logic.tex 24.2 KB
Newer Older
Ralf Jung's avatar
Ralf Jung committed
1
\section{Language}
2

Ralf Jung's avatar
Ralf Jung committed
3
A \emph{language} $\Lang$ consists of a set \textdom{Expr} of \emph{expressions} (metavariable $\expr$), a set \textdom{Val} of \emph{values} (metavariable $\val$), and a set \textdom{State} of \emph{states} (metvariable $\state$) such that
4
\begin{itemize}
Ralf Jung's avatar
Ralf Jung committed
5 6 7
\item There exist functions $\ofval : \textdom{Val} \to \textdom{Expr}$ and $\toval : \textdom{Expr} \pfn \textdom{val}$ (notice the latter is partial), such that
\begin{mathpar} {\All \expr, \val. \toval(\expr) = \val \Ra \ofval(\val) = \expr} \and {\All\val. \toval(\ofval(\val)) = \val} 
\end{mathpar}
Ralf Jung's avatar
Ralf Jung committed
8 9
\item There exists a \emph{primitive reduction relation} \[(-,- \step -,-,-) \subseteq \textdom{Expr} \times \textdom{State} \times \textdom{Expr} \times \textdom{State} \times (\textdom{Expr} \uplus \set{\bot})\]
  We will write $\expr_1, \state_1 \step \expr_2, \state_2$ for $\expr_1, \state_1 \step \expr_2, \state_2, \bot$. \\
Ralf Jung's avatar
Ralf Jung committed
10
  A reduction $\expr_1, \state_1 \step \expr_2, \state_2, \expr_\f$ indicates that, when $\expr_1$ reduces to $\expr$, a \emph{new thread} $\expr_\f$ is forked off.
Ralf Jung's avatar
Ralf Jung committed
11 12
\item All values are stuck:
\[ \expr, \_ \step  \_, \_, \_ \Ra \toval(\expr) = \bot \]
13 14
\end{itemize}

Ralf Jung's avatar
Ralf Jung committed
15 16
\begin{defn}
  An expression $\expr$ and state $\state$ are \emph{reducible} (written $\red(\expr, \state)$) if
Ralf Jung's avatar
Ralf Jung committed
17
  \[ \Exists \expr_2, \state_2, \expr_\f. \expr,\state \step \expr_2,\state_2,\expr_\f \]
Ralf Jung's avatar
Ralf Jung committed
18 19
\end{defn}

20 21 22 23 24
\begin{defn}
  An expression $\expr$ is said to be \emph{atomic} if it reduces in one step to a value:
  \[ \All\state_1, \expr_2, \state_2, \expr_\f. \expr, \state_1 \step \expr_2, \state_2, \expr_\f \Ra \Exists \val_2. \toval(\expr_2) = \val_2 \]
\end{defn}

Ralf Jung's avatar
Ralf Jung committed
25
\begin{defn}[Context]
26
  A function $\lctx : \textdom{Expr} \to \textdom{Expr}$ is a \emph{context} if the following conditions are satisfied:
27
  \begin{enumerate}[itemsep=0pt]
28 29 30
  \item $\lctx$ does not turn non-values into values:\\
    $\All\expr. \toval(\expr) = \bot \Ra \toval(\lctx(\expr)) = \bot $
  \item One can perform reductions below $\lctx$:\\
Ralf Jung's avatar
Ralf Jung committed
31
    $\All \expr_1, \state_1, \expr_2, \state_2, \expr_\f. \expr_1, \state_1 \step \expr_2,\state_2,\expr_\f \Ra \lctx(\expr_1), \state_1 \step \lctx(\expr_2),\state_2,\expr_\f $
32
  \item Reductions stay below $\lctx$ until there is a value in the hole:\\
Ralf Jung's avatar
Ralf Jung committed
33
    $\All \expr_1', \state_1, \expr_2, \state_2, \expr_\f. \toval(\expr_1') = \bot \land \lctx(\expr_1'), \state_1 \step \expr_2,\state_2,\expr_\f \Ra \Exists\expr_2'. \expr_2 = \lctx(\expr_2') \land \expr_1', \state_1 \step \expr_2',\state_2,\expr_\f $
34
  \end{enumerate}
Ralf Jung's avatar
Ralf Jung committed
35 36
\end{defn}

Ralf Jung's avatar
Ralf Jung committed
37
\subsection{Concurrent language}
Ralf Jung's avatar
Ralf Jung committed
38 39

For any language $\Lang$, we define the corresponding thread-pool semantics.
40 41 42

\paragraph{Machine syntax}
\[
Ralf Jung's avatar
Ralf Jung committed
43
	\tpool \in \textdom{ThreadPool} \eqdef \bigcup_n \textdom{Exp}^n
44 45
\]

Ralf Jung's avatar
Ralf Jung committed
46
\judgment[Machine reduction]{\cfg{\tpool}{\state} \step
Ralf Jung's avatar
Ralf Jung committed
47
  \cfg{\tpool'}{\state'}}
48 49
\begin{mathpar}
\infer
Ralf Jung's avatar
Ralf Jung committed
50
  {\expr_1, \state_1 \step \expr_2, \state_2, \expr_\f \and \expr_\f \neq \bot}
Ralf Jung's avatar
Ralf Jung committed
51
  {\cfg{\tpool \dplus [\expr_1] \dplus \tpool'}{\state} \step
Ralf Jung's avatar
Ralf Jung committed
52
     \cfg{\tpool \dplus [\expr_2] \dplus \tpool' \dplus [\expr_\f]}{\state'}}
Ralf Jung's avatar
Ralf Jung committed
53 54 55 56
\and\infer
  {\expr_1, \state_1 \step \expr_2, \state_2}
  {\cfg{\tpool \dplus [\expr_1] \dplus \tpool'}{\state} \step
     \cfg{\tpool \dplus [\expr_2] \dplus \tpool'}{\state'}}
57 58
\end{mathpar}

59
\clearpage
Ralf Jung's avatar
Ralf Jung committed
60
\section{Logic}
61
\label{sec:logic}
Ralf Jung's avatar
Ralf Jung committed
62 63 64

To instantiate Iris, you need to define the following parameters:
\begin{itemize}
65 66
\item A language $\Lang$, and
\item a locally contractive bifunctor $\iFunc : \COFEs \to \CMRAs$ defining the ghost state, such that for all COFEs $A$, the CMRA $\iFunc(A)$ has a unit. (By \lemref{lem:cmra-unit-total-core}, this means that the core of $\iFunc(A)$ is a total function.)
Ralf Jung's avatar
Ralf Jung committed
67
\end{itemize}
68

Ralf Jung's avatar
Ralf Jung committed
69 70 71
\noindent
As usual for higher-order logics, you can furthermore pick a \emph{signature} $\Sig = (\SigType, \SigFn, \SigAx)$ to add more types, symbols and axioms to the language.
You have to make sure that $\SigType$ includes the base types:
72
\[
73
	\SigType \supseteq \{ \textlog{Val}, \textlog{Expr}, \textlog{State}, \textlog{M}, \textlog{InvName}, \textlog{InvMask}, \Prop \}
74
\]
Ralf Jung's avatar
Ralf Jung committed
75 76 77
Elements of $\SigType$ are ranged over by $\sigtype$.

Each function symbol in $\SigFn$ has an associated \emph{arity} comprising a natural number $n$ and an ordered list of $n+1$ types $\type$ (the grammar of $\type$ is defined below, and depends only on $\SigType$).
78 79 80 81 82
We write
\[
	\sigfn : \type_1, \dots, \type_n \to \type_{n+1} \in \SigFn
\]
to express that $\sigfn$ is a function symbol with the indicated arity.
Ralf Jung's avatar
Ralf Jung committed
83 84 85 86 87 88

Furthermore, $\SigAx$ is a set of \emph{axioms}, that is, terms $\term$ of type $\Prop$.
Again, the grammar of terms and their typing rules are defined below, and depends only on $\SigType$ and $\SigFn$, not on $\SigAx$.
Elements of $\SigAx$ are ranged over by $\sigax$.

\subsection{Grammar}\label{sec:grammar}
89 90

\paragraph{Syntax.}
Ralf Jung's avatar
Ralf Jung committed
91
Iris syntax is built up from a signature $\Sig$ and a countably infinite set $\textdom{Var}$ of variables (ranged over by metavariables $x$, $y$, $z$):
92

93
\begin{align*}
Ralf Jung's avatar
Ralf Jung committed
94
  \type \bnfdef{}&
Ralf Jung's avatar
Ralf Jung committed
95
      \sigtype \mid
96
      1 \mid
Ralf Jung's avatar
Ralf Jung committed
97 98 99
      \type \times \type \mid
      \type \to \type
\\[0.4em]
Ralf Jung's avatar
Ralf Jung committed
100
  \term, \prop, \pred \bnfdef{}&
101
      \var \mid
102
      \sigfn(\term_1, \dots, \term_n) \mid
103
      () \mid
104 105
      (\term, \term) \mid
      \pi_i\; \term \mid
106
      \Lam \var:\type.\term \mid
Ralf Jung's avatar
Ralf Jung committed
107
      \term(\term)  \mid
108
      \munit \mid
Ralf Jung's avatar
Ralf Jung committed
109
      \mcore\term \mid
110 111 112 113
      \term \mtimes \term \mid
\\&
    \FALSE \mid
    \TRUE \mid
Ralf Jung's avatar
Ralf Jung committed
114
    \term =_\type \term \mid
115 116 117 118 119 120
    \prop \Ra \prop \mid
    \prop \land \prop \mid
    \prop \lor \prop \mid
    \prop * \prop \mid
    \prop \wand \prop \mid
\\&
121
    \MU \var:\type. \term  \mid
Ralf Jung's avatar
Ralf Jung committed
122 123
    \Exists \var:\type. \prop \mid
    \All \var:\type. \prop \mid
124 125
\\&
    \knowInv{\term}{\prop} \mid
Ralf Jung's avatar
Ralf Jung committed
126
    \ownGGhost{\term} \mid \mval(\term) \mid
127 128 129
    \ownPhys{\term} \mid
    \always\prop \mid
    {\later\prop} \mid
Ralf Jung's avatar
Ralf Jung committed
130
    \pvs[\term][\term] \prop\mid
131
    \wpre{\term}[\term]{\Ret\var.\term}
132
\end{align*}
133
Recursive predicates must be \emph{guarded}: in $\MU \var. \term$, the variable $\var$ can only appear under the later $\later$ modality.
134

135
Note that $\always$ and $\later$ bind more tightly than $*$, $\wand$, $\land$, $\lor$, and $\Ra$.
Ralf Jung's avatar
Ralf Jung committed
136
We will write $\pvs[\term] \prop$ for $\pvs[\term][\term] \prop$.
137
If we omit the mask, then it is $\top$ for weakest precondition $\wpre\expr{\Ret\var.\prop}$ and $\emptyset$ for primitive view shifts $\pvs \prop$.
138
\ralf{$\top$ is not a term in the logic. Neither is any of the operations on masks that we use in the rules for weakestpre.}
139

Ralf Jung's avatar
Ralf Jung committed
140
Some propositions are \emph{timeless}, which intuitively means that step-indexing does not affect them.
141
This is a \emph{meta-level} assertion about propositions, defined as follows:
Ralf Jung's avatar
Ralf Jung committed
142 143 144

\[ \vctx \proves \timeless{\prop} \eqdef \vctx\mid\later\prop \proves \prop \lor \later\FALSE \]

145

146
\paragraph{Metavariable conventions.}
Ralf Jung's avatar
Ralf Jung committed
147
We introduce additional metavariables ranging over terms and generally let the choice of metavariable indicate the term's type:
148 149
\[
\begin{array}{r|l}
Ralf Jung's avatar
Ralf Jung committed
150
 \text{metavariable} & \text{type} \\\hline
151
  \term, \termB & \text{arbitrary} \\
152 153 154
  \val, \valB & \textlog{Val} \\
  \expr & \textlog{Expr} \\
  \state & \textlog{State} \\
155 156 157
\end{array}
\qquad\qquad
\begin{array}{r|l}
Ralf Jung's avatar
Ralf Jung committed
158
 \text{metavariable} & \text{type} \\\hline
159 160 161
  \iname & \textlog{InvName} \\
  \mask & \textlog{InvMask} \\
  \melt, \meltB & \textlog{M} \\
162
  \prop, \propB, \propC & \Prop \\
Ralf Jung's avatar
Ralf Jung committed
163
  \pred, \predB, \predC & \type\to\Prop \text{ (when $\type$ is clear from context)} \\
164 165 166 167
\end{array}
\]

\paragraph{Variable conventions.}
Ralf Jung's avatar
Ralf Jung committed
168
We assume that, if a term occurs multiple times in a rule, its free variables are exactly those binders which are available at every occurrence.
169 170 171 172 173


\subsection{Types}\label{sec:types}

Iris terms are simply-typed.
Ralf Jung's avatar
Ralf Jung committed
174
The judgment $\vctx \proves \wtt{\term}{\type}$ expresses that, in variable context $\vctx$, the term $\term$ has type $\type$.
175

Ralf Jung's avatar
Ralf Jung committed
176 177
A variable context, $\vctx = x_1:\type_1, \dots, x_n:\type_n$, declares a list of variables and their types.
In writing $\vctx, x:\type$, we presuppose that $x$ is not already declared in $\vctx$.
178

Ralf Jung's avatar
Ralf Jung committed
179
\judgment[Well-typed terms]{\vctx \proves_\Sig \wtt{\term}{\type}}
180 181
\begin{mathparpagebreakable}
%%% variables and function symbols
Ralf Jung's avatar
Ralf Jung committed
182
	\axiom{x : \type \proves \wtt{x}{\type}}
183
\and
Ralf Jung's avatar
Ralf Jung committed
184 185
	\infer{\vctx \proves \wtt{\term}{\type}}
		{\vctx, x:\type' \proves \wtt{\term}{\type}}
186
\and
Ralf Jung's avatar
Ralf Jung committed
187 188
	\infer{\vctx, x:\type', y:\type' \proves \wtt{\term}{\type}}
		{\vctx, x:\type' \proves \wtt{\term[x/y]}{\type}}
189
\and
Ralf Jung's avatar
Ralf Jung committed
190 191
	\infer{\vctx_1, x:\type', y:\type'', \vctx_2 \proves \wtt{\term}{\type}}
		{\vctx_1, x:\type'', y:\type', \vctx_2 \proves \wtt{\term[y/x,x/y]}{\type}}
192 193 194 195 196 197 198 199 200 201 202
\and
	\infer{
		\vctx \proves \wtt{\term_1}{\type_1} \and
		\cdots \and
		\vctx \proves \wtt{\term_n}{\type_n} \and
		\sigfn : \type_1, \dots, \type_n \to \type_{n+1} \in \SigFn
	}{
		\vctx \proves \wtt {\sigfn(\term_1, \dots, \term_n)} {\type_{n+1}}
	}
%%% products
\and
203
	\axiom{\vctx \proves \wtt{()}{1}}
204
\and
Ralf Jung's avatar
Ralf Jung committed
205 206
	\infer{\vctx \proves \wtt{\term}{\type_1} \and \vctx \proves \wtt{\termB}{\type_2}}
		{\vctx \proves \wtt{(\term,\termB)}{\type_1 \times \type_2}}
207
\and
Ralf Jung's avatar
Ralf Jung committed
208 209
	\infer{\vctx \proves \wtt{\term}{\type_1 \times \type_2} \and i \in \{1, 2\}}
		{\vctx \proves \wtt{\pi_i\,\term}{\type_i}}
210 211
%%% functions
\and
Ralf Jung's avatar
Ralf Jung committed
212 213
	\infer{\vctx, x:\type \proves \wtt{\term}{\type'}}
		{\vctx \proves \wtt{\Lam x. \term}{\type \to \type'}}
214 215
\and
	\infer
Ralf Jung's avatar
Ralf Jung committed
216 217
	{\vctx \proves \wtt{\term}{\type \to \type'} \and \wtt{\termB}{\type}}
	{\vctx \proves \wtt{\term(\termB)}{\type'}}
218
%%% monoids
219 220
\and
        \infer{}{\vctx \proves \wtt\munit{\textlog{M}}}
221
\and
Ralf Jung's avatar
Ralf Jung committed
222
	\infer{\vctx \proves \wtt\melt{\textlog{M}}}{\vctx \proves \wtt{\mcore\melt}{\textlog{M}}}
223
\and
224 225
	\infer{\vctx \proves \wtt{\melt}{\textlog{M}} \and \vctx \proves \wtt{\meltB}{\textlog{M}}}
		{\vctx \proves \wtt{\melt \mtimes \meltB}{\textlog{M}}}
226 227 228 229 230 231
%%% props and predicates
\\
	\axiom{\vctx \proves \wtt{\FALSE}{\Prop}}
\and
	\axiom{\vctx \proves \wtt{\TRUE}{\Prop}}
\and
Ralf Jung's avatar
Ralf Jung committed
232 233
	\infer{\vctx \proves \wtt{\term}{\type} \and \vctx \proves \wtt{\termB}{\type}}
		{\vctx \proves \wtt{\term =_\type \termB}{\Prop}}
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
\and
	\infer{\vctx \proves \wtt{\prop}{\Prop} \and \vctx \proves \wtt{\propB}{\Prop}}
		{\vctx \proves \wtt{\prop \Ra \propB}{\Prop}}
\and
	\infer{\vctx \proves \wtt{\prop}{\Prop} \and \vctx \proves \wtt{\propB}{\Prop}}
		{\vctx \proves \wtt{\prop \land \propB}{\Prop}}
\and
	\infer{\vctx \proves \wtt{\prop}{\Prop} \and \vctx \proves \wtt{\propB}{\Prop}}
		{\vctx \proves \wtt{\prop \lor \propB}{\Prop}}
\and
	\infer{\vctx \proves \wtt{\prop}{\Prop} \and \vctx \proves \wtt{\propB}{\Prop}}
		{\vctx \proves \wtt{\prop * \propB}{\Prop}}
\and
	\infer{\vctx \proves \wtt{\prop}{\Prop} \and \vctx \proves \wtt{\propB}{\Prop}}
		{\vctx \proves \wtt{\prop \wand \propB}{\Prop}}
\and
	\infer{
251 252
		\vctx, \var:\type \proves \wtt{\term}{\type} \and
		\text{$\var$ is guarded in $\term$}
253
	}{
254
		\vctx \proves \wtt{\MU \var:\type. \term}{\type}
255 256
	}
\and
Ralf Jung's avatar
Ralf Jung committed
257 258
	\infer{\vctx, x:\type \proves \wtt{\prop}{\Prop}}
		{\vctx \proves \wtt{\Exists x:\type. \prop}{\Prop}}
259
\and
Ralf Jung's avatar
Ralf Jung committed
260 261
	\infer{\vctx, x:\type \proves \wtt{\prop}{\Prop}}
		{\vctx \proves \wtt{\All x:\type. \prop}{\Prop}}
262 263 264
\and
	\infer{
		\vctx \proves \wtt{\prop}{\Prop} \and
265
		\vctx \proves \wtt{\iname}{\textlog{InvName}}
266 267 268 269
	}{
		\vctx \proves \wtt{\knowInv{\iname}{\prop}}{\Prop}
	}
\and
270
	\infer{\vctx \proves \wtt{\melt}{\textlog{M}}}
271
		{\vctx \proves \wtt{\ownGGhost{\melt}}{\Prop}}
Ralf Jung's avatar
Ralf Jung committed
272 273 274
\and
	\infer{\vctx \proves \wtt{\melt}{\textlog{M}}}
		{\vctx \proves \wtt{\mval(\melt)}{\Prop}}
275
\and
276
	\infer{\vctx \proves \wtt{\state}{\textlog{State}}}
277 278 279 280 281 282 283 284 285 286
		{\vctx \proves \wtt{\ownPhys{\state}}{\Prop}}
\and
	\infer{\vctx \proves \wtt{\prop}{\Prop}}
		{\vctx \proves \wtt{\always\prop}{\Prop}}
\and
	\infer{\vctx \proves \wtt{\prop}{\Prop}}
		{\vctx \proves \wtt{\later\prop}{\Prop}}
\and
	\infer{
		\vctx \proves \wtt{\prop}{\Prop} \and
287 288
		\vctx \proves \wtt{\mask}{\textlog{InvMask}} \and
		\vctx \proves \wtt{\mask'}{\textlog{InvMask}}
289
	}{
Ralf Jung's avatar
Ralf Jung committed
290
		\vctx \proves \wtt{\pvs[\mask][\mask'] \prop}{\Prop}
291 292 293
	}
\and
	\infer{
294 295 296
		\vctx \proves \wtt{\expr}{\textlog{Expr}} \and
		\vctx,\var:\textlog{Val} \proves \wtt{\term}{\Prop} \and
		\vctx \proves \wtt{\mask}{\textlog{InvMask}}
297
	}{
298
		\vctx \proves \wtt{\wpre{\expr}[\mask]{\Ret\var.\term}}{\Prop}
299 300 301
	}
\end{mathparpagebreakable}

Ralf Jung's avatar
Ralf Jung committed
302
\subsection{Proof rules}
Ralf Jung's avatar
Ralf Jung committed
303
\label{sec:proof-rules}
Ralf Jung's avatar
Ralf Jung committed
304

305 306
The judgment $\vctx \mid \pfctx \proves \prop$ says that with free variables $\vctx$, proposition $\prop$ holds whenever all assumptions $\pfctx$ hold.
We implicitly assume that an arbitrary variable context, $\vctx$, is added to every constituent of the rules.
Ralf Jung's avatar
Ralf Jung committed
307
Furthermore, an arbitrary \emph{boxed} assertion context $\always\pfctx$ may be added to every constituent.
Ralf Jung's avatar
Ralf Jung committed
308
Axioms $\vctx \mid \prop \provesIff \propB$ indicate that both $\vctx \mid \prop \proves \propB$ and $\vctx \mid \propB \proves \prop$ can be derived.
309

Ralf Jung's avatar
Ralf Jung committed
310
\judgment{\vctx \mid \pfctx \proves \prop}
Ralf Jung's avatar
Ralf Jung committed
311
\paragraph{Laws of intuitionistic higher-order logic with equality.}
312
This is entirely standard.
313 314
\begin{mathparpagebreakable}
\infer[Asm]
315 316 317
  {\prop \in \pfctx}
  {\pfctx \proves \prop}
\and
318
\infer[Eq]
319 320
  {\pfctx \proves \prop \\ \pfctx \proves \term =_\type \term'}
  {\pfctx \proves \prop[\term'/\term]}
321
\and
322 323 324 325 326 327 328 329 330 331 332 333
\infer[Refl]
  {}
  {\pfctx \proves \term =_\type \term}
\and
\infer[$\bot$E]
  {\pfctx \proves \FALSE}
  {\pfctx \proves \prop}
\and
\infer[$\top$I]
  {}
  {\pfctx \proves \TRUE}
\and
334
\infer[$\wedge$I]
335 336 337
  {\pfctx \proves \prop \\ \pfctx \proves \propB}
  {\pfctx \proves \prop \wedge \propB}
\and
338
\infer[$\wedge$EL]
339 340 341
  {\pfctx \proves \prop \wedge \propB}
  {\pfctx \proves \prop}
\and
342
\infer[$\wedge$ER]
343 344 345
  {\pfctx \proves \prop \wedge \propB}
  {\pfctx \proves \propB}
\and
346
\infer[$\vee$IL]
347 348 349
  {\pfctx \proves \prop }
  {\pfctx \proves \prop \vee \propB}
\and
350
\infer[$\vee$IR]
351 352 353
  {\pfctx \proves \propB}
  {\pfctx \proves \prop \vee \propB}
\and
354 355 356 357 358 359
\infer[$\vee$E]
  {\pfctx \proves \prop \vee \propB \\
   \pfctx, \prop \proves \propC \\
   \pfctx, \propB \proves \propC}
  {\pfctx \proves \propC}
\and
360
\infer[$\Ra$I]
361 362 363
  {\pfctx, \prop \proves \propB}
  {\pfctx \proves \prop \Ra \propB}
\and
364
\infer[$\Ra$E]
365 366 367
  {\pfctx \proves \prop \Ra \propB \\ \pfctx \proves \prop}
  {\pfctx \proves \propB}
\and
368 369 370
\infer[$\forall$I]
  { \vctx,\var : \type\mid\pfctx \proves \prop}
  {\vctx\mid\pfctx \proves \forall \var: \type.\; \prop}
371
\and
372 373 374 375
\infer[$\forall$E]
  {\vctx\mid\pfctx \proves \forall \var :\type.\; \prop \\
   \vctx \proves \wtt\term\type}
  {\vctx\mid\pfctx \proves \prop[\term/\var]}
376
\and
377 378 379 380
\infer[$\exists$I]
  {\vctx\mid\pfctx \proves \prop[\term/\var] \\
   \vctx \proves \wtt\term\type}
  {\vctx\mid\pfctx \proves \exists \var: \type. \prop}
381
\and
382 383 384 385
\infer[$\exists$E]
  {\vctx\mid\pfctx \proves \exists \var: \type.\; \prop \\
   \vctx,\var : \type\mid\pfctx , \prop \proves \propB}
  {\vctx\mid\pfctx \proves \propB}
386 387 388 389 390 391 392 393
% \and
% \infer[$\lambda$]
%   {}
%   {\pfctx \proves (\Lam\var: \type. \prop)(\term) =_{\type\to\type'} \prop[\term/\var]}
% \and
% \infer[$\mu$]
%   {}
%   {\pfctx \proves \mu\var: \type. \prop =_{\type} \prop[\mu\var: \type. \prop/\var]}
394
\end{mathparpagebreakable}
395 396
Furthermore, we have the usual $\eta$ and $\beta$ laws for projections, $\lambda$ and $\mu$.

397

Ralf Jung's avatar
Ralf Jung committed
398
\paragraph{Laws of (affine) bunched implications.}
399 400
\begin{mathpar}
\begin{array}{rMcMl}
Ralf Jung's avatar
Ralf Jung committed
401 402 403
  \TRUE * \prop &\provesIff& \prop \\
  \prop * \propB &\provesIff& \propB * \prop \\
  (\prop * \propB) * \propC &\provesIff& \prop * (\propB * \propC)
404 405
\end{array}
\and
406
\infer[$*$-mono]
407 408 409
  {\prop_1 \proves \propB_1 \and
   \prop_2 \proves \propB_2}
  {\prop_1 * \prop_2 \proves \propB_1 * \propB_2}
410
\and
411
\inferB[$\wand$I-E]
412 413
  {\prop * \propB \proves \propC}
  {\prop \proves \propB \wand \propC}
414 415
\end{mathpar}

Ralf Jung's avatar
Ralf Jung committed
416
\paragraph{Laws for ghosts and physical resources.}
417 418
\begin{mathpar}
\begin{array}{rMcMl}
Ralf Jung's avatar
Ralf Jung committed
419
\ownGGhost{\melt} * \ownGGhost{\meltB} &\provesIff&  \ownGGhost{\melt \mtimes \meltB} \\
Ralf Jung's avatar
Ralf Jung committed
420
\ownGGhost{\melt} &\provesIff& \mval(\melt) \\
Ralf Jung's avatar
Ralf Jung committed
421
\TRUE &\proves&  \ownGGhost{\munit}
422 423
\end{array}
\and
Ralf Jung's avatar
Ralf Jung committed
424
\and
425
\begin{array}{c}
Ralf Jung's avatar
Ralf Jung committed
426
\ownPhys{\state} * \ownPhys{\state'} \proves \FALSE
427 428 429
\end{array}
\end{mathpar}

Ralf Jung's avatar
Ralf Jung committed
430
\paragraph{Laws for the later modality.}
431
\begin{mathpar}
432
\infer[$\later$-mono]
433 434 435
  {\pfctx \proves \prop}
  {\pfctx \proves \later{\prop}}
\and
436 437 438
\infer[L{\"o}b]
  {}
  {(\later\prop\Ra\prop) \proves \prop}
439
\and
440 441 442 443 444
\infer[$\later$-$\exists$]
  {\text{$\type$ is inhabited}}
  {\later{\Exists x:\type.\prop} \proves \Exists x:\type. \later\prop}
\\\\
\begin{array}[c]{rMcMl}
Ralf Jung's avatar
Ralf Jung committed
445 446
  \later{(\prop \wedge \propB)} &\provesIff& \later{\prop} \wedge \later{\propB}  \\
  \later{(\prop \vee \propB)} &\provesIff& \later{\prop} \vee \later{\propB} \\
447 448
\end{array}
\and
449
\begin{array}[c]{rMcMl}
Ralf Jung's avatar
Ralf Jung committed
450 451 452
  \later{\All x.\prop} &\provesIff& \All x. \later\prop \\
  \Exists x. \later\prop &\proves& \later{\Exists x.\prop}  \\
  \later{(\prop * \propB)} &\provesIff& \later\prop * \later\propB
453 454
\end{array}
\end{mathpar}
455
A type $\type$ being \emph{inhabited} means that $ \proves \wtt{\term}{\type}$ is derivable for some $\term$.
456

Ralf Jung's avatar
Ralf Jung committed
457 458 459 460 461 462 463 464 465
\begin{mathpar}
\infer
{\text{$\term$ or $\term'$ is a discrete COFE element}}
{\timeless{\term =_\type \term'}}

\infer
{\text{$\melt$ is a discrete COFE element}}
{\timeless{\ownGGhost\melt}}

Ralf Jung's avatar
Ralf Jung committed
466 467 468 469
\infer
{\text{$\melt$ is a discrete COFE element}}
{\timeless{\mval(\melt)}}

Ralf Jung's avatar
Ralf Jung committed
470
\infer{}
471
{\timeless{\ownPhys\state}}
Ralf Jung's avatar
Ralf Jung committed
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490

\infer
{\vctx \proves \timeless{\propB}}
{\vctx \proves \timeless{\prop \Ra \propB}}

\infer
{\vctx \proves \timeless{\propB}}
{\vctx \proves \timeless{\prop \wand \propB}}

\infer
{\vctx,\var:\type \proves \timeless{\prop}}
{\vctx \proves \timeless{\All\var:\type.\prop}}

\infer
{\vctx,\var:\type \proves \timeless{\prop}}
{\vctx \proves \timeless{\Exists\var:\type.\prop}}
\end{mathpar}


Ralf Jung's avatar
Ralf Jung committed
491
\paragraph{Laws for the always modality.}
492
\begin{mathpar}
493
\infer[$\always$I]
494 495 496
  {\always{\pfctx} \proves \prop}
  {\always{\pfctx} \proves \always{\prop}}
\and
497
\infer[$\always$E]{}
Ralf Jung's avatar
Ralf Jung committed
498
  {\always{\prop} \proves \prop}
499 500
\and
\begin{array}[c]{rMcMl}
Ralf Jung's avatar
Ralf Jung committed
501 502 503
  \always{(\prop * \propB)} &\proves& \always{(\prop \land \propB)} \\
  \always{\prop} * \propB &\proves& \always{\prop} \land \propB \\
  \always{\later\prop} &\provesIff& \later\always{\prop} \\
504 505
\end{array}
\and
506
\begin{array}[c]{rMcMl}
Ralf Jung's avatar
Ralf Jung committed
507 508 509 510
  \always{(\prop \land \propB)} &\provesIff& \always{\prop} \land \always{\propB} \\
  \always{(\prop \lor \propB)} &\provesIff& \always{\prop} \lor \always{\propB} \\
  \always{\All x. \prop} &\provesIff& \All x. \always{\prop} \\
  \always{\Exists x. \prop} &\provesIff& \Exists x. \always{\prop} \\
511
\end{array}
Ralf Jung's avatar
Ralf Jung committed
512
\and
Ralf Jung's avatar
Ralf Jung committed
513
{ \term =_\type \term' \proves \always \term =_\type \term'}
Ralf Jung's avatar
Ralf Jung committed
514
\and
Ralf Jung's avatar
Ralf Jung committed
515
{ \knowInv\iname\prop \proves \always \knowInv\iname\prop}
Ralf Jung's avatar
Ralf Jung committed
516
\and
Ralf Jung's avatar
Ralf Jung committed
517
{ \ownGGhost{\mcore\melt} \proves \always \ownGGhost{\mcore\melt}}
Ralf Jung's avatar
Ralf Jung committed
518 519
\and
{ \mval(\melt) \proves \always \mval(\melt)}
520 521
\end{mathpar}

Ralf Jung's avatar
Ralf Jung committed
522
\paragraph{Laws of primitive view shifts.}
Ralf Jung's avatar
Ralf Jung committed
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
\begin{mathpar}
\infer[pvs-intro]
{}{\prop \proves \pvs[\mask] \prop}

\infer[pvs-mono]
{\prop \proves \propB}
{\pvs[\mask_1][\mask_2] \prop \proves \pvs[\mask_1][\mask_2] \propB}

\infer[pvs-timeless]
{\timeless\prop}
{\later\prop \proves \pvs[\mask] \prop}

\infer[pvs-trans]
{\mask_2 \subseteq \mask_1 \cup \mask_3}
{\pvs[\mask_1][\mask_2] \pvs[\mask_2][\mask_3] \prop \proves \pvs[\mask_1][\mask_3] \prop}

\infer[pvs-mask-frame]
Ralf Jung's avatar
Ralf Jung committed
540
{}{\pvs[\mask_1][\mask_2] \prop \proves \pvs[\mask_1 \uplus \mask_\f][\mask_2 \uplus \mask_\f] \prop}
Ralf Jung's avatar
Ralf Jung committed
541 542 543 544

\infer[pvs-frame]
{}{\propB * \pvs[\mask_1][\mask_2]\prop \proves \pvs[\mask_1][\mask_2] \propB * \prop}

Ralf Jung's avatar
Ralf Jung committed
545
\inferH{pvs-allocI}
Ralf Jung's avatar
Ralf Jung committed
546 547 548
{\text{$\mask$ is infinite}}
{\later\prop \proves \pvs[\mask] \Exists \iname \in \mask. \knowInv\iname\prop}

Ralf Jung's avatar
Ralf Jung committed
549
\inferH{pvs-openI}
Ralf Jung's avatar
Ralf Jung committed
550 551
{}{\knowInv\iname\prop \proves \pvs[\set\iname][\emptyset] \later\prop}

Ralf Jung's avatar
Ralf Jung committed
552
\inferH{pvs-closeI}
Ralf Jung's avatar
Ralf Jung committed
553 554
{}{\knowInv\iname\prop \land \later\prop \proves \pvs[\emptyset][\set\iname] \TRUE}

Ralf Jung's avatar
Ralf Jung committed
555
\inferH{pvs-update}
Ralf Jung's avatar
Ralf Jung committed
556 557 558
{\melt \mupd \meltsB}
{\ownGGhost\melt \proves \pvs[\mask] \Exists\meltB\in\meltsB. \ownGGhost\meltB}
\end{mathpar}
559

Ralf Jung's avatar
Ralf Jung committed
560
\paragraph{Laws of weakest preconditions.}
Ralf Jung's avatar
Ralf Jung committed
561 562
\begin{mathpar}
\infer[wp-value]
563
{}{\prop[\val/\var] \proves \wpre{\val}[\mask]{\Ret\var.\prop}}
Ralf Jung's avatar
Ralf Jung committed
564 565

\infer[wp-mono]
566
{\mask_1 \subseteq \mask_2 \and \var:\textlog{val}\mid\prop \proves \propB}
567
{\wpre\expr[\mask_1]{\Ret\var.\prop} \proves \wpre\expr[\mask_2]{\Ret\var.\propB}}
Ralf Jung's avatar
Ralf Jung committed
568 569

\infer[pvs-wp]
570
{}{\pvs[\mask] \wpre\expr[\mask]{\Ret\var.\prop} \proves \wpre\expr[\mask]{\Ret\var.\prop}}
Ralf Jung's avatar
Ralf Jung committed
571 572

\infer[wp-pvs]
573
{}{\wpre\expr[\mask]{\Ret\var.\pvs[\mask] \prop} \proves \wpre\expr[\mask]{\Ret\var.\prop}}
Ralf Jung's avatar
Ralf Jung committed
574 575 576

\infer[wp-atomic]
{\mask_2 \subseteq \mask_1 \and \physatomic{\expr}}
577 578
{\pvs[\mask_1][\mask_2] \wpre\expr[\mask_2]{\Ret\var. \pvs[\mask_2][\mask_1]\prop}
 \proves \wpre\expr[\mask_1]{\Ret\var.\prop}}
Ralf Jung's avatar
Ralf Jung committed
579 580

\infer[wp-frame]
581
{}{\propB * \wpre\expr[\mask]{\Ret\var.\prop} \proves \wpre\expr[\mask]{\Ret\var.\propB*\prop}}
Ralf Jung's avatar
Ralf Jung committed
582 583

\infer[wp-frame-step]
Ralf Jung's avatar
Ralf Jung committed
584 585
{\toval(\expr) = \bot \and \mask_2 \subseteq \mask_1}
{\wpre\expr[\mask]{\Ret\var.\prop} * \pvs[\mask_1][\mask_2]\later\pvs[\mask_2][\mask_1]\propB \proves \wpre\expr[\mask \uplus \mask_1]{\Ret\var.\propB*\prop}}
Ralf Jung's avatar
Ralf Jung committed
586 587 588

\infer[wp-bind]
{\text{$\lctx$ is a context}}
589
{\wpre\expr[\mask]{\Ret\var. \wpre{\lctx(\ofval(\var))}[\mask]{\Ret\varB.\prop}} \proves \wpre{\lctx(\expr)}[\mask]{\Ret\varB.\prop}}
Ralf Jung's avatar
Ralf Jung committed
590
\end{mathpar}
591

Ralf Jung's avatar
Ralf Jung committed
592 593
\paragraph{Lifting of operational semantics.}~
\begin{mathpar}
Ralf Jung's avatar
Ralf Jung committed
594 595
  \infer[wp-lift-step]
  {\mask_2 \subseteq \mask_1 \and
Ralf Jung's avatar
Ralf Jung committed
596
   \toval(\expr_1) = \bot}
Ralf Jung's avatar
Ralf Jung committed
597
  { {\begin{inbox} % for some crazy reason, LaTeX is actually sensitive to the space between the "{ {" here and the "} }" below...
Ralf Jung's avatar
Ralf Jung committed
598
        ~~\pvs[\mask_1][\mask_2] \Exists \state_1. \red(\expr_1,\state_1) \land \later\ownPhys{\state_1} * \later\All \expr_2, \state_2, \expr_\f. (\expr_1, \state_1 \step \expr_2, \state_2, \expr_\f) \land {}\\\qquad\qquad\qquad\qquad\qquad \ownPhys{\state_2} \wand \pvs[\mask_2][\mask_1] \wpre{\expr_2}[\mask_1]{\Ret\var.\prop} * \wpre{\expr_\f}[\top]{\Ret\any.\TRUE} {}\\\proves \wpre{\expr_1}[\mask_1]{\Ret\var.\prop}
Ralf Jung's avatar
Ralf Jung committed
599
      \end{inbox}} }
Ralf Jung's avatar
Ralf Jung committed
600 601 602 603

  \infer[wp-lift-pure-step]
  {\toval(\expr_1) = \bot \and
   \All \state_1. \red(\expr_1, \state_1) \and
Ralf Jung's avatar
Ralf Jung committed
604 605
   \All \state_1, \expr_2, \state_2, \expr_\f. \expr_1,\state_1 \step \expr_2,\state_2,\expr_\f \Ra \state_1 = \state_2 }
  {\later\All \state, \expr_2, \expr_\f. (\expr_1,\state \step \expr_2, \state,\expr_\f)  \Ra \wpre{\expr_2}[\mask_1]{\Ret\var.\prop} * \wpre{\expr_\f}[\top]{\Ret\any.\TRUE} \proves \wpre{\expr_1}[\mask_1]{\Ret\var.\prop}}
Ralf Jung's avatar
Ralf Jung committed
606
\end{mathpar}
Ralf Jung's avatar
Ralf Jung committed
607

Ralf Jung's avatar
Ralf Jung committed
608
Here we define $\wpre{\expr_\f}[\mask]{\Ret\var.\prop} \eqdef \TRUE$ if $\expr_\f = \bot$ (remember that our stepping relation can, but does not have to, define a forked-off expression).
609 610 611

\subsection{Adequacy}

Ralf Jung's avatar
Ralf Jung committed
612
The adequacy statement concerning functional correctness reads as follows:
613
\begin{align*}
Ralf Jung's avatar
Ralf Jung committed
614
 &\All \mask, \expr, \val, \pred, \state, \melt, \state', \tpool'.
Ralf Jung's avatar
Ralf Jung committed
615
 \\&(\All n. \melt \in \mval_n) \Ra
616
 \\&( \ownPhys\state * \ownGGhost\melt \proves \wpre{\expr}[\mask]{x.\; \pred(x)}) \Ra
Ralf Jung's avatar
Ralf Jung committed
617 618
 \\&\cfg{\state}{[\expr]} \step^\ast
     \cfg{\state'}{[\val] \dplus \tpool'} \Ra
619 620
     \\&\pred(\val)
\end{align*}
Ralf Jung's avatar
Ralf Jung committed
621
where $\pred$ is a \emph{meta-level} predicate over values, \ie it can mention neither resources nor invariants.
622

Ralf Jung's avatar
Ralf Jung committed
623 624 625 626 627 628 629
Furthermore, the following adequacy statement shows that our weakest preconditions imply that the execution never gets \emph{stuck}: Every expression in the thread pool either is a value, or can reduce further.
\begin{align*}
 &\All \mask, \expr, \state, \melt, \state', \tpool'.
 \\&(\All n. \melt \in \mval_n) \Ra
 \\&( \ownPhys\state * \ownGGhost\melt \proves \wpre{\expr}[\mask]{x.\; \pred(x)}) \Ra
 \\&\cfg{\state}{[\expr]} \step^\ast
     \cfg{\state'}{\tpool'} \Ra
630
     \\&\All\expr'\in\tpool'. \toval(\expr') \neq \bot \lor \red(\expr', \state')
Ralf Jung's avatar
Ralf Jung committed
631 632 633
\end{align*}
Notice that this is stronger than saying that the thread pool can reduce; we actually assert that \emph{every} non-finished thread can take a step.

634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658

% RJ: If we want this section back, we should port it to primitive view shifts and prove it in Coq.
% \subsection{Unsound rules}

% Some rule suggestions (or rather, wishes) keep coming up, which are unsound. We collect them here.
% \begin{mathpar}
% 	\infer
% 	{P \vs Q}
% 	{\later P \vs \later Q}
% 	\and
% 	\infer
% 	{\later(P \vs Q)}
% 	{\later P \vs \later Q}
% \end{mathpar}

% Of course, the second rule implies the first, so let's focus on that.
% Since implications work under $\later$, from $\later P$ we can get $\later \pvs{Q}$.
% If we now try to prove $\pvs{\later Q}$, we will be unable to establish world satisfaction in the new world:
% We have no choice but to use $\later \pvs{Q}$ at one step index below what we are operating on (because we have it under a $\later$).
% We can easily get world satisfaction for that lower step-index (by downwards-closedness of step-indexed predicates).
% We can, however, not make much use of the world satisfaction that we get out, becaase it is one step-index too low.




659 660 661 662
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "iris"
%%% End: