sts.v 18 KB
Newer Older
1
From iris.prelude Require Export set.
2 3
From iris.algebra Require Export cmra.
From iris.algebra Require Import dra.
Robbert Krebbers's avatar
Robbert Krebbers committed
4 5
Local Arguments valid _ _ !_ /.
Local Arguments op _ _ !_ !_ /.
Ralf Jung's avatar
Ralf Jung committed
6
Local Arguments core _ _ !_ /.
Robbert Krebbers's avatar
Robbert Krebbers committed
7

Robbert Krebbers's avatar
Robbert Krebbers committed
8
(** * Definition of STSs *)
9
Module sts.
10
Structure stsT := STS {
Ralf Jung's avatar
Ralf Jung committed
11 12
  state : Type;
  token : Type;
Robbert Krebbers's avatar
Robbert Krebbers committed
13 14
  prim_step : relation state;
  tok : state  set token;
Ralf Jung's avatar
Ralf Jung committed
15
}.
16
Arguments STS {_ _} _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
17 18 19 20
Arguments prim_step {_} _ _.
Arguments tok {_} _.
Notation states sts := (set (state sts)).
Notation tokens sts := (set (token sts)).
Ralf Jung's avatar
Ralf Jung committed
21

Robbert Krebbers's avatar
Robbert Krebbers committed
22 23 24
(** * Theory and definitions *)
Section sts.
Context {sts : stsT}.
Ralf Jung's avatar
Ralf Jung committed
25

Robbert Krebbers's avatar
Robbert Krebbers committed
26 27
(** ** Step relations *)
Inductive step : relation (state sts * tokens sts) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
28
  | Step s1 s2 T1 T2 :
Robbert Krebbers's avatar
Robbert Krebbers committed
29
     prim_step s1 s2  tok s1  T1  tok s2  T2 
Ralf Jung's avatar
Ralf Jung committed
30
     tok s1  T1  tok s2  T2  step (s1,T1) (s2,T2).
Robbert Krebbers's avatar
Robbert Krebbers committed
31
Notation steps := (rtc step).
Robbert Krebbers's avatar
Robbert Krebbers committed
32
Inductive frame_step (T : tokens sts) (s1 s2 : state sts) : Prop :=
Robbert Krebbers's avatar
Robbert Krebbers committed
33
  | Frame_step T1 T2 :
Robbert Krebbers's avatar
Robbert Krebbers committed
34
     T1  tok s1  T  step (s1,T1) (s2,T2)  frame_step T s1 s2.
Robbert Krebbers's avatar
Robbert Krebbers committed
35 36 37

(** ** Closure under frame steps *)
Record closed (S : states sts) (T : tokens sts) : Prop := Closed {
Robbert Krebbers's avatar
Robbert Krebbers committed
38
  closed_disjoint s : s  S  tok s  T;
Robbert Krebbers's avatar
Robbert Krebbers committed
39 40
  closed_step s1 s2 : s1  S  frame_step T s1 s2  s2  S
}.
Robbert Krebbers's avatar
Robbert Krebbers committed
41
Definition up (s : state sts) (T : tokens sts) : states sts :=
42
  {[ s' | rtc (frame_step T) s s' ]}.
Robbert Krebbers's avatar
Robbert Krebbers committed
43
Definition up_set (S : states sts) (T : tokens sts) : states sts :=
44
  S = λ s, up s T.
Robbert Krebbers's avatar
Robbert Krebbers committed
45

Robbert Krebbers's avatar
Robbert Krebbers committed
46 47
(** Tactic setup *)
Hint Resolve Step.
48 49 50 51
Hint Extern 50 (equiv (A:=set _) _ _) => set_solver : sts.
Hint Extern 50 (¬equiv (A:=set _) _ _) => set_solver : sts.
Hint Extern 50 (_  _) => set_solver : sts.
Hint Extern 50 (_  _) => set_solver : sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
52
Hint Extern 50 (_  _) => set_solver : sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
53 54

(** ** Setoids *)
Ralf Jung's avatar
Ralf Jung committed
55 56 57
Instance framestep_mono : Proper (flip () ==> (=) ==> (=) ==> impl) frame_step.
Proof.
  intros ?? HT ?? <- ?? <-; destruct 1; econstructor;
58
    eauto with sts; set_solver.
Ralf Jung's avatar
Ralf Jung committed
59
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
60
Global Instance framestep_proper : Proper (() ==> (=) ==> (=) ==> iff) frame_step.
61
Proof. move=> ?? /collection_equiv_spec [??]; split; by apply framestep_mono. Qed.
62
Instance closed_proper' : Proper (() ==> () ==> impl) closed.
Robbert Krebbers's avatar
Robbert Krebbers committed
63
Proof. destruct 3; constructor; intros until 0; setoid_subst; eauto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
64
Global Instance closed_proper : Proper (() ==> () ==> iff) closed.
65
Proof. by split; apply closed_proper'. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
66
Global Instance up_preserving : Proper ((=) ==> flip () ==> ()) up.
Robbert Krebbers's avatar
Robbert Krebbers committed
67
Proof.
68
  intros s ? <- T T' HT ; apply elem_of_subseteq.
Robbert Krebbers's avatar
Robbert Krebbers committed
69
  induction 1 as [|s1 s2 s3 [T1 T2]]; [constructor|].
70
  eapply elem_of_mkSet, rtc_l; [eapply Frame_step with T1 T2|]; eauto with sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
71
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
72
Global Instance up_proper : Proper ((=) ==> () ==> ()) up.
73 74 75
Proof.
  by move=> ??? ?? /collection_equiv_spec [??]; split; apply up_preserving.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
76
Global Instance up_set_preserving : Proper (() ==> flip () ==> ()) up_set.
77 78
Proof.
  intros S1 S2 HS T1 T2 HT. rewrite /up_set.
79
  f_equiv; last done. move =>s1 s2 Hs. simpl in HT. by apply up_preserving.
80
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
81
Global Instance up_set_proper : Proper (() ==> () ==> ()) up_set.
82 83 84 85
Proof.
  move=> S1 S2 /collection_equiv_spec [??] T1 T2 /collection_equiv_spec [??];
    split; by apply up_set_preserving.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
86 87 88 89 90 91

(** ** Properties of closure under frame steps *)
Lemma closed_steps S T s1 s2 :
  closed S T  s1  S  rtc (frame_step T) s1 s2  s2  S.
Proof. induction 3; eauto using closed_step. Qed.
Lemma closed_op T1 T2 S1 S2 :
92
  closed S1 T1  closed S2 T2  closed (S1  S2) (T1  T2).
Robbert Krebbers's avatar
Robbert Krebbers committed
93
Proof.
94
  intros [? Hstep1] [? Hstep2]; split; [set_solver|].
Robbert Krebbers's avatar
Robbert Krebbers committed
95
  intros s3 s4; rewrite !elem_of_intersection; intros [??] [T3 T4 ?]; split.
96 97
  - apply Hstep1 with s3, Frame_step with T3 T4; auto with sts.
  - apply Hstep2 with s3, Frame_step with T3 T4; auto with sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
98 99
Qed.
Lemma step_closed s1 s2 T1 T2 S Tf :
Robbert Krebbers's avatar
Robbert Krebbers committed
100 101
  step (s1,T1) (s2,T2)  closed S Tf  s1  S  T1  Tf 
  s2  S  T2  Tf  tok s2  T2.
Robbert Krebbers's avatar
Robbert Krebbers committed
102
Proof.
103
  inversion_clear 1 as [???? HR Hs1 Hs2]; intros [? Hstep]??; split_and?; auto.
104
  - eapply Hstep with s1, Frame_step with T1 T2; auto with sts.
105
  - set_solver -Hstep Hs1 Hs2.
Robbert Krebbers's avatar
Robbert Krebbers committed
106
Qed.
107
Lemma steps_closed s1 s2 T1 T2 S Tf :
Robbert Krebbers's avatar
Robbert Krebbers committed
108 109
  steps (s1,T1) (s2,T2)  closed S Tf  s1  S  T1  Tf 
  tok s1  T1  s2  S  T2  Tf  tok s2  T2.
110
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
111 112 113 114 115
  remember (s1,T1) as sT1 eqn:HsT1; remember (s2,T2) as sT2 eqn:HsT2.
  intros Hsteps; revert s1 T1 HsT1 s2 T2 HsT2.
  induction Hsteps as [?|? [s2 T2] ? Hstep Hsteps IH];
     intros s1 T1 HsT1 s2' T2' ?????; simplify_eq; first done.
  destruct (step_closed s1 s2 T1 T2 S Tf) as (?&?&?); eauto.
116
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
117 118

(** ** Properties of the closure operators *)
119
Lemma elem_of_up s T : s  up s T.
Robbert Krebbers's avatar
Robbert Krebbers committed
120
Proof. constructor. Qed.
121
Lemma subseteq_up_set S T : S  up_set S T.
Robbert Krebbers's avatar
Robbert Krebbers committed
122
Proof. intros s ?; apply elem_of_bind; eauto using elem_of_up. Qed.
123 124
Lemma up_up_set s T : up s T  up_set {[ s ]} T.
Proof. by rewrite /up_set collection_bind_singleton. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
125
Lemma closed_up_set S T : ( s, s  S  tok s  T)  closed (up_set S T) T.
Robbert Krebbers's avatar
Robbert Krebbers committed
126
Proof.
127
  intros HS; unfold up_set; split.
128
  - intros s; rewrite !elem_of_bind; intros (s'&Hstep&Hs').
129
    specialize (HS s' Hs'); clear Hs' S.
130
    induction Hstep as [s|s1 s2 s3 [T1 T2 ? Hstep] ? IH]; first done.
Robbert Krebbers's avatar
Robbert Krebbers committed
131
    inversion_clear Hstep; apply IH; clear IH; auto with sts.
132
  - intros s1 s2; rewrite /up; set_unfold; intros (s&?&?) ?; exists s.
Robbert Krebbers's avatar
Robbert Krebbers committed
133 134
    split; [eapply rtc_r|]; eauto.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
135
Lemma closed_up s T : tok s  T  closed (up s T) T.
Robbert Krebbers's avatar
Robbert Krebbers committed
136
Proof.
137
  intros; rewrite -(collection_bind_singleton (λ s, up s T) s).
138
  apply closed_up_set; set_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
139
Qed.
140 141
Lemma closed_up_set_empty S : closed (up_set S ) .
Proof. eauto using closed_up_set with sts. Qed.
142
Lemma closed_up_empty s : closed (up s ) .
Robbert Krebbers's avatar
Robbert Krebbers committed
143
Proof. eauto using closed_up with sts. Qed.
144
Lemma up_set_empty S T : up_set S T    S  .
Robbert Krebbers's avatar
Robbert Krebbers committed
145 146
Proof. move:(subseteq_up_set S T). set_solver. Qed.
Lemma up_set_non_empty S T : S    up_set S T  .
147
Proof. by move=>? /up_set_empty. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
148 149
Lemma up_non_empty s T : up s T  .
Proof. eapply non_empty_inhabited, elem_of_up. Qed.
150
Lemma up_closed S T : closed S T  up_set S T  S.
Robbert Krebbers's avatar
Robbert Krebbers committed
151
Proof.
152 153
  intros ?; apply collection_equiv_spec; split; auto using subseteq_up_set.
  intros s; unfold up_set; rewrite elem_of_bind; intros (s'&Hstep&?).
Robbert Krebbers's avatar
Robbert Krebbers committed
154 155
  induction Hstep; eauto using closed_step.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
156 157 158 159 160 161 162
Lemma up_subseteq s T S : closed S T  s  S  sts.up s T  S.
Proof. move=> ?? s' ?. eauto using closed_steps. Qed.
Lemma up_set_subseteq S1 T S2 : closed S2 T  S1  S2  sts.up_set S1 T  S2.
Proof. move=> ?? s [s' [? ?]]. eauto using closed_steps. Qed.
End sts.

Notation steps := (rtc step).
Robbert Krebbers's avatar
Robbert Krebbers committed
163 164 165 166 167 168 169 170

(* The type of bounds we can give to the state of an STS. This is the type
   that we equip with an RA structure. *)
Inductive car (sts : stsT) :=
  | auth : state sts  set (token sts)  car sts
  | frag : set (state sts)  set (token sts )  car sts.
Arguments auth {_} _ _.
Arguments frag {_} _ _.
171
End sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
172

173 174 175 176
Notation stsT := sts.stsT.
Notation STS := sts.STS.

(** * STSs form a disjoint RA *)
Robbert Krebbers's avatar
Robbert Krebbers committed
177
Section sts_dra.
178 179
Context (sts : stsT).
Import sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
180 181 182 183 184 185
Implicit Types S : states sts.
Implicit Types T : tokens sts.

Inductive sts_equiv : Equiv (car sts) :=
  | auth_equiv s T1 T2 : T1  T2  auth s T1  auth s T2
  | frag_equiv S1 S2 T1 T2 : T1  T2  S1  S2  frag S1 T1  frag S2 T2.
186 187
Existing Instance sts_equiv.
Instance sts_valid : Valid (car sts) := λ x,
188
  match x with
Robbert Krebbers's avatar
Robbert Krebbers committed
189
  | auth s T => tok s  T
Robbert Krebbers's avatar
Robbert Krebbers committed
190 191
  | frag S' T => closed S' T  S'  
  end.
192
Instance sts_core : Core (car sts) := λ x,
Robbert Krebbers's avatar
Robbert Krebbers committed
193 194 195 196 197 198
  match x with
  | frag S' _ => frag (up_set S'  ) 
  | auth s _  => frag (up s ) 
  end.
Inductive sts_disjoint : Disjoint (car sts) :=
  | frag_frag_disjoint S1 S2 T1 T2 :
Robbert Krebbers's avatar
Robbert Krebbers committed
199 200 201
     S1  S2    T1  T2  frag S1 T1  frag S2 T2
  | auth_frag_disjoint s S T1 T2 : s  S  T1  T2  auth s T1  frag S T2
  | frag_auth_disjoint s S T1 T2 : s  S  T1  T2  frag S T1  auth s T2.
202 203
Existing Instance sts_disjoint.
Instance sts_op : Op (car sts) := λ x1 x2,
Robbert Krebbers's avatar
Robbert Krebbers committed
204 205 206 207 208 209 210
  match x1, x2 with
  | frag S1 T1, frag S2 T2 => frag (S1  S2) (T1  T2)
  | auth s T1, frag _ T2 => auth s (T1  T2)
  | frag _ T1, auth s T2 => auth s (T1  T2)
  | auth s T1, auth _ T2 => auth s (T1  T2)(* never happens *)
  end.

Robbert Krebbers's avatar
Robbert Krebbers committed
211 212 213 214
Hint Extern 50 (equiv (A:=set _) _ _) => set_solver : sts.
Hint Extern 50 (¬equiv (A:=set _) _ _) => set_solver : sts.
Hint Extern 50 (_  _) => set_solver : sts.
Hint Extern 50 (_  _) => set_solver : sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
215 216
Hint Extern 50 (_  _) => set_solver : sts.

217 218 219 220 221 222
Global Instance auth_proper s : Proper (() ==> ()) (@auth sts s).
Proof. by constructor. Qed.
Global Instance frag_proper : Proper (() ==> () ==> ()) (@frag sts).
Proof. by constructor. Qed.

Instance sts_equivalence: Equivalence (() : relation (car sts)).
Robbert Krebbers's avatar
Robbert Krebbers committed
223 224
Proof.
  split.
225 226
  - by intros []; constructor.
  - by destruct 1; constructor.
227
  - destruct 1; inversion_clear 1; constructor; etrans; eauto.
Robbert Krebbers's avatar
Robbert Krebbers committed
228
Qed.
229
Lemma sts_dra_mixin : DRAMixin (car sts).
Robbert Krebbers's avatar
Robbert Krebbers committed
230 231
Proof.
  split.
232 233 234 235 236
  - apply _.
  - by do 2 destruct 1; constructor; setoid_subst.
  - by destruct 1; constructor; setoid_subst.
  - by destruct 1; simpl; intros ?; setoid_subst.
  - by intros ? [|]; destruct 1; inversion_clear 1; constructor; setoid_subst.
237
  - destruct 3; simpl in *; destruct_and?; eauto using closed_op;
238
      match goal with H : closed _ _ |- _ => destruct H end; set_solver.
239
  - intros []; simpl; intros; destruct_and?; split;
Robbert Krebbers's avatar
Robbert Krebbers committed
240
      eauto using closed_up, up_non_empty, closed_up_set, up_set_empty with sts.
241 242 243 244 245 246 247 248
  - intros [] [] []; constructor; rewrite ?assoc; auto with sts.
  - destruct 4; inversion_clear 1; constructor; auto with sts.
  - destruct 4; inversion_clear 1; constructor; auto with sts.
  - destruct 1; constructor; auto with sts.
  - destruct 3; constructor; auto with sts.
  - intros [|S T]; constructor; auto using elem_of_up with sts.
  - intros [|S T]; constructor; auto with sts.
  - intros [s T|S T]; constructor; auto with sts.
249
    + rewrite (up_closed (up _ _)); auto using closed_up with sts.
250
    + rewrite (up_closed (up_set _ _)); eauto using closed_up_set with sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
251 252 253
  - intros x y. exists (core (x  y))=> ?? Hxy; split_and?.
    + destruct Hxy; constructor; unfold up_set; set_solver.
    + destruct Hxy; simpl; split_and?;
Robbert Krebbers's avatar
Robbert Krebbers committed
254 255
        auto using closed_up_set_empty, closed_up_empty, up_non_empty; [].
      apply up_set_non_empty. set_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
256
    + destruct Hxy; constructor;
257
        repeat match goal with
258 259 260 261
        | |- context [ up_set ?S ?T ] =>
           unless (S  up_set S T) by done; pose proof (subseteq_up_set S T)
        | |- context [ up ?s ?T ] =>
           unless (s  up s T) by done; pose proof (elem_of_up s T)
262
        end; auto with sts.
263
Qed.
264 265
Canonical Structure stsDR : draT := DRAT (car sts) sts_dra_mixin.
End sts_dra.
Robbert Krebbers's avatar
Robbert Krebbers committed
266 267 268

(** * The STS Resource Algebra *)
(** Finally, the general theory of STS that should be used by users *)
269 270
Notation stsC sts := (validityC (stsDR sts)).
Notation stsR sts := (validityR (stsDR sts)).
Robbert Krebbers's avatar
Robbert Krebbers committed
271 272 273

Section sts_definitions.
  Context {sts : stsT}.
274
  Definition sts_auth (s : sts.state sts) (T : sts.tokens sts) : stsR sts :=
275
    to_validity (sts.auth s T).
276
  Definition sts_frag (S : sts.states sts) (T : sts.tokens sts) : stsR sts :=
277
    to_validity (sts.frag S T).
278
  Definition sts_frag_up (s : sts.state sts) (T : sts.tokens sts) : stsR sts :=
Robbert Krebbers's avatar
Robbert Krebbers committed
279 280 281 282 283 284 285 286 287 288 289 290
    sts_frag (sts.up s T) T.
End sts_definitions.
Instance: Params (@sts_auth) 2.
Instance: Params (@sts_frag) 1.
Instance: Params (@sts_frag_up) 2.

Section stsRA.
Import sts.
Context {sts : stsT}.
Implicit Types s : state sts.
Implicit Types S : states sts.
Implicit Types T : tokens sts.
291
Arguments dra_valid _ !_/.
292

Robbert Krebbers's avatar
Robbert Krebbers committed
293 294
(** Setoids *)
Global Instance sts_auth_proper s : Proper (() ==> ()) (sts_auth s).
295
Proof. solve_proper. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
296
Global Instance sts_frag_proper : Proper (() ==> () ==> ()) (@sts_frag sts).
297
Proof. solve_proper. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
298
Global Instance sts_frag_up_proper s : Proper (() ==> ()) (sts_frag_up s).
299
Proof. solve_proper. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
300

Robbert Krebbers's avatar
Robbert Krebbers committed
301
(** Validity *)
Robbert Krebbers's avatar
Robbert Krebbers committed
302
Lemma sts_auth_valid s T :  sts_auth s T  tok s  T.
303
Proof. done. Qed.
304
Lemma sts_frag_valid S T :  sts_frag S T  closed S T  S  .
305
Proof. done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
306
Lemma sts_frag_up_valid s T : tok s  T   sts_frag_up s T.
Robbert Krebbers's avatar
Robbert Krebbers committed
307
Proof. intros. by apply sts_frag_valid; auto using closed_up, up_non_empty. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
308

Robbert Krebbers's avatar
Robbert Krebbers committed
309 310
Lemma sts_auth_frag_valid_inv s S T1 T2 :
   (sts_auth s T1  sts_frag S T2)  s  S.
311
Proof. by intros (?&?&Hdisj); inversion Hdisj. Qed.
312

Robbert Krebbers's avatar
Robbert Krebbers committed
313 314 315 316
(** Op *)
Lemma sts_op_auth_frag s S T :
  s  S  closed S T  sts_auth s   sts_frag S T  sts_auth s T.
Proof.
317
  intros; split; [split|constructor; set_solver]; simpl.
318
  - intros (?&?&?); by apply closed_disjoint with S.
319
  - intros; split_and?; last constructor; set_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
320 321
Qed.
Lemma sts_op_auth_frag_up s T :
322 323 324
  sts_auth s   sts_frag_up s T  sts_auth s T.
Proof.
  intros; split; [split|constructor; set_solver]; simpl.
325
  - intros (?&[??]&?). by apply closed_disjoint with (up s T), elem_of_up.
326 327 328
  - intros; split_and?.
    + set_solver+.
    + by apply closed_up.
Robbert Krebbers's avatar
Robbert Krebbers committed
329
    + apply up_non_empty.
330 331
    + constructor; last set_solver. apply elem_of_up.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
332

Ralf Jung's avatar
Ralf Jung committed
333
Lemma sts_op_frag S1 S2 T1 T2 :
Robbert Krebbers's avatar
Robbert Krebbers committed
334
  T1  T2  sts.closed S1 T1  sts.closed S2 T2 
Ralf Jung's avatar
Ralf Jung committed
335 336
  sts_frag (S1  S2) (T1  T2)  sts_frag S1 T1  sts_frag S2 T2.
Proof.
337 338
  intros HT HS1 HS2. rewrite /sts_frag -to_validity_op //.
  move=>/=[??]. split_and!; [auto; set_solver..|by constructor].
Ralf Jung's avatar
Ralf Jung committed
339 340
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
341 342
(** Frame preserving updates *)
Lemma sts_update_auth s1 s2 T1 T2 :
343
  steps (s1,T1) (s2,T2)  sts_auth s1 T1 ~~> sts_auth s2 T2.
Robbert Krebbers's avatar
Robbert Krebbers committed
344
Proof.
345
  intros ?; apply validity_update.
346
  inversion 3 as [|? S ? Tf|]; simplify_eq/=; destruct_and?.
347
  destruct (steps_closed s1 s2 T1 T2 S Tf) as (?&?&?); auto; [].
348
  repeat (done || constructor).
Robbert Krebbers's avatar
Robbert Krebbers committed
349
Qed.
350

351 352
Lemma sts_update_frag S1 S2 T1 T2 :
  closed S2 T2  S1  S2  T2  T1  sts_frag S1 T1 ~~> sts_frag S2 T2.
353
Proof.
354
  rewrite /sts_frag=> ? HS HT. apply validity_update.
355
  inversion 3 as [|? S ? Tf|]; simplify_eq/=.
356 357
  - split_and!; first done; first set_solver. constructor; set_solver.
  - split_and!; first done; first set_solver. constructor; set_solver.
358 359
Qed.

360 361
Lemma sts_update_frag_up s1 S2 T1 T2 :
  closed S2 T2  s1  S2  T2  T1  sts_frag_up s1 T1 ~~> sts_frag S2 T2.
362
Proof.
363 364
  intros ? ? HT; apply sts_update_frag; [intros; eauto using closed_steps..].
  rewrite <-HT. eapply up_subseteq; done.
Robbert Krebbers's avatar
Robbert Krebbers committed
365 366
Qed.

367 368
Lemma sts_up_set_intersection S1 Sf Tf :
  closed Sf Tf  S1  Sf  S1  up_set (S1  Sf) Tf.
369 370
Proof.
  intros Hclf. apply (anti_symm ()).
371 372
  - move=>s [HS1 HSf]. split. by apply HS1. by apply subseteq_up_set.
  - move=>s [HS1 [s' [/elem_of_mkSet Hsup Hs']]]. split; first done.
373
    eapply closed_steps, Hsup; first done. set_solver +Hs'.
374 375
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
376
(** Inclusion *)
377 378 379
(* This is surprisingly different from to_validity_included. I am not sure
   whether this is because to_validity_included is non-canonical, or this
   one here is non-canonical - but I suspect both. *)
380
(* TODO: These have to be proven again. *)
381
(*
Robbert Krebbers's avatar
Robbert Krebbers committed
382
Lemma sts_frag_included S1 S2 T1 T2 :
383 384
  closed S2 T2 → S2 ≢ ∅ →
  (sts_frag S1 T1 ≼ sts_frag S2 T2) ↔
Robbert Krebbers's avatar
Robbert Krebbers committed
385
  (closed S1 T1 ∧ S1 ≢ ∅ ∧ ∃ Tf, T2 ≡ T1 ∪ Tf ∧ T1 ⊥ Tf ∧
386 387
                                 S2 ≡ S1 ∩ up_set S2 Tf).
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
388
  intros ??; split.
389
  - intros [[???] ?].
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
  destruct (to_validity_included (sts_dra.car sts) (sts_dra.frag S1 T1) (sts_dra.frag S2 T2)) as [Hfincl Htoincl].
  intros Hcl2 HS2ne. split.
  - intros Hincl. destruct Hfincl as ((Hcl1 & ?) & (z & EQ & Hval & Hdisj)).
    { split; last done. split; done. }
    clear Htoincl. split_and!; try done; [].
    destruct z as [sf Tf|Sf Tf].
    { exfalso. inversion_clear EQ. }
    exists Tf. inversion_clear EQ as [|? ? ? ? HT2 HS2].
    inversion_clear Hdisj as [? ? ? ? _ HTdisj | |]. split_and!; [done..|].
    rewrite HS2. apply up_set_intersection. apply Hval.
  - intros (Hcl & Hne & (Tf & HT & HTdisj & HS)). destruct Htoincl as ((Hcl' & ?) & (z & EQ)); last first.
    { exists z. exact EQ. } clear Hfincl.
    split; first (split; done). exists (sts_dra.frag (up_set S2 Tf) Tf). split_and!.
    + constructor; done.
    + simpl. split.
      * apply closed_up_set. move=>s Hs2. move:(closed_disjoint _ _ Hcl2 _ Hs2).
        set_solver +HT.
Robbert Krebbers's avatar
Robbert Krebbers committed
407
      * by apply up_set_non_empty.
408
    + constructor; last done. by rewrite -HS.
409 410
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
411
Lemma sts_frag_included' S1 S2 T :
412
  closed S2 T → closed S1 T → S2 ≢ ∅ → S1 ≢ ∅ → S2 ≡ S1 ∩ up_set S2 ∅ →
Robbert Krebbers's avatar
Robbert Krebbers committed
413
  sts_frag S1 T ≼ sts_frag S2 T.
414
Proof.
415 416
  intros. apply sts_frag_included; split_and?; auto.
  exists ∅; split_and?; done || set_solver+.
417
Qed. *)
418
End stsRA.
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492

(** STSs without tokens: Some stuff is simpler *)
Module sts_notok.
Structure stsT := STS {
  state : Type;
  prim_step : relation state;
}.
Arguments STS {_} _.
Arguments prim_step {_} _ _.
Notation states sts := (set (state sts)).

Canonical sts_notok (sts : stsT) : sts.stsT :=
  sts.STS (token:=Empty_set) (@prim_step sts) (λ _, ).

Section sts.
Context {sts : stsT}.
Implicit Types s : state sts.
Implicit Types S : states sts.

Notation prim_steps := (rtc prim_step).

Lemma sts_step s1 s2 :
  prim_step s1 s2  sts.step (s1, ) (s2, ).
Proof.
  intros. split; set_solver.
Qed.

Lemma sts_steps s1 s2 :
  prim_steps s1 s2  sts.steps (s1, ) (s2, ).
Proof.
  induction 1; eauto using sts_step, rtc_refl, rtc_l.
Qed.

Lemma frame_prim_step T s1 s2 :
  sts.frame_step T s1 s2  prim_step s1 s2.
Proof.
  inversion 1 as [??? Hstep]. inversion_clear Hstep. done.
Qed.

Lemma prim_frame_step T s1 s2 :
  prim_step s1 s2  sts.frame_step T s1 s2.
Proof.
  intros Hstep. apply sts.Frame_step with  ; first set_solver.
  by apply sts_step.
Qed.

Lemma mk_closed S :
  ( s1 s2, s1  S  prim_step s1 s2  s2  S)  sts.closed S .
Proof.
  intros ?. constructor; first by set_solver.
  intros ????. eauto using frame_prim_step.
Qed.

End sts.
Notation steps := (rtc prim_step).
End sts_notok.

Coercion sts_notok.sts_notok : sts_notok.stsT >-> sts.stsT.
Notation sts_notokT := sts_notok.stsT.
Notation STS_NoTok := sts_notok.STS.

Section sts_notokRA.
Import sts_notok.
Context {sts : sts_notokT}.
Implicit Types s : state sts.
Implicit Types S : states sts.

Lemma sts_notok_update_auth s1 s2 :
  rtc prim_step s1 s2  sts_auth s1  ~~> sts_auth s2 .
Proof.
  intros. by apply sts_update_auth, sts_steps.
Qed.

End sts_notokRA.