Commit 8842e50c authored by Ralf Jung's avatar Ralf Jung

fix the docs

parent e5e9bcf3
Pipeline #197 passed with stage
......@@ -3,7 +3,7 @@
\subsection{COFE}
\begin{defn}[Chain]
Given some set $T$ and an indexed family $({\nequiv{n}} \subseteq T \times T)_{n \in \mathbb{N}}$ of equivalence relations, a \emph{chain} is a function $c : \mathbb{N} \to T$ such that $\All n, m. n < m \Ra c (m) \nequiv{n} c (n+1)$.
Given some set $T$ and an indexed family $({\nequiv{n}} \subseteq T \times T)_{n \in \mathbb{N}}$ of equivalence relations, a \emph{chain} is a function $c : \mathbb{N} \to T$ such that $\All n, m. n \leq m \Ra c (m) \nequiv{n} c (n)$.
\end{defn}
\begin{defn}
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment