Commit 8fd3233e authored by Ralf Jung's avatar Ralf Jung

tests/mosel_paper: show the two goals separately

parent f9435245
......@@ -10,7 +10,7 @@
--------------------------------------∗
∃ a : A, P ∗ Φ a ∨ P ∗ Ψ a
2 subgoals
1 subgoal
PROP : bi
A : Type
......@@ -23,13 +23,19 @@
--------------------------------------∗
∃ a : A, P ∗ Φ a ∨ P ∗ Ψ a
subgoal 2 is:
"HP" : P
"H2" : Ψ x
--------------------------------------∗
∃ a : A, P ∗ Φ a ∨ P ∗ Ψ a
1 subgoal
PROP : bi
A : Type
P : PROP
Φ, Ψ : A → PROP
x : A
============================
"HP" : P
"H2" : Ψ x
--------------------------------------∗
∃ a : A, P ∗ Φ a ∨ P ∗ Ψ a
1 subgoal
PROP : bi
......
......@@ -12,9 +12,9 @@ Lemma example_1 {PROP : bi} {A : Type} (P : PROP) (Φ Ψ : A → PROP) :
P ( a, Φ a Ψ a) - a, (P Φ a) (P Ψ a).
Proof.
iIntros "[HP H]". Show.
iDestruct "H" as (x) "[H1|H2]". Show.
- iExists x. iLeft. iSplitL "HP"; iAssumption.
- iExists x. iRight. iSplitL "HP"; iAssumption.
iDestruct "H" as (x) "[H1|H2]".
- Show. iExists x. iLeft. iSplitL "HP"; iAssumption.
- Show. iExists x. iRight. iSplitL "HP"; iAssumption.
Qed.
Lemma example {PROP : bi} {A : Type} (P : PROP) (Φ Ψ : A PROP) :
P ( a, Φ a Ψ a) - a, (P Φ a) (P Ψ a).
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment