Commit 4b2916c4 authored by Ralf Jung's avatar Ralf Jung

Add locking to value-scope notation for lambdas

parent c24ee497
......@@ -17,15 +17,17 @@ Implicit Types P Q : iProp Σ.
Implicit Types Φ : val iProp Σ.
(** Proof rules for the sugar *)
Lemma wp_lam E x ef e Φ :
is_Some (to_val e) Closed (x :b: []) ef
WP subst' x e ef @ E {{ Φ }} WP App (Lam x ef) e @ E {{ Φ }}.
Lemma wp_lam E x elam e1 e2 Φ :
e1 = Lam x elam
is_Some (to_val e2)
Closed (x :b: []) elam
WP subst' x e2 elam @ E {{ Φ }} WP App e1 e2 @ E {{ Φ }}.
Proof. intros. by rewrite -(wp_rec _ BAnon) //. Qed.
Lemma wp_let E x e1 e2 Φ :
is_Some (to_val e1) Closed (x :b: []) e2
WP subst' x e1 e2 @ E {{ Φ }} WP Let x e1 e2 @ E {{ Φ }}.
Proof. apply wp_lam. Qed.
Proof. by apply wp_lam. Qed.
Lemma wp_seq E e1 e2 Φ :
is_Some (to_val e1) Closed [] e2
......
......@@ -14,5 +14,3 @@ Proof.
iIntros "HΦ". rewrite /assert. wp_let. wp_seq.
iApply (wp_wand with "HΦ"). iIntros (v) "[% ?]"; subst. by wp_if.
Qed.
Global Opaque assert.
......@@ -4,4 +4,3 @@ Definition newbarrier : val := λ: <>, ref #false.
Definition signal : val := λ: "x", "x" <- #true.
Definition wait : val :=
rec: "wait" "x" := if: !"x" then #() else "wait" "x".
Global Opaque newbarrier signal wait.
......@@ -22,8 +22,6 @@ Section proof.
Context `{!heapG Σ, !barrierG Σ} (N : namespace).
Implicit Types I : gset gname.
Local Transparent newbarrier signal wait.
Definition ress (P : iProp Σ) (I : gset gname) : iProp Σ :=
( Ψ : gname iProp Σ,
(P - [ set] i I, Ψ i) [ set] i I, saved_prop_own i (Ψ i))%I.
......
......@@ -4,12 +4,11 @@ From iris.proofmode Require Import tactics.
From iris.algebra Require Import frac auth.
From iris.heap_lang Require Import proofmode notation.
Definition newcounter : val := locked (λ: <>, ref #0)%V.
Definition incr : val := locked (
rec: "incr" "l" :=
Definition newcounter : val := λ: <>, ref #0.
Definition incr : val := rec: "incr" "l" :=
let: "n" := !"l" in
if: CAS "l" "n" (#1 + "n") then #() else "incr" "l")%V.
Definition read : val := locked (λ: "l", !"l")%V.
if: CAS "l" "n" (#1 + "n") then #() else "incr" "l".
Definition read : val := λ: "l", !"l".
(** Monotone counter *)
Class mcounterG Σ := MCounterG { mcounter_inG :> inG Σ (authR mnatUR) }.
......@@ -36,7 +35,7 @@ Section mono_proof.
heapN N
{{{ heap_ctx }}} newcounter #() {{{ l, RET #l; mcounter l 0 }}}.
Proof.
iIntros (? Φ) "#Hh HΦ". rewrite -wp_fupd /newcounter -lock /=. wp_seq. wp_alloc l as "Hl".
iIntros (? Φ) "#Hh HΦ". rewrite -wp_fupd /newcounter. wp_seq. wp_alloc l as "Hl".
iMod (own_alloc ( (O:mnat) (O:mnat))) as (γ) "[Hγ Hγ']"; first done.
iMod (inv_alloc N _ (mcounter_inv γ l) with "[Hl Hγ]").
{ iNext. iExists 0%nat. by iFrame. }
......@@ -72,7 +71,7 @@ Section mono_proof.
{{{ mcounter l j }}} read #l {{{ i, RET #i; j i%nat mcounter l i }}}.
Proof.
iIntros (ϕ) "Hc HΦ". iDestruct "Hc" as (γ) "(% & #? & #Hinv & Hγf)".
rewrite /read -lock /=. wp_let. iInv N as (c) ">[Hγ Hl]" "Hclose". wp_load.
rewrite /read /=. wp_let. iInv N as (c) ">[Hγ Hl]" "Hclose". wp_load.
iDestruct (own_valid_2 with "Hγ Hγf")
as %[?%mnat_included _]%auth_valid_discrete_2.
iMod (own_update_2 with "Hγ Hγf") as "[Hγ Hγf]".
......@@ -113,7 +112,7 @@ Section contrib_spec.
{{{ heap_ctx }}} newcounter #()
{{{ γ l, RET #l; ccounter_ctx γ l ccounter γ 1 0 }}}.
Proof.
iIntros (? Φ) "#Hh HΦ". rewrite -wp_fupd /newcounter -lock /=. wp_seq. wp_alloc l as "Hl".
iIntros (? Φ) "#Hh HΦ". rewrite -wp_fupd /newcounter /=. wp_seq. wp_alloc l as "Hl".
iMod (own_alloc ( (Some (1%Qp, O%nat)) (Some (1%Qp, 0%nat))))
as (γ) "[Hγ Hγ']"; first done.
iMod (inv_alloc N _ (ccounter_inv γ l) with "[Hl Hγ]").
......@@ -147,7 +146,7 @@ Section contrib_spec.
{{{ c, RET #c; n c%nat ccounter γ q n }}}.
Proof.
iIntros (Φ) "(#(%&?&?) & Hγf) HΦ".
rewrite /read -lock /=. wp_let. iInv N as (c) ">[Hγ Hl]" "Hclose". wp_load.
rewrite /read /=. wp_let. iInv N as (c) ">[Hγ Hl]" "Hclose". wp_load.
iDestruct (own_valid_2 with "Hγ Hγf")
as %[[? ?%nat_included]%Some_pair_included_total_2 _]%auth_valid_discrete_2.
iMod ("Hclose" with "[Hl Hγ]") as "_"; [iNext; iExists c; by iFrame|].
......@@ -159,7 +158,7 @@ Section contrib_spec.
{{{ n, RET #n; ccounter γ 1 n }}}.
Proof.
iIntros (Φ) "(#(%&?&?) & Hγf) HΦ".
rewrite /read -lock /=. wp_let. iInv N as (c) ">[Hγ Hl]" "Hclose". wp_load.
rewrite /read /=. wp_let. iInv N as (c) ">[Hγ Hl]" "Hclose". wp_load.
iDestruct (own_valid_2 with "Hγ Hγf") as %[Hn _]%auth_valid_discrete_2.
apply (Some_included_exclusive _) in Hn as [= ->]%leibniz_equiv; last done.
iMod ("Hclose" with "[Hl Hγ]") as "_"; [iNext; iExists c; by iFrame|].
......
......@@ -44,5 +44,3 @@ Proof.
iSplitL "H1"; by wp_let.
Qed.
End proof.
Global Opaque par.
......@@ -78,4 +78,3 @@ Qed.
End proof.
Typeclasses Opaque join_handle.
Global Opaque spawn join.
......@@ -89,7 +89,6 @@ Section proof.
End proof.
Typeclasses Opaque is_lock locked.
Global Opaque newlock try_acquire acquire release.
Definition spin_lock `{!heapG Σ, !lockG Σ} : lock Σ :=
{| lock.locked_exclusive := locked_exclusive; lock.newlock_spec := newlock_spec;
......
......@@ -7,24 +7,24 @@ From iris.heap_lang.lib Require Export lock.
Import uPred.
Definition wait_loop: val :=
ssreflect.locked (rec: "wait_loop" "x" "lk" :=
rec: "wait_loop" "x" "lk" :=
let: "o" := !(Fst "lk") in
if: "x" = "o"
then #() (* my turn *)
else "wait_loop" "x" "lk")%V.
else "wait_loop" "x" "lk".
Definition newlock : val :=
ssreflect.locked (λ: <>, ((* owner *) ref #0, (* next *) ref #0))%V.
λ: <>, ((* owner *) ref #0, (* next *) ref #0).
Definition acquire : val :=
ssreflect.locked (rec: "acquire" "lk" :=
rec: "acquire" "lk" :=
let: "n" := !(Snd "lk") in
if: CAS (Snd "lk") "n" ("n" + #1)
then wait_loop "n" "lk"
else "acquire" "lk")%V.
else "acquire" "lk".
Definition release : val :=
ssreflect.locked (λ: "lk", (Fst "lk") <- !(Fst "lk") + #1)%V.
λ: "lk", (Fst "lk") <- !(Fst "lk") + #1.
(** The CMRAs we need. *)
Class tlockG Σ :=
......@@ -77,7 +77,7 @@ Section proof.
heapN N
{{{ heap_ctx R }}} newlock #() {{{ lk γ, RET lk; is_lock γ lk R }}}.
Proof.
iIntros (HN Φ) "(#Hh & HR) HΦ". rewrite -wp_fupd /newlock. unlock.
iIntros (HN Φ) "(#Hh & HR) HΦ". rewrite -wp_fupd /newlock.
wp_seq. wp_alloc lo as "Hlo". wp_alloc ln as "Hln".
iMod (own_alloc ( (Excl' 0%nat, ) (Excl' 0%nat, ))) as (γ) "[Hγ Hγ']".
{ by rewrite -auth_both_op. }
......@@ -145,7 +145,7 @@ Section proof.
iIntros (Φ) "(Hl & Hγ & HR) HΦ".
iDestruct "Hl" as (lo ln) "(% & #? & % & #?)"; subst.
iDestruct "Hγ" as (o) "Hγo".
rewrite /release. unlock. wp_let. wp_proj. wp_proj. wp_bind (! _)%E.
rewrite /release. wp_let. wp_proj. wp_proj. wp_bind (! _)%E.
iInv N as (o' n) "(>Hlo & >Hln & >Hauth & Haown)" "Hclose".
wp_load.
iDestruct (own_valid_2 with "Hauth Hγo") as
......
......@@ -111,12 +111,6 @@ Proof.
intros; inv_head_step; eauto.
Qed.
Lemma wp_rec_locked E f x erec e1 e2 Φ `{!Closed (f :b: x :b: []) erec} :
e1 = of_val $ locked (RecV f x erec)
is_Some (to_val e2)
WP subst' x e2 (subst' f e1 erec) @ E {{ Φ }} WP App e1 e2 @ E {{ Φ }}.
Proof. unlock. auto using wp_rec. Qed.
Lemma wp_un_op E op e v v' Φ :
to_val e = Some v
un_op_eval op v = Some v'
......
......@@ -47,7 +47,7 @@ Notation "~ e" := (UnOp NegOp e%E) (at level 75, right associativity) : expr_sco
Notation "e1 <- e2" := (Store e1%E e2%E) (at level 80) : expr_scope.
Notation "'rec:' f x := e" := (Rec f%bind x%bind e%E)
(at level 102, f at level 1, x at level 1, e at level 200) : expr_scope.
Notation "'rec:' f x := e" := (RecV f%bind x%bind e%E)
Notation "'rec:' f x := e" := (locked (RecV f%bind x%bind e%E))
(at level 102, f at level 1, x at level 1, e at level 200) : val_scope.
Notation "'if:' e1 'then' e2 'else' e3" := (If e1%E e2%E e3%E)
(at level 200, e1, e2, e3 at level 200) : expr_scope.
......@@ -58,20 +58,20 @@ defined above. This is needed because App is now a coercion, and these
notations are otherwise not pretty printed back accordingly. *)
Notation "'rec:' f x y := e" := (Rec f%bind x%bind (Lam y%bind e%E))
(at level 102, f, x, y at level 1, e at level 200) : expr_scope.
Notation "'rec:' f x y := e" := (RecV f%bind x%bind (Lam y%bind e%E))
Notation "'rec:' f x y := e" := (locked (RecV f%bind x%bind (Lam y%bind e%E)))
(at level 102, f, x, y at level 1, e at level 200) : val_scope.
Notation "'rec:' f x y .. z := e" := (Rec f%bind x%bind (Lam y%bind .. (Lam z%bind e%E) ..))
(at level 102, f, x, y, z at level 1, e at level 200) : expr_scope.
Notation "'rec:' f x y .. z := e" := (RecV f%bind x%bind (Lam y%bind .. (Lam z%bind e%E) ..))
Notation "'rec:' f x y .. z := e" := (locked (RecV f%bind x%bind (Lam y%bind .. (Lam z%bind e%E) ..)))
(at level 102, f, x, y, z at level 1, e at level 200) : val_scope.
Notation "λ: x , e" := (Lam x%bind e%E)
(at level 102, x at level 1, e at level 200) : expr_scope.
Notation "λ: x y .. z , e" := (Lam x%bind (Lam y%bind .. (Lam z%bind e%E) ..))
(at level 102, x, y, z at level 1, e at level 200) : expr_scope.
Notation "λ: x , e" := (LamV x%bind e%E)
Notation "λ: x , e" := (locked (LamV x%bind e%E))
(at level 102, x at level 1, e at level 200) : val_scope.
Notation "λ: x y .. z , e" := (LamV x%bind (Lam y%bind .. (Lam z%bind e%E) .. ))
Notation "λ: x y .. z , e" := (locked (LamV x%bind (Lam y%bind .. (Lam z%bind e%E) .. )))
(at level 102, x, y, z at level 1, e at level 200) : val_scope.
Notation "'let:' x := e1 'in' e2" := (Lam x%bind e2%E e1%E)
......
......@@ -44,13 +44,28 @@ Tactic Notation "wp_value" :=
| _ => fail "wp_value: not a wp"
end.
(* Applied to goals that are equalities of expressions. Will try to unlock the
LHS once if necessary, to get rid of the lock added by the syntactic sugar. *)
Ltac wp_unlock :=
solve [
reflexivity | (* If there are no locks, this is enough. *)
(* Otherwise, use unification to uncover the lock. *)
(* Step 1: Get the LHS into the form "of_val (locked v)" *)
let v := fresh "v" in
evar (v: val); trans (of_val (locked v)); subst v; first reflexivity;
(* Step 2: Remove the lock from the LHS. *)
etrans; first solve [ apply (f_equal of_val); symmetry; apply lock ];
(* Now things should be convertible. *)
reflexivity
].
Tactic Notation "wp_rec" :=
lazymatch goal with
| |- _ wp ?E ?e ?Q => reshape_expr e ltac:(fun K e' =>
match eval hnf in e' with App ?e1 _ =>
(* hnf does not reduce through an of_val *)
(* match eval hnf in e1 with Rec _ _ _ => *)
wp_bind_core K; etrans; [|(eapply wp_rec; wp_done) || (eapply wp_rec_locked; wp_done)]; simpl_subst; wp_finish
wp_bind_core K; etrans; [|eapply wp_rec; [wp_unlock|wp_done..]]; simpl_subst; wp_finish
(* end *) end) || fail "wp_rec: cannot find 'Rec' in" e
| _ => fail "wp_rec: not a 'wp'"
end.
......@@ -60,7 +75,7 @@ Tactic Notation "wp_lam" :=
| |- _ wp ?E ?e ?Q => reshape_expr e ltac:(fun K e' =>
match eval hnf in e' with App ?e1 _ =>
(* match eval hnf in e1 with Rec BAnon _ _ => *)
wp_bind_core K; etrans; [|eapply wp_lam; wp_done]; simpl_subst; wp_finish
wp_bind_core K; etrans; [|eapply wp_lam; [wp_unlock|wp_done..]]; simpl_subst; wp_finish
(* end *) end) || fail "wp_lam: cannot find 'Lam' in" e
| _ => fail "wp_lam: not a 'wp'"
end.
......
......@@ -54,8 +54,6 @@ Section client.
Qed.
End client.
Global Opaque worker client.
Section ClosedProofs.
Let Σ : gFunctors := #[ heapΣ ; barrierΣ ; spawnΣ ].
......
......@@ -136,5 +136,3 @@ Proof.
iModIntro; rewrite /C; eauto 10 with omega.
Qed.
End proof.
Global Opaque newcounter incr read.
......@@ -37,7 +37,6 @@ Section LiftingTests.
Definition Pred : val :=
λ: "x",
if: "x" #0 then -FindPred (-"x" + #2) #0 else FindPred "x" #0.
Global Opaque FindPred Pred.
Lemma FindPred_spec n1 n2 E Φ :
n1 < n2
......
......@@ -97,5 +97,3 @@ Proof.
- iIntros (_ v) "[_ H]". iDestruct (Q_res_join with "H") as "?". auto.
Qed.
End proof.
Global Opaque client.
......@@ -24,7 +24,6 @@ Definition rev : val :=
"l" <- ("tmp1", "acc");;
"rev" "tmp2" "hd"
end.
Global Opaque rev.
Lemma rev_acc_wp hd acc xs ys (Φ : val iProp Σ) :
heap_ctx is_list hd xs is_list acc ys
......
......@@ -96,5 +96,3 @@ Proof.
iApply (wp_wand with "Hf2"). by iIntros (v) "#? !# _".
Qed.
End proof.
Global Opaque one_shot_example.
......@@ -64,6 +64,3 @@ Proof.
rewrite Z.add_0_r.
iIntros "Hl Ht". wp_seq. wp_load. by iApply "HΦ".
Qed.
Global Opaque sum_loop sum'.
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment