From 4a36be37ef2f92d645c7b6edd19f4f49b7f74e33 Mon Sep 17 00:00:00 2001 From: Ralf Jung Date: Thu, 5 Jan 2017 13:38:54 +0100 Subject: [PATCH] apply feedback; fix compilation with coq 8.5 --- theories/algebra/ofe.v | 33 ++++++++++++++++++--------------- 1 file changed, 18 insertions(+), 15 deletions(-) diff --git a/theories/algebra/ofe.v b/theories/algebra/ofe.v index 6b38ce23..23003d2d 100644 --- a/theories/algebra/ofe.v +++ b/theories/algebra/ofe.v @@ -956,22 +956,25 @@ Proof. Qed. (** Sigma *) +Class LimitPreserving {A : ofeT} `{!Cofe A} (P : A → Prop) : Prop := + limit_preserving : ∀ c : chain A, (∀ n, P (c n)) → P (compl c). + Section sigma. - Context {A : ofeT} {f : A → Prop}. + Context {A : ofeT} {P : A → Prop}. (* TODO: Find a better place for this Equiv instance. It also should not depend on A being an OFE. *) - Instance sig_equiv : Equiv (sig f) := + Instance sig_equiv : Equiv (sig P) := λ x1 x2, (proj1_sig x1) ≡ (proj1_sig x2). - Instance sig_dist : Dist (sig f) := + Instance sig_dist : Dist (sig P) := λ n x1 x2, (proj1_sig x1) ≡{n}≡ (proj1_sig x2). - Global Lemma exist_ne : + Lemma exist_ne : ∀ n x1 x2, x1 ≡{n}≡ x2 → - ∀ (H1 : f x1) (H2 : f x2), (exist f x1 H1) ≡{n}≡ (exist f x2 H2). + ∀ (H1 : P x1) (H2 : P x2), (exist P x1 H1) ≡{n}≡ (exist P x2 H2). Proof. intros n ?? Hx ??. exact Hx. Qed. - Global Instance proj1_sig_ne : Proper (dist n ==> dist n) (@proj1_sig _ f). + Global Instance proj1_sig_ne : Proper (dist n ==> dist n) (@proj1_sig _ P). Proof. intros n [] [] ?. done. Qed. - Definition sig_ofe_mixin : OfeMixin (sig f). + Definition sig_ofe_mixin : OfeMixin (sig P). Proof. split. - intros x y. unfold dist, sig_dist, equiv, sig_equiv. @@ -979,24 +982,24 @@ Section sigma. - unfold dist, sig_dist. intros n. split; [intros [] | intros [] [] | intros [] [] []]; simpl; try done. intros. by etrans. - - intros n [] []. unfold dist, sig_dist. apply dist_S. + - intros n [??] [??]. unfold dist, sig_dist. simpl. apply dist_S. Qed. - Canonical Structure sigC : ofeT := OfeT (sig f) sig_ofe_mixin. + Canonical Structure sigC : ofeT := OfeT (sig P) sig_ofe_mixin. - Global Class LimitPreserving `{Cofe A} : Prop := - limit_preserving : ∀ c : chain A, (∀ n, f (c n)) → f (compl c). - Program Definition sig_compl `{LimitPreserving} : Compl sigC := - λ c, exist f (compl (chain_map proj1_sig c)) _. + (* FIXME: WTF, it seems that within these braces {...} the ofe argument of LimitPreserving + suddenyl becomes explicit...? *) + Program Definition sig_compl `{LimitPreserving _ P} : Compl sigC := + λ c, exist P (compl (chain_map proj1_sig c)) _. Next Obligation. intros ? Hlim c. apply Hlim. move=>n /=. destruct (c n). done. Qed. - Program Definition sig_cofe `{LimitPreserving} : Cofe sigC := + Program Definition sig_cofe `{LimitPreserving _ P} : Cofe sigC := {| compl := sig_compl |}. Next Obligation. intros ? Hlim n c. apply (conv_compl n (chain_map proj1_sig c)). Qed. - Global Instance sig_timeless (x : sig f) : + Global Instance sig_timeless (x : sig P) : Timeless (proj1_sig x) → Timeless x. Proof. intros ? y. destruct x, y. unfold dist, sig_dist, equiv, sig_equiv. apply (timeless _). Qed. Global Instance sig_discrete_cofe : Discrete A → Discrete sigC. -- 2.26.2