tactics.v 12.3 KB
Newer Older
1
From iris.heap_lang Require Export lang.
2
From iris.prelude Require Import fin_maps.
3 4
Import heap_lang.

Robbert Krebbers's avatar
Robbert Krebbers committed
5 6 7 8
(** We define an alternative representation of expressions in which the
embedding of values and closed expressions is explicit. By reification of
expressions into this type we can implementation substitution, closedness
checking, atomic checking, and conversion into values, by computation. *)
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
Module W.
Inductive expr :=
  | Val (v : val)
  | ClosedExpr (e : heap_lang.expr) `{!Closed [] e}
  (* Base lambda calculus *)
  | Var (x : string)
  | Rec (f x : binder) (e : expr)
  | App (e1 e2 : expr)
  (* Base types and their operations *)
  | Lit (l : base_lit)
  | UnOp (op : un_op) (e : expr)
  | BinOp (op : bin_op) (e1 e2 : expr)
  | If (e0 e1 e2 : expr)
  (* Products *)
  | Pair (e1 e2 : expr)
  | Fst (e : expr)
  | Snd (e : expr)
  (* Sums *)
  | InjL (e : expr)
  | InjR (e : expr)
  | Case (e0 : expr) (e1 : expr) (e2 : expr)
  (* Concurrency *)
  | Fork (e : expr)
  (* Heap *)
  | Alloc (e : expr)
  | Load (e : expr)
  | Store (e1 : expr) (e2 : expr)
  | CAS (e0 : expr) (e1 : expr) (e2 : expr).

Fixpoint to_expr (e : expr) : heap_lang.expr :=
  match e with
  | Val v => of_val v
  | ClosedExpr e _ => e
  | Var x => heap_lang.Var x
  | Rec f x e => heap_lang.Rec f x (to_expr e)
  | App e1 e2 => heap_lang.App (to_expr e1) (to_expr e2)
  | Lit l => heap_lang.Lit l
  | UnOp op e => heap_lang.UnOp op (to_expr e)
  | BinOp op e1 e2 => heap_lang.BinOp op (to_expr e1) (to_expr e2)
  | If e0 e1 e2 => heap_lang.If (to_expr e0) (to_expr e1) (to_expr e2)
  | Pair e1 e2 => heap_lang.Pair (to_expr e1) (to_expr e2)
  | Fst e => heap_lang.Fst (to_expr e)
  | Snd e => heap_lang.Snd (to_expr e)
  | InjL e => heap_lang.InjL (to_expr e)
  | InjR e => heap_lang.InjR (to_expr e)
  | Case e0 e1 e2 => heap_lang.Case (to_expr e0) (to_expr e1) (to_expr e2)
  | Fork e => heap_lang.Fork (to_expr e)
  | Alloc e => heap_lang.Alloc (to_expr e)
  | Load e => heap_lang.Load (to_expr e)
  | Store e1 e2 => heap_lang.Store (to_expr e1) (to_expr e2)
  | CAS e0 e1 e2 => heap_lang.CAS (to_expr e0) (to_expr e1) (to_expr e2)
  end.

Ltac of_expr e :=
  lazymatch e with
  | heap_lang.Var ?x => constr:(Var x)
  | heap_lang.Rec ?f ?x ?e => let e := of_expr e in constr:(Rec f x e)
  | heap_lang.App ?e1 ?e2 =>
     let e1 := of_expr e1 in let e2 := of_expr e2 in constr:(App e1 e2)
  | heap_lang.Lit ?l => constr:(Lit l)
  | heap_lang.UnOp ?op ?e => let e := of_expr e in constr:(UnOp op e)
  | heap_lang.BinOp ?op ?e1 ?e2 =>
     let e1 := of_expr e1 in let e2 := of_expr e2 in constr:(BinOp op e1 e2)
  | heap_lang.If ?e0 ?e1 ?e2 =>
     let e0 := of_expr e0 in let e1 := of_expr e1 in let e2 := of_expr e2 in
     constr:(If e0 e1 e2)
  | heap_lang.Pair ?e1 ?e2 =>
     let e1 := of_expr e1 in let e2 := of_expr e2 in constr:(Pair e1 e2)
  | heap_lang.Fst ?e => let e := of_expr e in constr:(Fst e)
  | heap_lang.Snd ?e => let e := of_expr e in constr:(Snd e)
  | heap_lang.InjL ?e => let e := of_expr e in constr:(InjL e)
  | heap_lang.InjR ?e => let e := of_expr e in constr:(InjR e)
  | heap_lang.Case ?e0 ?e1 ?e2 =>
     let e0 := of_expr e0 in let e1 := of_expr e1 in let e2 := of_expr e2 in
     constr:(Case e0 e1 e2)
  | heap_lang.Fork ?e => let e := of_expr e in constr:(Fork e)
  | heap_lang.Alloc ?e => let e := of_expr e in constr:(Alloc e)
  | heap_lang.Load ?e => let e := of_expr e in constr:(Load e)
  | heap_lang.Store ?e1 ?e2 =>
     let e1 := of_expr e1 in let e2 := of_expr e2 in constr:(Store e1 e2)
  | heap_lang.CAS ?e0 ?e1 ?e2 =>
     let e0 := of_expr e0 in let e1 := of_expr e1 in let e2 := of_expr e2 in
     constr:(CAS e0 e1 e2)
  | to_expr ?e => e
  | of_val ?v => constr:(Val v)
  | _ => constr:(ltac:(
     match goal with H : Closed [] e |- _ => exact (@ClosedExpr e H) end))
  end.

Fixpoint is_closed (X : list string) (e : expr) : bool :=
  match e with
  | Val _ | ClosedExpr _ _ => true
  | Var x => bool_decide (x  X)
  | Rec f x e => is_closed (f :b: x :b: X) e
  | Lit _ => true
  | UnOp _ e | Fst e | Snd e | InjL e | InjR e | Fork e | Alloc e | Load e =>
     is_closed X e
  | App e1 e2 | BinOp _ e1 e2 | Pair e1 e2 | Store e1 e2 =>
     is_closed X e1 && is_closed X e2
  | If e0 e1 e2 | Case e0 e1 e2 | CAS e0 e1 e2 =>
     is_closed X e0 && is_closed X e1 && is_closed X e2
  end.
Lemma is_closed_correct X e : is_closed X e  heap_lang.is_closed X (to_expr e).
Proof.
  revert X.
  induction e; naive_solver eauto using is_closed_of_val, is_closed_weaken_nil.
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
117 118 119 120
(* We define [to_val (ClosedExpr _)] to be [None] since [ClosedExpr]
constructors are only generated for closed expressions of which we know nothing
about apart from being closed. Notice that the reverse implication of
[to_val_Some] thus does not hold. *)
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
Fixpoint to_val (e : expr) : option val :=
  match e with
  | Val v => Some v
  | Rec f x e =>
     if decide (is_closed (f :b: x :b: []) e) is left H
     then Some (@RecV f x (to_expr e) (is_closed_correct _ _ H)) else None
  | Lit l => Some (LitV l)
  | Pair e1 e2 => v1  to_val e1; v2  to_val e2; Some (PairV v1 v2)
  | InjL e => InjLV <$> to_val e
  | InjR e => InjRV <$> to_val e
  | _ => None
  end.
Lemma to_val_Some e v :
  to_val e = Some v  heap_lang.to_val (to_expr e) = Some v.
Proof.
  revert v. induction e; intros; simplify_option_eq; rewrite ?to_of_val; auto.
  - do 2 f_equal. apply proof_irrel.
  - exfalso. unfold Closed in *; eauto using is_closed_correct.
Qed.
140 141 142
Lemma to_val_is_Some e :
  is_Some (to_val e)  is_Some (heap_lang.to_val (to_expr e)).
Proof. intros [v ?]; exists v; eauto using to_val_Some. Qed.
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173

Fixpoint subst (x : string) (es : expr) (e : expr)  : expr :=
  match e with
  | Val v => Val v
  | ClosedExpr e H => @ClosedExpr e H
  | Var y => if decide (x = y) then es else Var y
  | Rec f y e =>
     Rec f y $ if decide (BNamed x  f  BNamed x  y) then subst x es e else e
  | App e1 e2 => App (subst x es e1) (subst x es e2)
  | Lit l => Lit l
  | UnOp op e => UnOp op (subst x es e)
  | BinOp op e1 e2 => BinOp op (subst x es e1) (subst x es e2)
  | If e0 e1 e2 => If (subst x es e0) (subst x es e1) (subst x es e2)
  | Pair e1 e2 => Pair (subst x es e1) (subst x es e2)
  | Fst e => Fst (subst x es e)
  | Snd e => Snd (subst x es e)
  | InjL e => InjL (subst x es e)
  | InjR e => InjR (subst x es e)
  | Case e0 e1 e2 => Case (subst x es e0) (subst x es e1) (subst x es e2)
  | Fork e => Fork (subst x es e)
  | Alloc e => Alloc (subst x es e)
  | Load e => Load (subst x es e)
  | Store e1 e2 => Store (subst x es e1) (subst x es e2)
  | CAS e0 e1 e2 => CAS (subst x es e0) (subst x es e1) (subst x es e2)
  end.
Lemma to_expr_subst x er e :
  to_expr (subst x er e) = heap_lang.subst x (to_expr er) (to_expr e).
Proof.
  induction e; simpl; repeat case_decide;
    f_equal; auto using is_closed_nil_subst, is_closed_of_val, eq_sym.
Qed.
174 175 176 177 178 179 180 181

Definition atomic (e : expr) :=
  match e with
  | Alloc e => bool_decide (is_Some (to_val e))
  | Load e => bool_decide (is_Some (to_val e))
  | Store e1 e2 => bool_decide (is_Some (to_val e1)  is_Some (to_val e2))
  | CAS e0 e1 e2 =>
     bool_decide (is_Some (to_val e0)  is_Some (to_val e1)  is_Some (to_val e2))
Ralf Jung's avatar
Ralf Jung committed
182
  | Fork _ => true
183 184 185 186
  (* Make "skip" atomic *)
  | App (Rec _ _ (Lit _)) (Lit _) => true
  | _ => false
  end.
Robbert Krebbers's avatar
Robbert Krebbers committed
187
Lemma atomic_correct e : atomic e  language.atomic (to_expr e).
188
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
189
  intros He. apply ectx_language_atomic.
190 191 192 193
  - intros σ e' σ' ef.
    destruct e; simpl; try done; repeat (case_match; try done);
    inversion 1; rewrite ?to_of_val; eauto. subst.
    unfold subst'; repeat (case_match || contradiction || simplify_eq/=); eauto.
Robbert Krebbers's avatar
Robbert Krebbers committed
194
  - intros [|Ki K] e' Hfill Hnotval; [done|exfalso].
195 196 197 198 199 200
    apply (fill_not_val K), eq_None_not_Some in Hnotval. apply Hnotval. simpl.
    revert He. destruct e; simpl; try done; repeat (case_match; try done);
    rewrite ?bool_decide_spec;
    destruct Ki; inversion Hfill; subst; clear Hfill;
    try naive_solver eauto using to_val_is_Some.
    move=> _ /=; destruct decide as [|Nclosed]; [by eauto | by destruct Nclosed].
201
Qed.
202 203 204 205 206 207 208 209 210 211 212 213
End W.

Ltac solve_closed :=
  match goal with
  | |- Closed ?X ?e =>
     let e' := W.of_expr e in change (Closed X (W.to_expr e'));
     apply W.is_closed_correct; vm_compute; exact I
  end.
Hint Extern 0 (Closed _ _) => solve_closed : typeclass_instances.

Ltac solve_to_val :=
  try match goal with
214 215
  | |- context E [language.to_val ?e] =>
     let X := context E [to_val e] in change X
216 217 218 219
  end;
  match goal with
  | |- to_val ?e = Some ?v =>
     let e' := W.of_expr e in change (to_val (W.to_expr e') = Some v);
Robbert Krebbers's avatar
Robbert Krebbers committed
220
     apply W.to_val_Some; simpl; unfold W.to_expr; reflexivity
221 222 223
  | |- is_Some (to_val ?e) =>
     let e' := W.of_expr e in change (is_Some (to_val (W.to_expr e')));
     apply W.to_val_is_Some, (bool_decide_unpack _); vm_compute; exact I
224 225
  end.

226 227
Ltac solve_atomic :=
  match goal with
Robbert Krebbers's avatar
Robbert Krebbers committed
228 229
  | |- language.atomic ?e =>
     let e' := W.of_expr e in change (language.atomic (W.to_expr e'));
230 231 232 233
     apply W.atomic_correct; vm_compute; exact I
  end.
Hint Extern 0 (language.atomic _) => solve_atomic : fsaV.

234 235
(** Substitution *)
Ltac simpl_subst :=
Robbert Krebbers's avatar
Robbert Krebbers committed
236
  simpl;
237 238 239 240 241 242 243 244 245 246
  repeat match goal with
  | |- context [subst ?x ?er ?e] =>
      let er' := W.of_expr er in let e' := W.of_expr e in
      change (subst x er e) with (subst x (W.to_expr er') (W.to_expr e'));
      rewrite <-(W.to_expr_subst x); simpl (* ssr rewrite is slower *)
  end;
  unfold W.to_expr.
Arguments W.to_expr : simpl never.
Arguments subst : simpl never.

247
(** The tactic [inv_head_step] performs inversion on hypotheses of the
248 249 250 251
shape [head_step]. The tactic will discharge head-reductions starting
from values, and simplifies hypothesis related to conversions from and
to values, and finite map operations. This tactic is slightly ad-hoc
and tuned for proving our lifting lemmas. *)
252
Ltac inv_head_step :=
253
  repeat match goal with
254
  | _ => progress simplify_map_eq/= (* simplify memory stuff *)
255 256 257
  | H : to_val _ = Some _ |- _ => apply of_to_val in H
  | H : context [to_val (of_val _)] |- _ => rewrite to_of_val in H
  | H : head_step ?e _ _ _ _ |- _ =>
258
     try (is_var e; fail 1); (* inversion yields many goals if [e] is a variable
259 260 261 262
     and can thus better be avoided. *)
     inversion H; subst; clear H
  end.

263 264 265
(** The tactic [reshape_expr e tac] decomposes the expression [e] into an
evaluation context [K] and a subexpression [e']. It calls the tactic [tac K e']
for each possible decomposition until [tac] succeeds. *)
266 267 268 269 270 271 272
Ltac reshape_val e tac :=
  let rec go e :=
  match e with
  | of_val ?v => v
  | Rec ?f ?x ?e => constr:(RecV f x e)
  | Lit ?l => constr:(LitV l)
  | Pair ?e1 ?e2 =>
273 274 275
    let v1 := go e1 in let v2 := go e2 in constr:(PairV v1 v2)
  | InjL ?e => let v := go e in constr:(InjLV v)
  | InjR ?e => let v := go e in constr:(InjRV v)
276 277
  end in let v := go e in first [tac v | fail 2].

278 279 280 281
Ltac reshape_expr e tac :=
  let rec go K e :=
  match e with
  | _ => tac (reverse K) e
282 283 284
  | App ?e1 ?e2 => reshape_val e1 ltac:(fun v1 => go (AppRCtx v1 :: K) e2)
  | App ?e1 ?e2 => go (AppLCtx e2 :: K) e1
  | UnOp ?op ?e => go (UnOpCtx op :: K) e
285
  | BinOp ?op ?e1 ?e2 =>
286 287
     reshape_val e1 ltac:(fun v1 => go (BinOpRCtx op v1 :: K) e2)
  | BinOp ?op ?e1 ?e2 => go (BinOpLCtx op e2 :: K) e1
288
  | If ?e0 ?e1 ?e2 => go (IfCtx e1 e2 :: K) e0
289 290
  | Pair ?e1 ?e2 => reshape_val e1 ltac:(fun v1 => go (PairRCtx v1 :: K) e2)
  | Pair ?e1 ?e2 => go (PairLCtx e2 :: K) e1
291 292 293 294 295 296 297
  | Fst ?e => go (FstCtx :: K) e
  | Snd ?e => go (SndCtx :: K) e
  | InjL ?e => go (InjLCtx :: K) e
  | InjR ?e => go (InjRCtx :: K) e
  | Case ?e0 ?e1 ?e2 => go (CaseCtx e1 e2 :: K) e0
  | Alloc ?e => go (AllocCtx :: K) e
  | Load ?e => go (LoadCtx :: K) e
298 299
  | Store ?e1 ?e2 => reshape_val e1 ltac:(fun v1 => go (StoreRCtx v1 :: K) e2)
  | Store ?e1 ?e2 => go (StoreLCtx e2 :: K) e1
300
  | CAS ?e0 ?e1 ?e2 => reshape_val e0 ltac:(fun v0 => first
301 302
     [ reshape_val e1 ltac:(fun v1 => go (CasRCtx v0 v1 :: K) e2)
     | go (CasMCtx v0 e2 :: K) e1 ])
303
  | CAS ?e0 ?e1 ?e2 => go (CasLCtx e1 e2 :: K) e0
304 305
  end in go (@nil ectx_item) e.

306 307 308 309
(** The tactic [do_head_step tac] solves goals of the shape [head_reducible] and
[head_step] by performing a reduction step and uses [tac] to solve any
side-conditions generated by individual steps. *)
Tactic Notation "do_head_step" tactic3(tac) :=
310
  try match goal with |- head_reducible _ _ => eexists _, _, _ end;
311 312
  simpl;
  match goal with
313 314
  | |- head_step ?e1 ?σ1 ?e2 ?σ2 ?ef =>
     first [apply alloc_fresh|econstructor];
315 316
       (* solve [to_val] side-conditions *)
       first [rewrite ?to_of_val; reflexivity|simpl_subst; tac; fast_done]
317
  end.