Commit 93f602ed authored by Ralf Jung's avatar Ralf Jung

docs: update lifting lemmas

parent 7453c926
Pipeline #2452 passed with stage
...@@ -14,7 +14,7 @@ This version accompanies the final ICFP paper. ...@@ -14,7 +14,7 @@ This version accompanies the final ICFP paper.
about values and closed expressions. about values and closed expressions.
* [program_logic/language] The language does not define its own "atomic" * [program_logic/language] The language does not define its own "atomic"
predicate. Instead, atomicity is defined as reducing in one step to a value. predicate. Instead, atomicity is defined as reducing in one step to a value.
* [# program_logic/lifting] Lifting lemmas no longer round-trip through a * [program_logic/lifting] Lifting lemmas no longer round-trip through a
user-chosen predicate to define the configurations we can reduce to; they user-chosen predicate to define the configurations we can reduce to; they
directly relate to the operational semantics. This is equivalent and directly relate to the operational semantics. This is equivalent and
much simpler to read. much simpler to read.
......
...@@ -221,9 +221,9 @@ We can derive some specialized forms of the lifting axioms for the operational s ...@@ -221,9 +221,9 @@ We can derive some specialized forms of the lifting axioms for the operational s
\begin{mathparpagebreakable} \begin{mathparpagebreakable}
\infer[wp-lift-atomic-step] \infer[wp-lift-atomic-step]
{\atomic(\expr_1) \and {\atomic(\expr_1) \and
\red(\expr_1, \state_1) \and \red(\expr_1, \state_1)}
\All \expr_2, \state_2, \expr_\f. \expr_1,\state_1 \step \expr_2,\state_2,\expr_\f \Ra \pred(\expr_2,\state_2,\expr_\f)} { {\begin{inbox}~~\later\ownPhys{\state_1} * \later\All \val_2, \state_2, \expr_\f. (\expr_1,\state_1 \step \ofval(\val),\state_2,\expr_\f) \land \ownPhys{\state_2} \wand \prop[\val_2/\var] * \wpre{\expr_\f}[\top]{\Ret\any.\TRUE} {}\\ \proves \wpre{\expr_1}[\mask_1]{\Ret\var.\prop}
{\later\ownPhys{\state_1} * \later\All \val_2, \state_2, \expr_\f. \pred(\ofval(\val), \state_2, \expr_\f) \land \ownPhys{\state_2} \wand \prop[\val_2/\var] * \wpre{\expr_\f}[\top]{\Ret\any.\TRUE} \proves \wpre{\expr_1}[\mask_1]{\Ret\var.\prop}} \end{inbox}} }
\infer[wp-lift-atomic-det-step] \infer[wp-lift-atomic-det-step]
{\atomic(\expr_1) \and {\atomic(\expr_1) \and
...@@ -238,44 +238,6 @@ We can derive some specialized forms of the lifting axioms for the operational s ...@@ -238,44 +238,6 @@ We can derive some specialized forms of the lifting axioms for the operational s
{\later ( \wpre{\expr_2}[\mask_1]{\Ret\var.\prop} * \wpre{\expr_\f}[\top]{\Ret\any.\TRUE}) \proves \wpre{\expr_1}[\mask_1]{\Ret\var.\prop}} {\later ( \wpre{\expr_2}[\mask_1]{\Ret\var.\prop} * \wpre{\expr_\f}[\top]{\Ret\any.\TRUE}) \proves \wpre{\expr_1}[\mask_1]{\Ret\var.\prop}}
\end{mathparpagebreakable} \end{mathparpagebreakable}
Furthermore, we derive some forms that directly involve view shifts and Hoare triples.
\begin{mathparpagebreakable}
\infer[ht-lift-step]
{\mask_2 \subseteq \mask_1 \and
\toval(\expr_1) = \bot \and
\red(\expr_1, \state_1) \and
\All \expr_2, \state_2, \expr_\f. \expr_1,\state_1 \step \expr_2,\state_2,\expr_\f \Ra \pred(\expr_2,\state_2,\expr_\f) \\\\
\prop \vs[\mask_1][\mask_2] \later\ownPhys{\state_1} * \later\prop' \and
\All \expr_2, \state_2, \expr_\f. \pred(\expr_2, \state_2, \expr_\f) * \ownPhys{\state_2} * \prop' \vs[\mask_2][\mask_1] \propB_1 * \propB_2 \\\\
\All \expr_2, \state_2, \expr_\f. \hoare{\propB_1}{\expr_2}{\Ret\val.\propC}[\mask_1] \and
\All \expr_2, \state_2, \expr_\f. \hoare{\propB_2}{\expr_\f}{\Ret\any. \TRUE}[\top]}
{ \hoare\prop{\expr_1}{\Ret\val.\propC}[\mask_1] }
\infer[ht-lift-atomic-step]
{\atomic(\expr_1) \and
\red(\expr_1, \state_1) \and
\All \expr_2, \state_2, \expr_\f. \expr_1,\state_1 \step \expr_2,\state_2,\expr_\f \Ra \pred(\expr_2,\state_2,\expr_\f) \\\\
\prop \vs[\mask_1][\mask_2] \later\ownPhys{\state_1} * \later\prop' \and
\All \expr_2, \state_2, \expr_\f. \hoare{\pred(\expr_2,\state_2,\expr_\f) * \prop}{\expr_\f}{\Ret\any. \TRUE}[\top]}
{ \hoare{\later\ownPhys{\state_1} * \later\prop}{\expr_1}{\Ret\val.\Exists \state_2, \expr_\f. \ownPhys{\state_2} * \pred(\ofval(\expr_2),\state_2,\expr_\f)}[\mask_1] }
\infer[ht-lift-pure-step]
{\toval(\expr_1) = \bot \and
\All\state_1. \red(\expr_1, \state_1) \and
\All \state_1, \expr_2, \state_2, \expr_\f. \expr_1,\state_1 \step \expr_2,\state_2,\expr_\f \Ra \state_1 = \state_2 \land \pred(\expr_2,\expr_\f) \\\\
\All \expr_2, \expr_\f. \hoare{\pred(\expr_2,\expr_\f) * \prop}{\expr_2}{\Ret\val.\propB}[\mask_1] \and
\All \expr_2, \expr_\f. \hoare{\pred(\expr_2,\expr_\f) * \prop'}{\expr_\f}{\Ret\any. \TRUE}[\top]}
{ \hoare{\later(\prop*\prop')}{\expr_1}{\Ret\val.\propB}[\mask_1] }
\infer[ht-lift-pure-det-step]
{\toval(\expr_1) = \bot \and
\All\state_1. \red(\expr_1, \state_1) \and
\All \state_1, \expr_2', \state_2, \expr_\f'. \expr_1,\state_1 \step \expr_2,\state_2,\expr_\f \Ra \state_1 = \state_2 \land \expr_2 = \expr_2' \land \expr_\f = \expr_\f' \\\\
\hoare{\prop}{\expr_2}{\Ret\val.\propB}[\mask_1] \and
\hoare{\prop'}{\expr_\f}{\Ret\any. \TRUE}[\top]}
{ \hoare{\later(\prop*\prop')}{\expr_1}{\Ret\val.\propB}[\mask_1] }
\end{mathparpagebreakable}
\subsection{Global functor and ghost ownership} \subsection{Global functor and ghost ownership}
Hereinafter we assume the global CMRA functor (served up as a parameter to Iris) is obtained from a family of functors $(\iFunc_i)_{i \in I}$ for some finite $I$ by picking Hereinafter we assume the global CMRA functor (served up as a parameter to Iris) is obtained from a family of functors $(\iFunc_i)_{i \in I}$ for some finite $I$ by picking
......
...@@ -593,18 +593,16 @@ A type $\type$ being \emph{inhabited} means that $ \proves \wtt{\term}{\type}$ i ...@@ -593,18 +593,16 @@ A type $\type$ being \emph{inhabited} means that $ \proves \wtt{\term}{\type}$ i
\begin{mathpar} \begin{mathpar}
\infer[wp-lift-step] \infer[wp-lift-step]
{\mask_2 \subseteq \mask_1 \and {\mask_2 \subseteq \mask_1 \and
\toval(\expr_1) = \bot \and \toval(\expr_1) = \bot}
\red(\expr_1, \state_1) \and
\All \expr_2, \state_2, \expr_\f. \expr_1,\state_1 \step \expr_2,\state_2,\expr_\f \Ra \pred(\expr_2,\state_2,\expr_\f)}
{ {\begin{inbox} % for some crazy reason, LaTeX is actually sensitive to the space between the "{ {" here and the "} }" below... { {\begin{inbox} % for some crazy reason, LaTeX is actually sensitive to the space between the "{ {" here and the "} }" below...
~~\pvs[\mask_1][\mask_2] \later\ownPhys{\state_1} * \later\All \expr_2, \state_2, \expr_\f. \pred(\expr_2, \state_2, \expr_\f) \land {}\\\qquad\qquad\qquad\qquad\qquad \ownPhys{\state_2} \wand \pvs[\mask_2][\mask_1] \wpre{\expr_2}[\mask_1]{\Ret\var.\prop} * \wpre{\expr_\f}[\top]{\Ret\any.\TRUE} {}\\\proves \wpre{\expr_1}[\mask_1]{\Ret\var.\prop} ~~\pvs[\mask_1][\mask_2] \Exists \state_1. \red(\expr_1,\state_1) \land \later\ownPhys{\state_1} * \later\All \expr_2, \state_2, \expr_\f. (\expr_1, \state_1 \step \expr_2, \state_2, \expr_\f) \land {}\\\qquad\qquad\qquad\qquad\qquad \ownPhys{\state_2} \wand \pvs[\mask_2][\mask_1] \wpre{\expr_2}[\mask_1]{\Ret\var.\prop} * \wpre{\expr_\f}[\top]{\Ret\any.\TRUE} {}\\\proves \wpre{\expr_1}[\mask_1]{\Ret\var.\prop}
\end{inbox}} } \end{inbox}} }
\infer[wp-lift-pure-step] \infer[wp-lift-pure-step]
{\toval(\expr_1) = \bot \and {\toval(\expr_1) = \bot \and
\All \state_1. \red(\expr_1, \state_1) \and \All \state_1. \red(\expr_1, \state_1) \and
\All \state_1, \expr_2, \state_2, \expr_\f. \expr_1,\state_1 \step \expr_2,\state_2,\expr_\f \Ra \state_1 = \state_2 \land \pred(\expr_2,\expr_\f)} \All \state_1, \expr_2, \state_2, \expr_\f. \expr_1,\state_1 \step \expr_2,\state_2,\expr_\f \Ra \state_1 = \state_2 }
{\later\All \expr_2, \expr_\f. \pred(\expr_2, \expr_\f) \Ra \wpre{\expr_2}[\mask_1]{\Ret\var.\prop} * \wpre{\expr_\f}[\top]{\Ret\any.\TRUE} \proves \wpre{\expr_1}[\mask_1]{\Ret\var.\prop}} {\later\All \state, \expr_2, \expr_\f. (\expr_1,\state \step \expr_2, \state,\expr_\f) \Ra \wpre{\expr_2}[\mask_1]{\Ret\var.\prop} * \wpre{\expr_\f}[\top]{\Ret\any.\TRUE} \proves \wpre{\expr_1}[\mask_1]{\Ret\var.\prop}}
\end{mathpar} \end{mathpar}
Here we define $\wpre{\expr_\f}[\mask]{\Ret\var.\prop} \eqdef \TRUE$ if $\expr_\f = \bot$ (remember that our stepping relation can, but does not have to, define a forked-off expression). Here we define $\wpre{\expr_\f}[\mask]{\Ret\var.\prop} \eqdef \TRUE$ if $\expr_\f = \bot$ (remember that our stepping relation can, but does not have to, define a forked-off expression).
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment