list.v 161 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1 2 3 4
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
(* This file is distributed under the terms of the BSD license. *)
(** This file collects general purpose definitions and theorems on lists that
are not in the Coq standard library. *)
5
From Coq Require Export Permutation.
6
From iris.prelude Require Export numbers base option.
7
Set Default Proof Using "Type*".
Robbert Krebbers's avatar
Robbert Krebbers committed
8 9 10 11

Arguments length {_} _.
Arguments cons {_} _ _.
Arguments app {_} _ _.
12 13 14 15

Instance: Params (@length) 1.
Instance: Params (@cons) 1.
Instance: Params (@app) 1.
Robbert Krebbers's avatar
Robbert Krebbers committed
16 17 18 19 20

Notation tail := tl.
Notation take := firstn.
Notation drop := skipn.

21
Arguments tail {_} _.
Robbert Krebbers's avatar
Robbert Krebbers committed
22 23 24
Arguments take {_} !_ !_ /.
Arguments drop {_} !_ !_ /.

25 26 27 28 29 30
Instance: Params (@tail) 1.
Instance: Params (@take) 1.
Instance: Params (@drop) 1.

Arguments Permutation {_} _ _.
Arguments Forall_cons {_} _ _ _ _ _.
31
Remove Hints Permutation_cons : typeclass_instances.
32

Robbert Krebbers's avatar
Robbert Krebbers committed
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
Notation "(::)" := cons (only parsing) : C_scope.
Notation "( x ::)" := (cons x) (only parsing) : C_scope.
Notation "(:: l )" := (λ x, cons x l) (only parsing) : C_scope.
Notation "(++)" := app (only parsing) : C_scope.
Notation "( l ++)" := (app l) (only parsing) : C_scope.
Notation "(++ k )" := (λ l, app l k) (only parsing) : C_scope.

Infix "≡ₚ" := Permutation (at level 70, no associativity) : C_scope.
Notation "(≡ₚ)" := Permutation (only parsing) : C_scope.
Notation "( x ≡ₚ)" := (Permutation x) (only parsing) : C_scope.
Notation "(≡ₚ x )" := (λ y, y ≡ₚ x) (only parsing) : C_scope.
Notation "(≢ₚ)" := (λ x y, ¬x ≡ₚ y) (only parsing) : C_scope.
Notation "x ≢ₚ y":= (¬x ≡ₚ y) (at level 70, no associativity) : C_scope.
Notation "( x ≢ₚ)" := (λ y, x ≢ₚ y) (only parsing) : C_scope.
Notation "(≢ₚ x )" := (λ y, y ≢ₚ x) (only parsing) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
49 50 51
Instance maybe_cons {A} : Maybe2 (@cons A) := λ l,
  match l with x :: l => Some (x,l) | _ => None end.

Robbert Krebbers's avatar
Robbert Krebbers committed
52
(** * Definitions *)
53 54 55 56 57 58
(** Setoid equality lifted to lists *)
Inductive list_equiv `{Equiv A} : Equiv (list A) :=
  | nil_equiv : []  []
  | cons_equiv x y l k : x  y  l  k  x :: l  y :: k.
Existing Instance list_equiv.

Robbert Krebbers's avatar
Robbert Krebbers committed
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
(** The operation [l !! i] gives the [i]th element of the list [l], or [None]
in case [i] is out of bounds. *)
Instance list_lookup {A} : Lookup nat A (list A) :=
  fix go i l {struct l} : option A := let _ : Lookup _ _ _ := @go in
  match l with
  | [] => None | x :: l => match i with 0 => Some x | S i => l !! i end
  end.

(** The operation [alter f i l] applies the function [f] to the [i]th element
of [l]. In case [i] is out of bounds, the list is returned unchanged. *)
Instance list_alter {A} : Alter nat A (list A) := λ f,
  fix go i l {struct l} :=
  match l with
  | [] => []
  | x :: l => match i with 0 => f x :: l | S i => x :: go i l end
  end.

(** The operation [<[i:=x]> l] overwrites the element at position [i] with the
value [x]. In case [i] is out of bounds, the list is returned unchanged. *)
Instance list_insert {A} : Insert nat A (list A) :=
  fix go i y l {struct l} := let _ : Insert _ _ _ := @go in
  match l with
  | [] => []
  | x :: l => match i with 0 => y :: l | S i => x :: <[i:=y]>l end
  end.
Fixpoint list_inserts {A} (i : nat) (k l : list A) : list A :=
  match k with
  | [] => l
  | y :: k => <[i:=y]>(list_inserts (S i) k l)
  end.
89
Instance: Params (@list_inserts) 1.
Robbert Krebbers's avatar
Robbert Krebbers committed
90 91 92 93 94 95 96 97 98 99 100 101 102 103

(** The operation [delete i l] removes the [i]th element of [l] and moves
all consecutive elements one position ahead. In case [i] is out of bounds,
the list is returned unchanged. *)
Instance list_delete {A} : Delete nat (list A) :=
  fix go (i : nat) (l : list A) {struct l} : list A :=
  match l with
  | [] => []
  | x :: l => match i with 0 => l | S i => x :: @delete _ _ go i l end
  end.

(** The function [option_list o] converts an element [Some x] into the
singleton list [[x]], and [None] into the empty list [[]]. *)
Definition option_list {A} : option A  list A := option_rect _ (λ x, [x]) [].
104 105
Instance: Params (@option_list) 1.
Instance maybe_list_singleton {A} : Maybe (λ x : A, [x]) := λ l,
Robbert Krebbers's avatar
Robbert Krebbers committed
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
  match l with [x] => Some x | _ => None end.

(** The function [filter P l] returns the list of elements of [l] that
satisfies [P]. The order remains unchanged. *)
Instance list_filter {A} : Filter A (list A) :=
  fix go P _ l := let _ : Filter _ _ := @go in
  match l with
  | [] => []
  | x :: l => if decide (P x) then x :: filter P l else filter P l
  end.

(** The function [list_find P l] returns the first index [i] whose element
satisfies the predicate [P]. *)
Definition list_find {A} P `{ x, Decision (P x)} : list A  option (nat * A) :=
  fix go l :=
  match l with
  | [] => None
  | x :: l => if decide (P x) then Some (0,x) else prod_map S id <$> go l
  end.
125
Instance: Params (@list_find) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
126 127 128 129 130

(** The function [replicate n x] generates a list with length [n] of elements
with value [x]. *)
Fixpoint replicate {A} (n : nat) (x : A) : list A :=
  match n with 0 => [] | S n => x :: replicate n x end.
131
Instance: Params (@replicate) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
132 133 134

(** The function [reverse l] returns the elements of [l] in reverse order. *)
Definition reverse {A} (l : list A) : list A := rev_append l [].
135
Instance: Params (@reverse) 1.
Robbert Krebbers's avatar
Robbert Krebbers committed
136 137 138 139 140

(** The function [last l] returns the last element of the list [l], or [None]
if the list [l] is empty. *)
Fixpoint last {A} (l : list A) : option A :=
  match l with [] => None | [x] => Some x | _ :: l => last l end.
141
Instance: Params (@last) 1.
Robbert Krebbers's avatar
Robbert Krebbers committed
142 143 144 145 146 147 148 149 150 151

(** The function [resize n y l] takes the first [n] elements of [l] in case
[length l ≤ n], and otherwise appends elements with value [x] to [l] to obtain
a list of length [n]. *)
Fixpoint resize {A} (n : nat) (y : A) (l : list A) : list A :=
  match l with
  | [] => replicate n y
  | x :: l => match n with 0 => [] | S n => x :: resize n y l end
  end.
Arguments resize {_} !_ _ !_.
152
Instance: Params (@resize) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
153 154 155 156 157 158 159 160

(** The function [reshape k l] transforms [l] into a list of lists whose sizes
are specified by [k]. In case [l] is too short, the resulting list will be
padded with empty lists. In case [l] is too long, it will be truncated. *)
Fixpoint reshape {A} (szs : list nat) (l : list A) : list (list A) :=
  match szs with
  | [] => [] | sz :: szs => take sz l :: reshape szs (drop sz l)
  end.
161
Instance: Params (@reshape) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199

Definition sublist_lookup {A} (i n : nat) (l : list A) : option (list A) :=
  guard (i + n  length l); Some (take n (drop i l)).
Definition sublist_alter {A} (f : list A  list A)
    (i n : nat) (l : list A) : list A :=
  take i l ++ f (take n (drop i l)) ++ drop (i + n) l.

(** Functions to fold over a list. We redefine [foldl] with the arguments in
the same order as in Haskell. *)
Notation foldr := fold_right.
Definition foldl {A B} (f : A  B  A) : A  list B  A :=
  fix go a l := match l with [] => a | x :: l => go (f a x) l end.

(** The monadic operations. *)
Instance list_ret: MRet list := λ A x, x :: @nil A.
Instance list_fmap : FMap list := λ A B f,
  fix go (l : list A) := match l with [] => [] | x :: l => f x :: go l end.
Instance list_omap : OMap list := λ A B f,
  fix go (l : list A) :=
  match l with
  | [] => []
  | x :: l => match f x with Some y => y :: go l | None => go l end
  end.
Instance list_bind : MBind list := λ A B f,
  fix go (l : list A) := match l with [] => [] | x :: l => f x ++ go l end.
Instance list_join: MJoin list :=
  fix go A (ls : list (list A)) : list A :=
  match ls with [] => [] | l :: ls => l ++ @mjoin _ go _ ls end.
Definition mapM `{MBind M, MRet M} {A B} (f : A  M B) : list A  M (list B) :=
  fix go l :=
  match l with [] => mret [] | x :: l => y  f x; k  go l; mret (y :: k) end.

(** We define stronger variants of map and fold that allow the mapped
function to use the index of the elements. *)
Definition imap_go {A B} (f : nat  A  B) : nat  list A  list B :=
  fix go (n : nat) (l : list A) :=
  match l with [] => [] | x :: l => f n x :: go (S n) l end.
Definition imap {A B} (f : nat  A  B) : list A  list B := imap_go f 0.
200 201
Arguments imap : simpl never.

Robbert Krebbers's avatar
Robbert Krebbers committed
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
Definition zipped_map {A B} (f : list A  list A  A  B) :
  list A  list A  list B := fix go l k :=
  match k with [] => [] | x :: k => f l k x :: go (x :: l) k end.

Definition imap2_go {A B C} (f : nat  A  B  C) :
    nat  list A  list B  list C:=
  fix go (n : nat) (l : list A) (k : list B) :=
  match l, k with
  | [], _ |_, [] => [] | x :: l, y :: k => f n x y :: go (S n) l k
  end.
Definition imap2 {A B C} (f : nat  A  B  C) :
  list A  list B  list C := imap2_go f 0.

Inductive zipped_Forall {A} (P : list A  list A  A  Prop) :
    list A  list A  Prop :=
  | zipped_Forall_nil l : zipped_Forall P l []
  | zipped_Forall_cons l k x :
     P l k x  zipped_Forall P (x :: l) k  zipped_Forall P l (x :: k).
Arguments zipped_Forall_nil {_ _} _.
Arguments zipped_Forall_cons {_ _} _ _ _ _ _.

(** The function [mask f βs l] applies the function [f] to elements in [l] at
positions that are [true] in [βs]. *)
Fixpoint mask {A} (f : A  A) (βs : list bool) (l : list A) : list A :=
  match βs, l with
  | β :: βs, x :: l => (if β then f x else x) :: mask f βs l
  | _, _ => l
  end.

(** The function [permutations l] yields all permutations of [l]. *)
Fixpoint interleave {A} (x : A) (l : list A) : list (list A) :=
  match l with
  | [] => [[x]]| y :: l => (x :: y :: l) :: ((y ::) <$> interleave x l)
  end.
Fixpoint permutations {A} (l : list A) : list (list A) :=
  match l with [] => [[]] | x :: l => permutations l = interleave x end.

239 240 241 242 243 244
(** The predicate [suffix] holds if the first list is a suffix of the second.
The predicate [prefix] holds if the first list is a prefix of the second. *)
Definition suffix {A} : relation (list A) := λ l1 l2,  k, l2 = k ++ l1.
Definition prefix {A} : relation (list A) := λ l1 l2,  k, l2 = l1 ++ k.
Infix "`suffix_of`" := suffix (at level 70) : C_scope.
Infix "`prefix_of`" := prefix (at level 70) : C_scope.
245 246
Hint Extern 0 (_ `prefix_of` _) => reflexivity.
Hint Extern 0 (_ `suffix_of` _) => reflexivity.
Robbert Krebbers's avatar
Robbert Krebbers committed
247 248

Section prefix_suffix_ops.
249 250
  Context `{EqDecision A}.

251
  Definition max_prefix : list A  list A  list A * list A * list A :=
Robbert Krebbers's avatar
Robbert Krebbers committed
252 253 254 255 256 257 258 259
    fix go l1 l2 :=
    match l1, l2 with
    | [], l2 => ([], l2, [])
    | l1, [] => (l1, [], [])
    | x1 :: l1, x2 :: l2 =>
      if decide_rel (=) x1 x2
      then prod_map id (x1 ::) (go l1 l2) else (x1 :: l1, x2 :: l2, [])
    end.
260 261
  Definition max_suffix (l1 l2 : list A) : list A * list A * list A :=
    match max_prefix (reverse l1) (reverse l2) with
Robbert Krebbers's avatar
Robbert Krebbers committed
262 263
    | (k1, k2, k3) => (reverse k1, reverse k2, reverse k3)
    end.
264 265
  Definition strip_prefix (l1 l2 : list A) := (max_prefix l1 l2).1.2.
  Definition strip_suffix (l1 l2 : list A) := (max_suffix l1 l2).1.2.
Robbert Krebbers's avatar
Robbert Krebbers committed
266 267 268 269 270 271 272 273
End prefix_suffix_ops.

(** A list [l1] is a sublist of [l2] if [l2] is obtained by removing elements
from [l1] without changing the order. *)
Inductive sublist {A} : relation (list A) :=
  | sublist_nil : sublist [] []
  | sublist_skip x l1 l2 : sublist l1 l2  sublist (x :: l1) (x :: l2)
  | sublist_cons x l1 l2 : sublist l1 l2  sublist l1 (x :: l2).
274 275
Infix "`sublist_of`" := sublist (at level 70) : C_scope.
Hint Extern 0 (_ `sublist_of` _) => reflexivity.
Robbert Krebbers's avatar
Robbert Krebbers committed
276

277
(** A list [l2] submseteq a list [l1] if [l2] is obtained by removing elements
Robbert Krebbers's avatar
Robbert Krebbers committed
278
from [l1] while possiblity changing the order. *)
279 280 281 282 283 284 285 286
Inductive submseteq {A} : relation (list A) :=
  | submseteq_nil : submseteq [] []
  | submseteq_skip x l1 l2 : submseteq l1 l2  submseteq (x :: l1) (x :: l2)
  | submseteq_swap x y l : submseteq (y :: x :: l) (x :: y :: l)
  | submseteq_cons x l1 l2 : submseteq l1 l2  submseteq l1 (x :: l2)
  | submseteq_trans l1 l2 l3 : submseteq l1 l2  submseteq l2 l3  submseteq l1 l3.
Infix "⊆+" := submseteq (at level 70) : C_scope.
Hint Extern 0 (_ + _) => reflexivity.
Robbert Krebbers's avatar
Robbert Krebbers committed
287

288 289 290 291 292 293 294 295 296 297 298 299 300 301
(** Removes [x] from the list [l]. The function returns a [Some] when the
+removal succeeds and [None] when [x] is not in [l]. *)
Fixpoint list_remove `{EqDecision A} (x : A) (l : list A) : option (list A) :=
  match l with
  | [] => None
  | y :: l => if decide (x = y) then Some l else (y ::) <$> list_remove x l
  end.

(** Removes all elements in the list [k] from the list [l]. The function returns
a [Some] when the removal succeeds and [None] some element of [k] is not in [l]. *)
Fixpoint list_remove_list `{EqDecision A} (k : list A) (l : list A) : option (list A) :=
  match k with
  | [] => Some l | x :: k => list_remove x l = list_remove_list k
  end.
Robbert Krebbers's avatar
Robbert Krebbers committed
302 303 304 305 306 307 308

Inductive Forall3 {A B C} (P : A  B  C  Prop) :
     list A  list B  list C  Prop :=
  | Forall3_nil : Forall3 P [] [] []
  | Forall3_cons x y z l k k' :
     P x y z  Forall3 P l k k'  Forall3 P (x :: l) (y :: k) (z :: k').

309 310
(** Set operations on lists *)
Instance list_subseteq {A} : SubsetEq (list A) := λ l1 l2,  x, x  l1  x  l2.
311

Robbert Krebbers's avatar
Robbert Krebbers committed
312
Section list_set.
313 314
  Context `{dec : EqDecision A}.
  Global Instance elem_of_list_dec (x : A) :  l, Decision (x  l).
Robbert Krebbers's avatar
Robbert Krebbers committed
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
  Proof.
   refine (
    fix go l :=
    match l return Decision (x  l) with
    | [] => right _
    | y :: l => cast_if_or (decide (x = y)) (go l)
    end); clear go dec; subst; try (by constructor); abstract by inversion 1.
  Defined.
  Fixpoint remove_dups (l : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x l then remove_dups l else x :: remove_dups l
    end.
  Fixpoint list_difference (l k : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x k
      then list_difference l k else x :: list_difference l k
    end.
  Definition list_union (l k : list A) : list A := list_difference l k ++ k.
  Fixpoint list_intersection (l k : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x k
      then x :: list_intersection l k else list_intersection l k
    end.
  Definition list_intersection_with (f : A  A  option A) :
    list A  list A  list A := fix go l k :=
    match l with
    | [] => []
    | x :: l => foldr (λ y,
        match f x y with None => id | Some z => (z ::) end) (go l k) k
    end.
End list_set.

(** * Basic tactics on lists *)
354
(** The tactic [discriminate_list] discharges a goal if it submseteq
Robbert Krebbers's avatar
Robbert Krebbers committed
355 356
a list equality involving [(::)] and [(++)] of two lists that have a different
length as one of its hypotheses. *)
357
Tactic Notation "discriminate_list" hyp(H) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
358 359
  apply (f_equal length) in H;
  repeat (csimpl in H || rewrite app_length in H); exfalso; lia.
360 361
Tactic Notation "discriminate_list" :=
  match goal with H : @eq (list _) _ _ |- _ => discriminate_list H end.
Robbert Krebbers's avatar
Robbert Krebbers committed
362

363
(** The tactic [simplify_list_eq] simplifies hypotheses involving
Robbert Krebbers's avatar
Robbert Krebbers committed
364 365
equalities on lists using injectivity of [(::)] and [(++)]. Also, it simplifies
lookups in singleton lists. *)
366
Lemma app_inj_1 {A} (l1 k1 l2 k2 : list A) :
Robbert Krebbers's avatar
Robbert Krebbers committed
367 368
  length l1 = length k1  l1 ++ l2 = k1 ++ k2  l1 = k1  l2 = k2.
Proof. revert k1. induction l1; intros [|??]; naive_solver. Qed.
369
Lemma app_inj_2 {A} (l1 k1 l2 k2 : list A) :
Robbert Krebbers's avatar
Robbert Krebbers committed
370 371
  length l2 = length k2  l1 ++ l2 = k1 ++ k2  l1 = k1  l2 = k2.
Proof.
372
  intros ? Hl. apply app_inj_1; auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
373 374
  apply (f_equal length) in Hl. rewrite !app_length in Hl. lia.
Qed.
375
Ltac simplify_list_eq :=
Robbert Krebbers's avatar
Robbert Krebbers committed
376
  repeat match goal with
377
  | _ => progress simplify_eq/=
Robbert Krebbers's avatar
Robbert Krebbers committed
378 379
  | H : _ ++ _ = _ ++ _ |- _ => first
    [ apply app_inv_head in H | apply app_inv_tail in H
380 381
    | apply app_inj_1 in H; [destruct H|done]
    | apply app_inj_2 in H; [destruct H|done] ]
Robbert Krebbers's avatar
Robbert Krebbers committed
382 383 384 385 386 387 388 389 390 391
  | H : [?x] !! ?i = Some ?y |- _ =>
    destruct i; [change (Some x = Some y) in H | discriminate]
  end.

(** * General theorems *)
Section general_properties.
Context {A : Type}.
Implicit Types x y z : A.
Implicit Types l k : list A.

392
Global Instance: Inj2 (=) (=) (=) (@cons A).
Robbert Krebbers's avatar
Robbert Krebbers committed
393
Proof. by injection 1. Qed.
394
Global Instance:  k, Inj (=) (=) (k ++).
Robbert Krebbers's avatar
Robbert Krebbers committed
395
Proof. intros ???. apply app_inv_head. Qed.
396
Global Instance:  k, Inj (=) (=) (++ k).
Robbert Krebbers's avatar
Robbert Krebbers committed
397
Proof. intros ???. apply app_inv_tail. Qed.
398
Global Instance: Assoc (=) (@app A).
Robbert Krebbers's avatar
Robbert Krebbers committed
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
Proof. intros ???. apply app_assoc. Qed.
Global Instance: LeftId (=) [] (@app A).
Proof. done. Qed.
Global Instance: RightId (=) [] (@app A).
Proof. intro. apply app_nil_r. Qed.

Lemma app_nil l1 l2 : l1 ++ l2 = []  l1 = []  l2 = [].
Proof. split. apply app_eq_nil. by intros [-> ->]. Qed.
Lemma app_singleton l1 l2 x :
  l1 ++ l2 = [x]  l1 = []  l2 = [x]  l1 = [x]  l2 = [].
Proof. split. apply app_eq_unit. by intros [[-> ->]|[-> ->]]. Qed.
Lemma cons_middle x l1 l2 : l1 ++ x :: l2 = l1 ++ [x] ++ l2.
Proof. done. Qed.
Lemma list_eq l1 l2 : ( i, l1 !! i = l2 !! i)  l1 = l2.
Proof.
414
  revert l2. induction l1 as [|x l1 IH]; intros [|y l2] H.
415 416 417
  - done.
  - discriminate (H 0).
  - discriminate (H 0).
418
  - f_equal; [by injection (H 0)|]. apply (IH _ $ λ i, H (S i)).
Robbert Krebbers's avatar
Robbert Krebbers committed
419
Qed.
420 421
Global Instance list_eq_dec {dec : EqDecision A} : EqDecision (list A) :=
  list_eq_dec dec.
Robbert Krebbers's avatar
Robbert Krebbers committed
422 423 424
Global Instance list_eq_nil_dec l : Decision (l = []).
Proof. by refine match l with [] => left _ | _ => right _ end. Defined.
Lemma list_singleton_reflect l :
425
  option_reflect (λ x, l = [x]) (length l  1) (maybe (λ x, [x]) l).
Robbert Krebbers's avatar
Robbert Krebbers committed
426 427 428 429 430 431 432 433 434 435 436 437 438
Proof. by destruct l as [|? []]; constructor. Defined.

Definition nil_length : length (@nil A) = 0 := eq_refl.
Definition cons_length x l : length (x :: l) = S (length l) := eq_refl.
Lemma nil_or_length_pos l : l = []  length l  0.
Proof. destruct l; simpl; auto with lia. Qed.
Lemma nil_length_inv l : length l = 0  l = [].
Proof. by destruct l. Qed.
Lemma lookup_nil i : @nil A !! i = None.
Proof. by destruct i. Qed.
Lemma lookup_tail l i : tail l !! i = l !! S i.
Proof. by destruct l. Qed.
Lemma lookup_lt_Some l i x : l !! i = Some x  i < length l.
439
Proof. revert i. induction l; intros [|?] ?; naive_solver auto with arith. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
440 441 442
Lemma lookup_lt_is_Some_1 l i : is_Some (l !! i)  i < length l.
Proof. intros [??]; eauto using lookup_lt_Some. Qed.
Lemma lookup_lt_is_Some_2 l i : i < length l  is_Some (l !! i).
443
Proof. revert i. induction l; intros [|?] ?; naive_solver eauto with lia. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
444 445 446 447 448 449 450 451 452 453 454 455 456
Lemma lookup_lt_is_Some l i : is_Some (l !! i)  i < length l.
Proof. split; auto using lookup_lt_is_Some_1, lookup_lt_is_Some_2. Qed.
Lemma lookup_ge_None l i : l !! i = None  length l  i.
Proof. rewrite eq_None_not_Some, lookup_lt_is_Some. lia. Qed.
Lemma lookup_ge_None_1 l i : l !! i = None  length l  i.
Proof. by rewrite lookup_ge_None. Qed.
Lemma lookup_ge_None_2 l i : length l  i  l !! i = None.
Proof. by rewrite lookup_ge_None. Qed.
Lemma list_eq_same_length l1 l2 n :
  length l2 = n  length l1 = n 
  ( i x y, i < n  l1 !! i = Some x  l2 !! i = Some y  x = y)  l1 = l2.
Proof.
  intros <- Hlen Hl; apply list_eq; intros i. destruct (l2 !! i) as [x|] eqn:Hx.
457
  - destruct (lookup_lt_is_Some_2 l1 i) as [y Hy].
Robbert Krebbers's avatar
Robbert Krebbers committed
458 459
    { rewrite Hlen; eauto using lookup_lt_Some. }
    rewrite Hy; f_equal; apply (Hl i); eauto using lookup_lt_Some.
460
  - by rewrite lookup_ge_None, Hlen, <-lookup_ge_None.
Robbert Krebbers's avatar
Robbert Krebbers committed
461 462
Qed.
Lemma lookup_app_l l1 l2 i : i < length l1  (l1 ++ l2) !! i = l1 !! i.
463
Proof. revert i. induction l1; intros [|?]; naive_solver auto with lia. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
464 465 466 467 468 469 470 471 472 473
Lemma lookup_app_l_Some l1 l2 i x : l1 !! i = Some x  (l1 ++ l2) !! i = Some x.
Proof. intros. rewrite lookup_app_l; eauto using lookup_lt_Some. Qed.
Lemma lookup_app_r l1 l2 i :
  length l1  i  (l1 ++ l2) !! i = l2 !! (i - length l1).
Proof. revert i. induction l1; intros [|?]; simpl; auto with lia. Qed.
Lemma lookup_app_Some l1 l2 i x :
  (l1 ++ l2) !! i = Some x 
    l1 !! i = Some x  length l1  i  l2 !! (i - length l1) = Some x.
Proof.
  split.
474
  - revert i. induction l1 as [|y l1 IH]; intros [|i] ?;
475
      simplify_eq/=; auto with lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
476
    destruct (IH i) as [?|[??]]; auto with lia.
477
  - intros [?|[??]]; auto using lookup_app_l_Some. by rewrite lookup_app_r.
Robbert Krebbers's avatar
Robbert Krebbers committed
478 479 480 481 482
Qed.
Lemma list_lookup_middle l1 l2 x n :
  n = length l1  (l1 ++ x :: l2) !! n = Some x.
Proof. intros ->. by induction l1. Qed.

483 484 485 486 487
Lemma nth_lookup l i d : nth i l d = from_option id d (l !! i).
Proof. revert i. induction l as [|x l IH]; intros [|i]; simpl; auto. Qed.
Lemma nth_lookup_Some l i d x : l !! i = Some x  nth i l d = x.
Proof. rewrite nth_lookup. by intros ->. Qed.
Lemma nth_lookup_or_length l i d : {l !! i = Some (nth i l d)} + {length l  i}.
Ralf Jung's avatar
Ralf Jung committed
488
Proof.
489
  rewrite nth_lookup. destruct (l !! i) eqn:?; eauto using lookup_ge_None_1.
Ralf Jung's avatar
Ralf Jung committed
490 491
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
492
Lemma list_insert_alter l i x : <[i:=x]>l = alter (λ _, x) i l.
493
Proof. by revert i; induction l; intros []; intros; f_equal/=. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
494
Lemma alter_length f l i : length (alter f i l) = length l.
495
Proof. revert i. by induction l; intros [|?]; f_equal/=. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
496
Lemma insert_length l i x : length (<[i:=x]>l) = length l.
497
Proof. revert i. by induction l; intros [|?]; f_equal/=. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
498 499 500
Lemma list_lookup_alter f l i : alter f i l !! i = f <$> l !! i.
Proof. revert i. induction l. done. intros [|i]. done. apply (IHl i). Qed.
Lemma list_lookup_alter_ne f l i j : i  j  alter f i l !! j = l !! j.
501
Proof. revert i j. induction l; [done|]. intros [] []; naive_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
502
Lemma list_lookup_insert l i x : i < length l  <[i:=x]>l !! i = Some x.
503
Proof. revert i. induction l; intros [|?] ?; f_equal/=; auto with lia. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
504
Lemma list_lookup_insert_ne l i j x : i  j  <[i:=x]>l !! j = l !! j.
505
Proof. revert i j. induction l; [done|]. intros [] []; naive_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
506 507 508 509 510 511
Lemma list_lookup_insert_Some l i x j y :
  <[i:=x]>l !! j = Some y 
    i = j  x = y  j < length l  i  j  l !! j = Some y.
Proof.
  destruct (decide (i = j)) as [->|];
    [split|rewrite list_lookup_insert_ne by done; tauto].
512
  - intros Hy. assert (j < length l).
Robbert Krebbers's avatar
Robbert Krebbers committed
513 514
    { rewrite <-(insert_length l j x); eauto using lookup_lt_Some. }
    rewrite list_lookup_insert in Hy by done; naive_solver.
515
  - intros [(?&?&?)|[??]]; rewrite ?list_lookup_insert; naive_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
516 517 518
Qed.
Lemma list_insert_commute l i j x y :
  i  j  <[i:=x]>(<[j:=y]>l) = <[j:=y]>(<[i:=x]>l).
519
Proof. revert i j. by induction l; intros [|?] [|?] ?; f_equal/=; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
520 521 522
Lemma list_lookup_other l i x :
  length l  1  l !! i = Some x   j y, j  i  l !! j = Some y.
Proof.
523
  intros. destruct i, l as [|x0 [|x1 l]]; simplify_eq/=.
524 525
  - by exists 1, x1.
  - by exists 0, x0.
Robbert Krebbers's avatar
Robbert Krebbers committed
526 527 528
Qed.
Lemma alter_app_l f l1 l2 i :
  i < length l1  alter f i (l1 ++ l2) = alter f i l1 ++ l2.
529
Proof. revert i. induction l1; intros [|?] ?; f_equal/=; auto with lia. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
530 531
Lemma alter_app_r f l1 l2 i :
  alter f (length l1 + i) (l1 ++ l2) = l1 ++ alter f i l2.
532
Proof. revert i. induction l1; intros [|?]; f_equal/=; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
533 534 535 536 537 538 539
Lemma alter_app_r_alt f l1 l2 i :
  length l1  i  alter f i (l1 ++ l2) = l1 ++ alter f (i - length l1) l2.
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply alter_app_r.
Qed.
Lemma list_alter_id f l i : ( x, f x = x)  alter f i l = l.
540
Proof. intros ?. revert i. induction l; intros [|?]; f_equal/=; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
541 542
Lemma list_alter_ext f g l k i :
  ( x, l !! i = Some x  f x = g x)  l = k  alter f i l = alter g i k.
543
Proof. intros H ->. revert i H. induction k; intros [|?] ?; f_equal/=; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
544 545
Lemma list_alter_compose f g l i :
  alter (f  g) i l = alter f i (alter g i l).
546
Proof. revert i. induction l; intros [|?]; f_equal/=; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
547 548
Lemma list_alter_commute f g l i j :
  i  j  alter f i (alter g j l) = alter g j (alter f i l).
549
Proof. revert i j. induction l; intros [|?][|?] ?; f_equal/=; auto with lia. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
550 551
Lemma insert_app_l l1 l2 i x :
  i < length l1  <[i:=x]>(l1 ++ l2) = <[i:=x]>l1 ++ l2.
552
Proof. revert i. induction l1; intros [|?] ?; f_equal/=; auto with lia. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
553
Lemma insert_app_r l1 l2 i x : <[length l1+i:=x]>(l1 ++ l2) = l1 ++ <[i:=x]>l2.
554
Proof. revert i. induction l1; intros [|?]; f_equal/=; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
555 556 557 558 559 560 561
Lemma insert_app_r_alt l1 l2 i x :
  length l1  i  <[i:=x]>(l1 ++ l2) = l1 ++ <[i - length l1:=x]>l2.
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply insert_app_r.
Qed.
Lemma delete_middle l1 l2 x : delete (length l1) (l1 ++ x :: l2) = l1 ++ l2.
562
Proof. induction l1; f_equal/=; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600

Lemma inserts_length l i k : length (list_inserts i k l) = length l.
Proof.
  revert i. induction k; intros ?; csimpl; rewrite ?insert_length; auto.
Qed.
Lemma list_lookup_inserts l i k j :
  i  j < i + length k  j < length l 
  list_inserts i k l !! j = k !! (j - i).
Proof.
  revert i j. induction k as [|y k IH]; csimpl; intros i j ??; [lia|].
  destruct (decide (i = j)) as [->|].
  { by rewrite list_lookup_insert, Nat.sub_diag
      by (rewrite inserts_length; lia). }
  rewrite list_lookup_insert_ne, IH by lia.
  by replace (j - i) with (S (j - S i)) by lia.
Qed.
Lemma list_lookup_inserts_lt l i k j :
  j < i  list_inserts i k l !! j = l !! j.
Proof.
  revert i j. induction k; intros i j ?; csimpl;
    rewrite ?list_lookup_insert_ne by lia; auto with lia.
Qed.
Lemma list_lookup_inserts_ge l i k j :
  i + length k  j  list_inserts i k l !! j = l !! j.
Proof.
  revert i j. induction k; csimpl; intros i j ?;
    rewrite ?list_lookup_insert_ne by lia; auto with lia.
Qed.
Lemma list_lookup_inserts_Some l i k j y :
  list_inserts i k l !! j = Some y 
    (j < i  i + length k  j)  l !! j = Some y 
    i  j < i + length k  j < length l  k !! (j - i) = Some y.
Proof.
  destruct (decide (j < i)).
  { rewrite list_lookup_inserts_lt by done; intuition lia. }
  destruct (decide (i + length k  j)).
  { rewrite list_lookup_inserts_ge by done; intuition lia. }
  split.
601
  - intros Hy. assert (j < length l).
Robbert Krebbers's avatar
Robbert Krebbers committed
602 603
    { rewrite <-(inserts_length l i k); eauto using lookup_lt_Some. }
    rewrite list_lookup_inserts in Hy by lia. intuition lia.
604
  - intuition. by rewrite list_lookup_inserts by lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
Qed.
Lemma list_insert_inserts_lt l i j x k :
  i < j  <[i:=x]>(list_inserts j k l) = list_inserts j k (<[i:=x]>l).
Proof.
  revert i j. induction k; intros i j ?; simpl;
    rewrite 1?list_insert_commute by lia; auto with f_equal.
Qed.

(** ** Properties of the [elem_of] predicate *)
Lemma not_elem_of_nil x : x  [].
Proof. by inversion 1. Qed.
Lemma elem_of_nil x : x  []  False.
Proof. intuition. by destruct (not_elem_of_nil x). Qed.
Lemma elem_of_nil_inv l : ( x, x  l)  l = [].
Proof. destruct l. done. by edestruct 1; constructor. Qed.
Lemma elem_of_not_nil x l : x  l  l  [].
Proof. intros ? ->. by apply (elem_of_nil x). Qed.
Lemma elem_of_cons l x y : x  y :: l  x = y  x  l.
Proof. by split; [inversion 1; subst|intros [->|?]]; constructor. Qed.
Lemma not_elem_of_cons l x y : x  y :: l  x  y  x  l.
Proof. rewrite elem_of_cons. tauto. Qed.
Lemma elem_of_app l1 l2 x : x  l1 ++ l2  x  l1  x  l2.
Proof.
  induction l1.
629 630
  - split; [by right|]. intros [Hx|]; [|done]. by destruct (elem_of_nil x).
  - simpl. rewrite !elem_of_cons, IHl1. tauto.
Robbert Krebbers's avatar
Robbert Krebbers committed
631 632 633 634 635 636 637 638 639 640
Qed.
Lemma not_elem_of_app l1 l2 x : x  l1 ++ l2  x  l1  x  l2.
Proof. rewrite elem_of_app. tauto. Qed.
Lemma elem_of_list_singleton x y : x  [y]  x = y.
Proof. rewrite elem_of_cons, elem_of_nil. tauto. Qed.
Global Instance elem_of_list_permutation_proper x : Proper ((≡ₚ) ==> iff) (x ).
Proof. induction 1; rewrite ?elem_of_nil, ?elem_of_cons; intuition. Qed.
Lemma elem_of_list_split l x : x  l   l1 l2, l = l1 ++ x :: l2.
Proof.
  induction 1 as [x l|x y l ? [l1 [l2 ->]]]; [by eexists [], l|].
641
  by exists (y :: l1), l2.
Robbert Krebbers's avatar
Robbert Krebbers committed
642 643 644 645 646 647 648 649
Qed.
Lemma elem_of_list_lookup_1 l x : x  l   i, l !! i = Some x.
Proof.
  induction 1 as [|???? IH]; [by exists 0 |].
  destruct IH as [i ?]; auto. by exists (S i).
Qed.
Lemma elem_of_list_lookup_2 l i x : l !! i = Some x  x  l.
Proof.
650
  revert i. induction l; intros [|i] ?; simplify_eq/=; constructor; eauto.
Robbert Krebbers's avatar
Robbert Krebbers committed
651 652 653 654 655 656 657
Qed.
Lemma elem_of_list_lookup l x : x  l   i, l !! i = Some x.
Proof. firstorder eauto using elem_of_list_lookup_1, elem_of_list_lookup_2. Qed.
Lemma elem_of_list_omap {B} (f : A  option B) l (y : B) :
  y  omap f l   x, x  l  f x = Some y.
Proof.
  split.
658
  - induction l as [|x l]; csimpl; repeat case_match; inversion 1; subst;
Robbert Krebbers's avatar
Robbert Krebbers committed
659
      setoid_rewrite elem_of_cons; naive_solver.
660
  - intros (x&Hx&?). by induction Hx; csimpl; repeat case_match;
661
      simplify_eq; try constructor; auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
Qed.

(** ** Properties of the [NoDup] predicate *)
Lemma NoDup_nil : NoDup (@nil A)  True.
Proof. split; constructor. Qed.
Lemma NoDup_cons x l : NoDup (x :: l)  x  l  NoDup l.
Proof. split. by inversion 1. intros [??]. by constructor. Qed.
Lemma NoDup_cons_11 x l : NoDup (x :: l)  x  l.
Proof. rewrite NoDup_cons. by intros [??]. Qed.
Lemma NoDup_cons_12 x l : NoDup (x :: l)  NoDup l.
Proof. rewrite NoDup_cons. by intros [??]. Qed.
Lemma NoDup_singleton x : NoDup [x].
Proof. constructor. apply not_elem_of_nil. constructor. Qed.
Lemma NoDup_app l k : NoDup (l ++ k)  NoDup l  ( x, x  l  x  k)  NoDup k.
Proof.
  induction l; simpl.
678 679
  - rewrite NoDup_nil. setoid_rewrite elem_of_nil. naive_solver.
  - rewrite !NoDup_cons.
Robbert Krebbers's avatar
Robbert Krebbers committed
680 681 682 683 684
    setoid_rewrite elem_of_cons. setoid_rewrite elem_of_app. naive_solver.
Qed.
Global Instance NoDup_proper: Proper ((≡ₚ) ==> iff) (@NoDup A).
Proof.
  induction 1 as [|x l k Hlk IH | |].
685 686 687 688
  - by rewrite !NoDup_nil.
  - by rewrite !NoDup_cons, IH, Hlk.
  - rewrite !NoDup_cons, !elem_of_cons. intuition.
  - intuition.
Robbert Krebbers's avatar
Robbert Krebbers committed
689 690 691 692 693
Qed.
Lemma NoDup_lookup l i j x :
  NoDup l  l !! i = Some x  l !! j = Some x  i = j.
Proof.
  intros Hl. revert i j. induction Hl as [|x' l Hx Hl IH].
694 695
  { intros; simplify_eq. }
  intros [|i] [|j] ??; simplify_eq/=; eauto with f_equal;
Robbert Krebbers's avatar
Robbert Krebbers committed
696 697 698 699 700 701 702
    exfalso; eauto using elem_of_list_lookup_2.
Qed.
Lemma NoDup_alt l :
  NoDup l   i j x, l !! i = Some x  l !! j = Some x  i = j.
Proof.
  split; eauto using NoDup_lookup.
  induction l as [|x l IH]; intros Hl; constructor.
703
  - rewrite elem_of_list_lookup. intros [i ?].
Robbert Krebbers's avatar
Robbert Krebbers committed
704
    by feed pose proof (Hl (S i) 0 x); auto.
705
  - apply IH. intros i j x' ??. by apply (inj S), (Hl (S i) (S j) x').
Robbert Krebbers's avatar
Robbert Krebbers committed
706 707 708
Qed.

Section no_dup_dec.
709
  Context `{!EqDecision A}.
Robbert Krebbers's avatar
Robbert Krebbers committed
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
  Global Instance NoDup_dec:  l, Decision (NoDup l) :=
    fix NoDup_dec l :=
    match l return Decision (NoDup l) with
    | [] => left NoDup_nil_2
    | x :: l =>
      match decide_rel () x l with
      | left Hin => right (λ H, NoDup_cons_11 _ _ H Hin)
      | right Hin =>
        match NoDup_dec l with
        | left H => left (NoDup_cons_2 _ _ Hin H)
        | right H => right (H  NoDup_cons_12 _ _)
        end
      end
    end.
  Lemma elem_of_remove_dups l x : x  remove_dups l  x  l.
  Proof.
    split; induction l; simpl; repeat case_decide;
727
      rewrite ?elem_of_cons; intuition (simplify_eq; auto).
Robbert Krebbers's avatar
Robbert Krebbers committed
728 729 730 731 732 733 734 735 736 737
  Qed.
  Lemma NoDup_remove_dups l : NoDup (remove_dups l).
  Proof.
    induction l; simpl; repeat case_decide; try constructor; auto.
    by rewrite elem_of_remove_dups.
  Qed.
End no_dup_dec.

(** ** Set operations on lists *)
Section list_set.
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
  Lemma elem_of_list_intersection_with f l k x :
    x  list_intersection_with f l k   x1 x2,
        x1  l  x2  k  f x1 x2 = Some x.
  Proof.
    split.
    - induction l as [|x1 l IH]; simpl; [by rewrite elem_of_nil|].
      intros Hx. setoid_rewrite elem_of_cons.
      cut (( x2, x2  k  f x1 x2 = Some x)
            x  list_intersection_with f l k); [naive_solver|].
      clear IH. revert Hx. generalize (list_intersection_with f l k).
      induction k; simpl; [by auto|].
      case_match; setoid_rewrite elem_of_cons; naive_solver.
    - intros (x1&x2&Hx1&Hx2&Hx). induction Hx1 as [x1|x1 ? l ? IH]; simpl.
      + generalize (list_intersection_with f l k).
        induction Hx2; simpl; [by rewrite Hx; left |].
        case_match; simpl; try setoid_rewrite elem_of_cons; auto.
      + generalize (IH Hx). clear Hx IH Hx2.
        generalize (list_intersection_with f l k).
        induction k; simpl; intros; [done|].
        case_match; simpl; rewrite ?elem_of_cons; auto.
  Qed.

760
  Context `{!EqDecision A}.
Robbert Krebbers's avatar
Robbert Krebbers committed
761 762 763 764 765 766 767 768
  Lemma elem_of_list_difference l k x : x  list_difference l k  x  l  x  k.
  Proof.
    split; induction l; simpl; try case_decide;
      rewrite ?elem_of_nil, ?elem_of_cons; intuition congruence.
  Qed.
  Lemma NoDup_list_difference l k : NoDup l  NoDup (list_difference l k).
  Proof.
    induction 1; simpl; try case_decide.
769 770 771
    - constructor.
    - done.
    - constructor. rewrite elem_of_list_difference; intuition. done.
Robbert Krebbers's avatar
Robbert Krebbers committed
772 773 774 775 776 777 778 779 780
  Qed.
  Lemma elem_of_list_union l k x : x  list_union l k  x  l  x  k.
  Proof.
    unfold list_union. rewrite elem_of_app, elem_of_list_difference.
    intuition. case (decide (x  k)); intuition.
  Qed.
  Lemma NoDup_list_union l k : NoDup l  NoDup k  NoDup (list_union l k).
  Proof.
    intros. apply NoDup_app. repeat split.
781 782 783
    - by apply NoDup_list_difference.
    - intro. rewrite elem_of_list_difference. intuition.
    - done.
Robbert Krebbers's avatar
Robbert Krebbers committed
784 785 786 787 788 789 790 791 792 793
  Qed.
  Lemma elem_of_list_intersection l k x :
    x  list_intersection l k  x  l  x  k.
  Proof.
    split; induction l; simpl; repeat case_decide;
      rewrite ?elem_of_nil, ?elem_of_cons; intuition congruence.
  Qed.
  Lemma NoDup_list_intersection l k : NoDup l  NoDup (list_intersection l k).
  Proof.
    induction 1; simpl; try case_decide.
794 795 796
    - constructor.
    - constructor. rewrite elem_of_list_intersection; intuition. done.
    - done.
Robbert Krebbers's avatar
Robbert Krebbers committed
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
  Qed.
End list_set.

(** ** Properties of the [filter] function *)
Section filter.
  Context (P : A  Prop) `{ x, Decision (P x)}.
  Lemma elem_of_list_filter l x : x  filter P l  P x  x  l.
  Proof.
    unfold filter. induction l; simpl; repeat case_decide;
       rewrite ?elem_of_nil, ?elem_of_cons; naive_solver.
  Qed.
  Lemma NoDup_filter l : NoDup l  NoDup (filter P l).
  Proof.
    unfold filter. induction 1; simpl; repeat case_decide;
      rewrite ?NoDup_nil, ?NoDup_cons, ?elem_of_list_filter; tauto.
  Qed.
End filter.

(** ** Properties of the [find] function *)
Section find.
  Context (P : A  Prop) `{ x, Decision (P x)}.
  Lemma list_find_Some l i x :
    list_find P l = Some (i,x)  l !! i = Some x  P x.
  Proof.
821 822 823
    revert i; induction l; intros [] ?; repeat first
      [ match goal with x : prod _ _ |- _ => destruct x end
      | simplify_option_eq ]; eauto.
Robbert Krebbers's avatar
Robbert Krebbers committed
824 825 826
  Qed.
  Lemma list_find_elem_of l x : x  l  P x  is_Some (list_find P l).
  Proof.
827
    induction 1 as [|x y l ? IH]; intros; simplify_option_eq; eauto.
Robbert Krebbers's avatar
Robbert Krebbers committed
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
    by destruct IH as [[i x'] ->]; [|exists (S i, x')].
  Qed.
End find.

(** ** Properties of the [reverse] function *)
Lemma reverse_nil : reverse [] = @nil A.
Proof. done. Qed.
Lemma reverse_singleton x : reverse [x] = [x].
Proof. done. Qed.
Lemma reverse_cons l x : reverse (x :: l) = reverse l ++ [x].
Proof. unfold reverse. by rewrite <-!rev_alt. Qed.
Lemma reverse_snoc l x : reverse (l ++ [x]) = x :: reverse l.
Proof. unfold reverse. by rewrite <-!rev_alt, rev_unit. Qed.
Lemma reverse_app l1 l2 : reverse (l1 ++ l2) = reverse l2 ++ reverse l1.
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_app_distr. Qed.
Lemma reverse_length l : length (reverse l) = length l.
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_length. Qed.
Lemma reverse_involutive l : reverse (reverse l) = l.
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_involutive. Qed.
Lemma elem_of_reverse_2 x l : x  l  x  reverse l.
Proof.
  induction 1; rewrite reverse_cons, elem_of_app,
    ?elem_of_list_singleton; intuition.
Qed.
Lemma elem_of_reverse x l : x  reverse l  x  l.
Proof.
  split; auto using elem_of_reverse_2.
  intros. rewrite <-(reverse_involutive l). by apply elem_of_reverse_2.
Qed.
857
Global Instance: Inj (=) (=) (@reverse A).
Robbert Krebbers's avatar
Robbert Krebbers committed
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
Proof.
  intros l1 l2 Hl.
  by rewrite <-(reverse_involutive l1), <-(reverse_involutive l2), Hl.
Qed.
Lemma sum_list_with_app (f : A  nat) l k :
  sum_list_with f (l ++ k) = sum_list_with f l + sum_list_with f k.
Proof. induction l; simpl; lia. Qed.
Lemma sum_list_with_reverse (f : A  nat) l :
  sum_list_with f (reverse l) = sum_list_with f l.
Proof.
  induction l; simpl; rewrite ?reverse_cons, ?sum_list_with_app; simpl; lia.
Qed.

(** ** Properties of the [last] function *)
Lemma last_snoc x l : last (l ++ [x]) = Some x.
Proof. induction l as [|? []]; simpl; auto. Qed.
Lemma last_reverse l : last (reverse l) = head l.
Proof. by destruct l as [|x l]; rewrite ?reverse_cons, ?last_snoc. Qed.
Lemma head_reverse l : head (reverse l) = last l.
Proof. by rewrite <-last_reverse, reverse_involutive. Qed.

(** ** Properties of the [take] function *)
Definition take_drop i l : take i l ++ drop i l = l := firstn_skipn i l.
Lemma take_drop_middle l i x :
  l !! i = Some x  take i l ++ x :: drop (S i) l = l.
Proof.
884
  revert i x. induction l; intros [|?] ??; simplify_eq/=; f_equal; auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
885 886 887 888
Qed.
Lemma take_nil n : take n (@nil A) = [].
Proof. by destruct n. Qed.
Lemma take_app l k : take (length l) (l ++ k) = l.
889
Proof. induction l; f_equal/=; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
890 891 892
Lemma take_app_alt l k n : n = length l  take n (l ++ k) = l.
Proof. intros ->. by apply take_app. Qed.
Lemma take_app3_alt l1 l2 l3 n : n = length l1  take n ((l1 ++ l2) ++ l3) = l1.
893
Proof. intros ->. by rewrite <-(assoc_L (++)), take_app. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
894
Lemma take_app_le l k n : n  length l  take n (l ++ k) = take n l.
895
Proof. revert n. induction l; intros [|?] ?; f_equal/=; auto with lia. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
896 897
Lemma take_plus_app l k n m :
  length l = n  take (n + m) (l ++ k) = l ++ take m k.
898
Proof. intros <-. induction l; f_equal/=; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
899 900
Lemma take_app_ge l k n :
  length l  n  take n (l ++ k) = l ++ take (n - length l) k.
901
Proof. revert n. induction l; intros [|?] ?; f_equal/=; auto with lia. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
902
Lemma take_ge l n : length l  n  take n l = l.
903
Proof. revert n. induction l; intros [|?] ?; f_equal/=; auto with lia. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
904
Lemma take_take l n m : take n (take m l) = take (min n m) l.
905
Proof. revert n m. induction l; intros [|?] [|?]; f_equal/=; auto. Qed.
906
Lemma take_idemp l n : take n (take n l) = take n l.
Robbert Krebbers's avatar
Robbert Krebbers committed
907 908
Proof. by rewrite take_take, Min.min_idempotent. Qed.
Lemma take_length l n : length (take n l) = min n (length l).
909
Proof. revert n. induction l; intros [|?]; f_equal/=; done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
Lemma take_length_le l n : n  length l  length (take n l) = n.
Proof. rewrite take_length. apply Min.min_l. Qed.
Lemma take_length_ge l n : length l  n  length (take n l) = length l.
Proof. rewrite take_length. apply Min.min_r. Qed.
Lemma take_drop_commute l n m : take n (drop m l) = drop m (take (m + n) l).
Proof.
  revert n m. induction l; intros [|?][|?]; simpl; auto using take_nil with lia.
Qed.
Lemma lookup_take l n i : i < n  take n l !! i = l !! i.
Proof. revert n i. induction l; intros [|n] [|i] ?; simpl; auto with lia. Qed.
Lemma lookup_take_ge l n i : n  i  take n l !! i = None.
Proof. revert n i. induction l; intros [|?] [|?] ?; simpl; auto with lia. Qed.
Lemma take_alter f l n i : n  i  take n (alter f i l) = take n l.
Proof.
  intros. apply list_eq. intros j. destruct (le_lt_dec n j).
925 926
  - by rewrite !lookup_take_ge.
  - by rewrite !lookup_take, !list_lookup_alter_ne by lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
927 928 929 930
Qed.
Lemma take_insert l n i x : n  i  take n (<[i:=x]>l) = take n l.
Proof.
  intros. apply list_eq. intros j. destruct (le_lt_dec n j).
931 932
  - by rewrite !lookup_take_ge.
  - by rewrite !lookup_take, !list_lookup_insert_ne by lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
933 934 935 936 937 938 939 940
Qed.

(** ** Properties of the [drop] function *)
Lemma drop_0 l : drop 0 l = l.
Proof. done. Qed.
Lemma drop_nil n : drop n (@nil A) = [].
Proof. by destruct n. Qed.
Lemma drop_length l n : length (drop n l) = length l - n.
941
Proof. revert n. by induction l; intros [|i]; f_equal/=. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
942
Lemma drop_ge l n : length l  n  drop n l = [].
Ralf Jung's avatar
Ralf Jung committed
943
Proof. revert n. induction l; intros [|?]; simpl in *; auto with lia. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
944 945 946 947 948 949 950 951 952 953 954 955 956
Lemma drop_all l : drop (length l) l = [].
Proof. by apply drop_ge. Qed.
Lemma drop_drop l n1 n2 : drop n1 (drop n2 l) = drop (n2 + n1) l.
Proof. revert n2. induction l; intros [|?]; simpl; rewrite ?drop_nil; auto. Qed.
Lemma drop_app_le l k n :
  n  length l  drop n (l ++ k) = drop n l ++ k.
Proof. revert n. induction l; intros [|?]; simpl; auto with lia. Qed.
Lemma drop_app l k : drop (length l) (l ++ k) = k.
Proof. by rewrite drop_app_le, drop_all. Qed.
Lemma drop_app_alt l k n : n = length l  drop n (l ++ k) = k.
Proof. intros ->. by apply drop_app. Qed.
Lemma drop_app3_alt l1 l2 l3 n :
  n = length l1  drop n ((l1 ++ l2) ++ l3) = l2 ++ l3.
957
Proof. intros ->. by rewrite <-(assoc_L (++)), drop_app. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
Lemma drop_app_ge l k n :
  length l  n  drop n (l ++ k) = drop (n - length l) k.
Proof.
  intros. rewrite <-(Nat.sub_add (length l) n) at 1 by done.
  by rewrite Nat.add_comm, <-drop_drop, drop_app.
Qed.
Lemma drop_plus_app l k n m :
  length l = n  drop (n + m) (l ++ k) = drop m k.
Proof. intros <-. by rewrite <-drop_drop, drop_app. Qed.
Lemma lookup_drop l n i : drop n l !! i = l !! (n + i).
Proof. revert n i. induction l; intros [|i] ?; simpl; auto. Qed.
Lemma drop_alter f l n i : i < n  drop n (alter f i l) = drop n l.
Proof.
  intros. apply list_eq. intros j.
  by rewrite !lookup_drop, !list_lookup_alter_ne by lia.
Qed.
Lemma drop_insert l n i x : i < n  drop n (<[i:=x]>l) = drop n l.
Proof.
  intros. apply list_eq. intros j.
  by rewrite !lookup_drop, !list_lookup_insert_ne by lia.
Qed.
Lemma delete_take_drop l i : delete i l = take i l ++ drop (S i) l.
980
Proof. revert i. induction l; intros [|?]; f_equal/=; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
981
Lemma take_take_drop l n m : take n l ++ take m (drop n l) = take (n + m) l.
982
Proof. revert n m. induction l; intros [|?] [|?]; f_equal/=; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
983 984 985
Lemma drop_take_drop l n m : n  m  drop n (take m l) ++ drop m l = drop n l.
Proof.
  revert n m. induction l; intros [|?] [|?] ?;
986
    f_equal/=; auto using take_drop with lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
987 988 989 990 991 992 993 994 995
Qed.

(** ** Properties of the [replicate] function *)
Lemma replicate_length n x : length (replicate n x) = n.
Proof. induction n; simpl; auto. Qed.
Lemma lookup_replicate n x y i :
  replicate n x !! i = Some y  y = x  i < n.
Proof.
  split.
996 997
  - revert i. induction n; intros [|?]; naive_solver auto with lia.
  - intros [-> Hi]. revert i Hi.
Robbert Krebbers's avatar
Robbert Krebbers committed
998 999
    induction n; intros [|?]; naive_solver auto with lia.
Qed.
1000 1001 1002 1003 1004
Lemma elem_of_replicate n x y : y  replicate n x  y = x  n  0.
Proof.
  rewrite elem_of_list_lookup, Nat.neq_0_lt_0.
  setoid_rewrite lookup_replicate; naive_solver eauto with lia.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
1005 1006 1007 1008 1009 1010 1011 1012
Lemma lookup_replicate_1 n x y i :
  replicate n x !! i = Some y  y = x  i < n.
Proof. by rewrite lookup_replicate. Qed.
Lemma lookup_replicate_2 n x i : i < n  replicate n x !! i = Some x.
Proof. by rewrite lookup_replicate. Qed.
Lemma lookup_replicate_None n x i : n  i  replicate n x !! i = None.
Proof.
  rewrite eq_None_not_Some, Nat.le_ngt. split.
1013 1014
  - intros Hin [x' Hx']; destruct Hin. rewrite lookup_replicate in Hx'; tauto.
  - intros Hx ?. destruct Hx. exists x; auto using lookup_replicate_2.
Robbert Krebbers's avatar
Robbert Krebbers committed
1015 1016
Qed.
Lemma insert_replicate x n i : <[i:=x]>(replicate n x) = replicate n x.
1017
Proof. revert i. induction n; intros [|?]; f_equal/=; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
1018 1019 1020 1021 1022 1023
Lemma elem_of_replicate_inv x n y : x  replicate n y  x = y.
Proof. induction n; simpl; rewrite ?elem_of_nil, ?elem_of_cons; intuition. Qed.
Lemma replicate_S n x : replicate (S n) x = x :: replicate  n x.
Proof. done. Qed.
Lemma replicate_plus n m x :
  replicate (n + m) x = replicate n x ++ replicate m x.
1024
Proof. induction n; f_equal/=; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
1025
Lemma take_replicate n m x : take n (replicate m x) = replicate (min n m) x.
1026
Proof. revert m. by induction n; intros [|?]; f_equal/=. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
1027 1028 1029
Lemma take_replicate_plus n m x : take n (replicate (n + m) x) = replicate n x.
Proof. by rewrite take_replicate, min_l by lia. Qed.
Lemma drop_replicate n m x : drop n (replicate m x) = replicate (m - n) x.
1030
Proof. revert m. by induction n; intros [|?]; f_equal/=. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
1031 1032 1033 1034 1035 1036
Lemma drop_replicate_plus n m x : drop n (replicate (n + m) x) = replicate m x.
Proof. rewrite drop_replicate. f_equal. lia. Qed.
Lemma replicate_as_elem_of x n l :
  replicate n x = l  length l = n   y, y  l  y = x.
Proof.
  split; [intros <-; eauto using elem_of_replicate_inv, replicate_length|].
1037
  intros [<- Hl]. symmetry. induction l as [|y l IH]; f_equal/=.
1038 1039
  - apply Hl. by left.
  - apply IH. intros ??. apply Hl. by right.
Robbert Krebbers's avatar
Robbert Krebbers committed
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
Qed.
Lemma reverse_replicate n x : reverse (replicate n x) = replicate n x.
Proof.
  symmetry. apply replicate_as_elem_of.
  rewrite reverse_length, replicate_length. split; auto.
  intros y. rewrite elem_of_reverse. by apply elem_of_replicate_inv.
Qed.
Lemma replicate_false βs n : length βs = n  replicate n false =.>* βs.
Proof. intros <-. by induction βs; simpl; constructor. Qed.

(** ** Properties of the [resize] function *)
Lemma resize_spec l n x : resize n x l = take n l ++ replicate (n - length l) x.
1052
Proof. revert n. induction l; intros [|?]; f_equal/=; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
1053 1054 1055
Lemma resize_0 l x : resize 0 x l = [].
Proof. by destruct l. Qed.
Lemma resize_nil n x : resize n x [] = replicate n x.
1056
Proof. rewrite resize_spec. rewrite take_nil. f_equal/=. lia. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
Lemma resize_ge l n x :
  length l  n  resize n x l = l ++ replicate (n - length l) x.
Proof. intros. by rewrite resize_spec, take_ge. Qed.
Lemma resize_le l n x : n  length l  resize n x l = take n l.
Proof.
  intros. rewrite resize_spec, (proj2 (Nat.sub_0_le _ _)) by done.
  simpl. by rewrite (right_id_L [] (++)).
Qed.
Lemma resize_all l x : resize (length l) x l = l.
Proof. intros. by rewrite resize_le, take_ge. Qed.
Lemma resize_all_alt l n x : n = length l  resize n x l = l.
Proof. intros ->. by rewrite resize_all. Qed.
Lemma resize_plus l n m x :
  resize (n + m) x l = resize n x l ++ resize m x (drop n l).
Proof.
1072
  revert n m. induction l; intros [|?] [|?]; f_equal/=; auto.
1073 1074
  - by rewrite Nat.add_0_r, (right_id_L [] (++)).
  - by rewrite replicate_plus.
Robbert Krebbers's avatar
Robbert Krebbers committed
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
Qed.
Lemma resize_plus_eq l n m x :
  length l = n  resize (n + m) x l = l ++ replicate m x.
Proof. intros <-. by rewrite resize_plus, resize_all, drop_all, resize_nil. Qed.
Lemma resize_app_le l1 l2 n x :
  n  length l1  resize n x (l1 ++ l2) = resize n x l1.
Proof.
  intros. by rewrite !resize_le, take_app_le by (rewrite ?app_length; lia).
Qed.
Lemma resize_app l1 l2 n x : n = length l1  resize n x (l1 ++ l2) = l1.
Proof. intros ->. by rewrite resize_app_le, resize_all. Qed.
Lemma resize_app_ge l1 l2 n x :
  length l1  n  resize n x (l1 ++ l2) = l1 ++ resize (n - length l1) x l2.
Proof.
1089
  intros. rewrite !resize_spec, take_app_ge, (assoc_L (++)) by done.
Robbert Krebbers's avatar
Robbert Krebbers committed
1090 1091 1092 1093 1094
  do 2 f_equal. rewrite app_length. lia.
Qed.
Lemma resize_length l n x : length (resize n x l) = n.
Proof. rewrite resize_spec, app_length, replicate_length, take_length. lia. Qed.
Lemma resize_replicate x n m : resize n x (replicate m x) = replicate n x.
1095
Proof. revert m. induction n; intros [|?]; f_equal/=; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
1096 1097 1098
Lemma resize_resize l n m x : n  m  resize n x (resize m x l) = resize n x l.
Proof.
  revert n m. induction l; simpl.
1099
  - intros. by rewrite !resize_nil, resize_replicate.
1100
  - intros [|?] [|?] ?; f_equal/=; auto with lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
1101
Qed.
1102
Lemma resize_idemp l n x : resize n x (resize n x l) = resize n x l.
Robbert Krebbers's avatar
Robbert Krebbers committed
1103 1104
Proof. by rewrite resize_resize. Qed.
Lemma resize_take_le l n m x : n  m  resize n x (take m l) = resize n x l.
1105
Proof. revert n m. induction l; intros [|?][|?] ?; f_equal/=; auto with lia. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
1106 1107 1108 1109
Lemma resize_take_eq l n x : resize n x (take n l) = resize n x l.
Proof. by rewrite resize_take_le. Qed.
Lemma take_resize l n m x : take n (resize m x l) = resize (min n m) x l.
Proof.
1110