Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
I
Iris
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
77
Issues
77
List
Boards
Labels
Milestones
Merge Requests
5
Merge Requests
5
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Iris
Iris
Commits
f31533a8
Commit
f31533a8
authored
Jun 25, 2016
by
Robbert Krebbers
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Make iSplit work with later and always.
parent
1fc3937f
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
13 additions
and
0 deletions
+13
-0
coq_tactics.v
proofmode/coq_tactics.v
+13
-0
No files found.
proofmode/coq_tactics.v
View file @
f31533a8
...
...
@@ -667,6 +667,12 @@ Proof. intros. by rewrite /AndSplit always_and_sep_l. Qed.
Global
Instance
and_split_sep_persistent_r
P1
P2
:
PersistentP
P2
→
AndSplit
(
P1
★
P2
)
P1
P2
.
Proof
.
intros
.
by
rewrite
/
AndSplit
always_and_sep_r
.
Qed
.
Global
Instance
and_split_always
P
Q1
Q2
:
AndSplit
P
Q1
Q2
→
AndSplit
(
□
P
)
(
□
Q1
)
(
□
Q2
).
Proof
.
rewrite
/
AndSplit
=>
<-.
by
rewrite
always_and
.
Qed
.
Global
Instance
and_split_later
P
Q1
Q2
:
AndSplit
P
Q1
Q2
→
AndSplit
(
▷
P
)
(
▷
Q1
)
(
▷
Q2
).
Proof
.
rewrite
/
AndSplit
=>
<-.
by
rewrite
later_and
.
Qed
.
Lemma
tac_and_split
Δ
P
Q1
Q2
:
AndSplit
P
Q1
Q2
→
(
Δ
⊢
Q1
)
→
(
Δ
⊢
Q2
)
→
Δ
⊢
P
.
Proof
.
intros
.
rewrite
-(
and_split
P
).
by
apply
and_intro
.
Qed
.
...
...
@@ -677,6 +683,13 @@ Arguments sep_split : clear implicits.
Global
Instance
sep_split_sep
P1
P2
:
SepSplit
(
P1
★
P2
)
P1
P2
|
100
.
Proof
.
done
.
Qed
.
Global
Instance
sep_split_always
P
Q1
Q2
:
SepSplit
P
Q1
Q2
→
SepSplit
(
□
P
)
(
□
Q1
)
(
□
Q2
).
Proof
.
rewrite
/
SepSplit
=>
<-.
by
rewrite
always_sep
.
Qed
.
Global
Instance
sep_split_later
P
Q1
Q2
:
SepSplit
P
Q1
Q2
→
SepSplit
(
▷
P
)
(
▷
Q1
)
(
▷
Q2
).
Proof
.
rewrite
/
SepSplit
=>
<-.
by
rewrite
later_sep
.
Qed
.
Global
Instance
sep_split_ownM
(
a
b
:
M
)
:
SepSplit
(
uPred_ownM
(
a
⋅
b
))
(
uPred_ownM
a
)
(
uPred_ownM
b
)
|
99
.
Proof
.
by
rewrite
/
SepSplit
ownM_op
.
Qed
.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment