Commit 3b9a9685 authored by Robbert Krebbers's avatar Robbert Krebbers

Declare FSASplit instance for FSA.

parent cd5096b7
......@@ -23,7 +23,7 @@ Proof.
Qed.
Global Instance frame_pvs E1 E2 R P mQ :
Frame R P mQ
Frame R (|={E1,E2}=> P) (Some (|={E1,E2}=> from_option True mQ))%I.
Frame R (|={E1,E2}=> P) (Some (|={E1,E2}=> if mQ is Some Q then Q else True))%I.
Proof. rewrite /Frame=><-. by rewrite pvs_frame_l. Qed.
Global Instance to_wand_pvs E1 E2 R P Q :
ToWand R P Q ToWand R (|={E1,E2}=> P) (|={E1,E2}=> Q).
......@@ -32,12 +32,15 @@ Proof. rewrite /ToWand=>->. apply wand_intro_l. by rewrite pvs_wand_r. Qed.
Class FSASplit {A} (P : iProp Λ Σ) (E : coPset)
(fsa : FSA Λ Σ A) (fsaV : Prop) (Φ : A iProp Λ Σ) := {
fsa_split : fsa E Φ P;
fsa_split_fsa :> FrameShiftAssertion fsaV fsa;
fsa_split_is_fsa :> FrameShiftAssertion fsaV fsa;
}.
Global Arguments fsa_split {_} _ _ _ _ _ {_}.
Global Instance fsa_split_pvs E P :
FSASplit (|={E}=> P)%I E pvs_fsa True (λ _, P).
Proof. split. done. apply _. Qed.
Global Instance fsa_split_fsa {A} (fsa : FSA Λ Σ A) E Φ :
FrameShiftAssertion fsaV fsa FSASplit (fsa E Φ) E fsa fsaV Φ.
Proof. done. Qed.
Lemma tac_pvs_intro Δ E Q : Δ Q Δ |={E}=> Q.
Proof. intros ->. apply pvs_intro. Qed.
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment