VSSts}] % % This is similar to above, so we only give the proof in short notation: % % \hproof{% % % Context: $\knowInv\iname{\STSInv(\STSS, \pred, \gname)}$ \\ % % \pline[\mask_1 \uplus \{\iname\}]{ % % \ownGhost\gname{(s_0, T)} * P % % } \\ % % \pline[\mask_1]{% % % \Exists s. \later\pred(s) * \ownGhost\gname{(s, S, T)} * P % % } \qquad by \ruleref{StsOpen} \\ % % Context: $s \in S \eqdef \upclose(\{s_0\}, T)$ \\ % % \pline[\mask_2]{% % % \Exists s', T'. \later\pred(s') * Q(s', T') * \ownGhost\gname{(s, S, T)} % % } \qquad by premiss \\ % % Context: $(s, T) \ststrans (s', T')$ \\ % % \pline[\mask_2 \uplus \{\iname\}]{ % % \ownGhost\gname{(s', T')} * Q(s', T') % % } \qquad by \ruleref{StsClose} % % } % % \end{proof} % \subsection{Authoritative monoids with interpretation}\label{sec:authinterp} % Building on \Sref{sec:auth}, after constructing the monoid $\auth{M}$ for a cancellative monoid $M$, we can tie an interpretation, $\pred : \mcarp{M} \to \Prop$, to the authoritative element of $M$, recovering reasoning that is close to the sharing rule in~\cite{krishnaswami+:icfp12}. % Let $\pred_\bot$ be the extension of $\pred$ to $\mcar{M}$ with $\pred_\bot(\mzero) = \FALSE$. % Now define % \begin{align*} % \AuthInv(M, \pred, \gname) \eqdef{}& \exists \melt \in \mcar{M}.\; \ownGhost{\gname}{\authfull \melt:\auth{M}} * \pred_\bot(\melt) \\ % \Auth(M, \pred, \gname, \iname) \eqdef{}& M~\textlog{cancellative} \land \knowInv{\iname}{\AuthInv(M, \pred, \gname)} % \end{align*} % The frame-preserving updates for $\auth{M}$ gives rise to the following view shifts: % \begin{mathpar} % \inferH{NewAuth} % {\infinite(\mask) \and M~\textlog{cancellative}} % {\later\pred_\bot(a) \vs[\mask] \exists \iname \in \mask, \gname.\; \Auth(M, \pred, \gname, \iname) * \ownGhost{\gname}{\authfrag a : \auth{M}}} % \and % \axiomH{AuthOpen} % {\Auth(M, \pred, \gname, \iname) \vdash \ownGhost{\gname}{\authfrag \melt : \auth{M}} \vsE[\{\iname\}][\emptyset] \exists \melt_\f.\; \later\pred_\bot(\melt \mtimes \melt_\f) * \ownGhost{\gname}{\authfull \melt \mtimes \melt_\f, \authfrag a:\auth{M}}} % \and % \axiomH{AuthClose} % {\Auth(M, \pred, \gname, \iname) \vdash \later\pred_\bot(\meltB \mtimes \melt_\f) * \ownGhost{\gname}{\authfull a \mtimes \melt_\f, \authfrag a:\auth{M}} \vs[\emptyset][\{\iname\}] \ownGhost{\gname}{\authfrag \meltB : \auth{M}} } % \end{mathpar} % These view shifts in turn can be used to prove variants of the invariant rules: % \begin{mathpar} % \inferH{Auth} % {\forall \melt_\f.\; \hoare{\later\pred_\bot(a \mtimes \melt_\f) * P}{\expr}{\Ret\val. \exists \meltB.\; \later\pred_\bot(\meltB\mtimes \melt_\f) * Q}[\mask] % \and \physatomic{\expr}} % {\Auth(M, \pred, \gname, \iname) \vdash \hoare{\ownGhost{\gname}{\authfrag a:\auth{M}} * P}{\expr}{\Ret\val. \exists \meltB.\; \ownGhost{\gname}{\authfrag \meltB:\auth{M}} * Q}[\mask \uplus \{\iname\}]} % \and % \inferH{VSAuth} % {\forall \melt_\f.\; \later\pred_\bot(a \mtimes \melt_\f) * P \vs[\mask_1][\mask_2] \exists \meltB.\; \later\pred_\bot(\meltB \mtimes \melt_\f) * Q(\meltB)} % {\Auth(M, \pred, \gname, \iname) \vdash % \ownGhost{\gname}{\authfrag a:\auth{M}} * P \vs[\mask_1 \uplus \{\iname\}][\mask_2 \uplus \{\iname\}] % \exists \meltB.\; \ownGhost{\gname}{\authfrag \meltB:\auth{M}} * Q(\meltB)} % \end{mathpar} % \subsection{Ghost heap} % \label{sec:ghostheap}% % FIXME use the finmap provided by the global ghost ownership, instead of adding our own % We define a simple ghost heap with fractional permissions. % Some modules require a few ghost names per module instance to properly manage ghost state, but would like to expose to clients a single logical name (avoiding clutter). % In such cases we use these ghost heaps. % We seek to implement the following interface: % \newcommand{\GRefspecmaps}{\textsf{GMapsTo}}% % \begin{align*} % \exists& {\fgmapsto[]} : \textsort{Val} \times \mathbb{Q}_{>} \times \textsort{Val} \ra \textsort{Prop}.\;\\ % & \All x, q, v. x \fgmapsto[q] v \Ra x \fgmapsto[q] v \land q \in (0, 1] \\ % &\forall x, q_1, q_2, v, w.\; x \fgmapsto[q_1] v * x \fgmapsto[q_2] w \Leftrightarrow x \fgmapsto[q_1 + q_2] v * v = w\\ % & \forall v.\; \TRUE \vs[\emptyset] \exists x.\; x \fgmapsto[1] v \\ % & \forall x, v, w.\; x \fgmapsto[1] v \vs[\emptyset] x \fgmapsto[1] w % \end{align*} % We write $x \fgmapsto v$ for $\exists q.\; x \fgmapsto[q] v$ and $x \gmapsto v$ for $x \fgmapsto[1] v$. % Note that $x \fgmapsto v$ is duplicable but cannot be boxed (as it depends on resources); \ie we have $x \fgmapsto v \Lra x \fgmapsto v * x \fgmapsto v$ but not $x \fgmapsto v \Ra \always x \fgmapsto v$. % To implement this interface, allocate an instance $\gname_G$ of $\FHeap(\Val)$ and define % \[ % x \fgmapsto[q] v \eqdef % \begin{cases} % \ownGhost{\gname_G}{x \mapsto (q, v)} & \text{if $q \in (0, 1]$} \\ % \FALSE & \text{otherwise} % \end{cases} % \] % The view shifts in the specification follow immediately from \ruleref{GhostUpd} and the frame-preserving updates in~\Sref{sec:fheapm}. % The first implication is immediate from the definition. % The second implication follows by case distinction on $q_1 + q_2 \in (0, 1]$. %%% Local Variables: %%% mode: latex %%% TeX-master: "iris" %%% End: