csum.v 14.2 KB
Newer Older
1
From iris.algebra Require Export cmra.
2 3
From iris.base_logic Require Import base_logic.
From iris.algebra Require Import local_updates.
4
Set Default Proof Using "Type".
5 6 7 8 9 10 11 12
Local Arguments pcore _ _ !_ /.
Local Arguments cmra_pcore _ !_ /.
Local Arguments validN _ _ _ !_ /.
Local Arguments valid _ _  !_ /.
Local Arguments cmra_validN _ _ !_ /.
Local Arguments cmra_valid _  !_ /.

Inductive csum (A B : Type) :=
13 14
| Cinl : A  csum A B
| Cinr : B  csum A B
15 16 17 18 19
| CsumBot : csum A B.
Arguments Cinl {_ _} _.
Arguments Cinr {_ _} _.
Arguments CsumBot {_ _}.

Robbert Krebbers's avatar
Robbert Krebbers committed
20 21 22 23 24
Instance maybe_Cinl {A B} : Maybe (@Cinl A B) := λ x,
  match x with Cinl a => Some a | _ => None end.
Instance maybe_Cinr {A B} : Maybe (@Cinr A B) := λ x,
  match x with Cinr b => Some b | _ => None end.

25
Section cofe.
26
Context {A B : ofeT}.
27 28 29 30 31
Implicit Types a : A.
Implicit Types b : B.

(* Cofe *)
Inductive csum_equiv : Equiv (csum A B) :=
32 33
  | Cinl_equiv a a' : a  a'  Cinl a  Cinl a'
  | Cinlr_equiv b b' : b  b'  Cinr b  Cinr b'
34 35 36
  | CsumBot_equiv : CsumBot  CsumBot.
Existing Instance csum_equiv.
Inductive csum_dist : Dist (csum A B) :=
37 38
  | Cinl_dist n a a' : a {n} a'  Cinl a {n} Cinl a'
  | Cinlr_dist n b b' : b {n} b'  Cinr b {n} Cinr b'
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
  | CsumBot_dist n : CsumBot {n} CsumBot.
Existing Instance csum_dist.

Global Instance Cinl_ne n : Proper (dist n ==> dist n) (@Cinl A B).
Proof. by constructor. Qed.
Global Instance Cinl_proper : Proper (() ==> ()) (@Cinl A B).
Proof. by constructor. Qed.
Global Instance Cinl_inj : Inj () () (@Cinl A B).
Proof. by inversion_clear 1. Qed.
Global Instance Cinl_inj_dist n : Inj (dist n) (dist n) (@Cinl A B).
Proof. by inversion_clear 1. Qed.
Global Instance Cinr_ne n : Proper (dist n ==> dist n) (@Cinr A B).
Proof. by constructor. Qed.
Global Instance Cinr_proper : Proper (() ==> ()) (@Cinr A B).
Proof. by constructor. Qed.
Global Instance Cinr_inj : Inj () () (@Cinr A B).
Proof. by inversion_clear 1. Qed.
Global Instance Cinr_inj_dist n : Inj (dist n) (dist n) (@Cinr A B).
Proof. by inversion_clear 1. Qed.

59
Definition csum_ofe_mixin : OfeMixin (csum A B).
60 61 62 63 64 65 66 67 68 69 70 71
Proof.
  split.
  - intros mx my; split.
    + by destruct 1; constructor; try apply equiv_dist.
    + intros Hxy; feed inversion (Hxy 0); subst; constructor; try done;
      apply equiv_dist=> n; by feed inversion (Hxy n).
  - intros n; split.
    + by intros [|a|]; constructor.
    + by destruct 1; constructor.
    + destruct 1; inversion_clear 1; constructor; etrans; eauto.
  - by inversion_clear 1; constructor; apply dist_S.
Qed.
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
Canonical Structure csumC : ofeT := OfeT (csum A B) csum_ofe_mixin.

Program Definition csum_chain_l (c : chain csumC) (a : A) : chain A :=
  {| chain_car n := match c n return _ with Cinl a' => a' | _ => a end |}.
Next Obligation. intros c a n i ?; simpl. by destruct (chain_cauchy c n i). Qed.
Program Definition csum_chain_r (c : chain csumC) (b : B) : chain B :=
  {| chain_car n := match c n return _ with Cinr b' => b' | _ => b end |}.
Next Obligation. intros c b n i ?; simpl. by destruct (chain_cauchy c n i). Qed.
Definition csum_compl `{Cofe A, Cofe B} : Compl csumC := λ c,
  match c 0 with
  | Cinl a => Cinl (compl (csum_chain_l c a))
  | Cinr b => Cinr (compl (csum_chain_r c b))
  | CsumBot => CsumBot
  end.
Global Program Instance csum_cofe `{Cofe A, Cofe B} : Cofe csumC :=
  {| compl := csum_compl |}.
Next Obligation.
  intros ?? n c; rewrite /compl /csum_compl.
  feed inversion (chain_cauchy c 0 n); first auto with lia; constructor.
  + rewrite (conv_compl n (csum_chain_l c a')) /=. destruct (c n); naive_solver.
  + rewrite (conv_compl n (csum_chain_r c b')) /=. destruct (c n); naive_solver.
Qed.

95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
Global Instance csum_discrete : Discrete A  Discrete B  Discrete csumC.
Proof. by inversion_clear 3; constructor; apply (timeless _). Qed.
Global Instance csum_leibniz :
  LeibnizEquiv A  LeibnizEquiv B  LeibnizEquiv (csumC A B).
Proof. by destruct 3; f_equal; apply leibniz_equiv. Qed.

Global Instance Cinl_timeless a : Timeless a  Timeless (Cinl a).
Proof. by inversion_clear 2; constructor; apply (timeless _). Qed.
Global Instance Cinr_timeless b : Timeless b  Timeless (Cinr b).
Proof. by inversion_clear 2; constructor; apply (timeless _). Qed.
End cofe.

Arguments csumC : clear implicits.

(* Functor on COFEs *)
Definition csum_map {A A' B B'} (fA : A  A') (fB : B  B')
                    (x : csum A B) : csum A' B' :=
  match x with
  | Cinl a => Cinl (fA a)
  | Cinr b => Cinr (fB b)
  | CsumBot => CsumBot
  end.
Instance: Params (@csum_map) 4.

Lemma csum_map_id {A B} (x : csum A B) : csum_map id id x = x.
Proof. by destruct x. Qed.
Lemma csum_map_compose {A A' A'' B B' B''} (f : A  A') (f' : A'  A'')
                       (g : B  B') (g' : B'  B'') (x : csum A B) :
  csum_map (f'  f) (g'  g) x = csum_map f' g' (csum_map f g x).
Proof. by destruct x. Qed.
125
Lemma csum_map_ext {A A' B B' : ofeT} (f f' : A  A') (g g' : B  B') x :
126 127
  ( x, f x  f' x)  ( x, g x  g' x)  csum_map f g x  csum_map f' g' x.
Proof. by destruct x; constructor. Qed.
128
Instance csum_map_cmra_ne {A A' B B' : ofeT} n :
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
  Proper ((dist n ==> dist n) ==> (dist n ==> dist n) ==> dist n ==> dist n)
         (@csum_map A A' B B').
Proof. intros f f' Hf g g' Hg []; destruct 1; constructor; by apply Hf || apply Hg. Qed.
Definition csumC_map {A A' B B'} (f : A -n> A') (g : B -n> B') :
  csumC A B -n> csumC A' B' :=
  CofeMor (csum_map f g).
Instance csumC_map_ne A A' B B' n :
  Proper (dist n ==> dist n ==> dist n) (@csumC_map A A' B B').
Proof. by intros f f' Hf g g' Hg []; constructor. Qed.

Section cmra.
Context {A B : cmraT}.
Implicit Types a : A.
Implicit Types b : B.

(* CMRA *)
Instance csum_valid : Valid (csum A B) := λ x,
  match x with
  | Cinl a =>  a
  | Cinr b =>  b
  | CsumBot => False
  end.
Instance csum_validN : ValidN (csum A B) := λ n x,
  match x with
  | Cinl a => {n} a
  | Cinr b => {n} b
  | CsumBot => False
  end.
Instance csum_pcore : PCore (csum A B) := λ x,
  match x with
  | Cinl a => Cinl <$> pcore a
  | Cinr b => Cinr <$> pcore b
  | CsumBot => Some CsumBot
  end.
Instance csum_op : Op (csum A B) := λ x y,
  match x, y with
  | Cinl a, Cinl a' => Cinl (a  a')
  | Cinr b, Cinr b' => Cinr (b  b')
  | _, _ => CsumBot
  end.

Lemma Cinl_op a a' : Cinl a  Cinl a' = Cinl (a  a').
Proof. done. Qed.
Lemma Cinr_op b b' : Cinr b  Cinr b' = Cinr (b  b').
Proof. done. Qed.

Lemma csum_included x y :
  x  y  y = CsumBot  ( a a', x = Cinl a  y = Cinl a'  a  a')
                       ( b b', x = Cinr b  y = Cinr b'  b  b').
Proof.
  split.
  - intros [z Hy]; destruct x as [a|b|], z as [a'|b'|]; inversion_clear Hy; auto.
    + right; left; eexists _, _; split_and!; eauto. eexists; eauto.
    + right; right; eexists _, _; split_and!; eauto. eexists; eauto.
  - intros [->|[(a&a'&->&->&c&?)|(b&b'&->&->&c&?)]].
    + destruct x; exists CsumBot; constructor.
    + exists (Cinl c); by constructor.
    + exists (Cinr c); by constructor.
Qed.

Lemma csum_cmra_mixin : CMRAMixin (csum A B).
Proof.
  split.
  - intros n []; destruct 1; constructor; by cofe_subst.
  - intros ???? [n a a' Ha|n b b' Hb|n] [=]; subst; eauto.
    + destruct (pcore a) as [ca|] eqn:?; simplify_option_eq.
      destruct (cmra_pcore_ne n a a' ca) as (ca'&->&?); auto.
      exists (Cinl ca'); by repeat constructor.
    + destruct (pcore b) as [cb|] eqn:?; simplify_option_eq.
      destruct (cmra_pcore_ne n b b' cb) as (cb'&->&?); auto.
      exists (Cinr cb'); by repeat constructor.
  - intros ? [a|b|] [a'|b'|] H; inversion_clear H; cofe_subst; done.
  - intros [a|b|]; rewrite /= ?cmra_valid_validN; naive_solver eauto using O.
  - intros n [a|b|]; simpl; auto using cmra_validN_S.
  - intros [a1|b1|] [a2|b2|] [a3|b3|]; constructor; by rewrite ?assoc.
  - intros [a1|b1|] [a2|b2|]; constructor; by rewrite 1?comm.
  - intros [a|b|] ? [=]; subst; auto.
    + destruct (pcore a) as [ca|] eqn:?; simplify_option_eq.
      constructor; eauto using cmra_pcore_l.
    + destruct (pcore b) as [cb|] eqn:?; simplify_option_eq.
      constructor; eauto using cmra_pcore_l.
  - intros [a|b|] ? [=]; subst; auto.
    + destruct (pcore a) as [ca|] eqn:?; simplify_option_eq.
      feed inversion (cmra_pcore_idemp a ca); repeat constructor; auto.
    + destruct (pcore b) as [cb|] eqn:?; simplify_option_eq.
      feed inversion (cmra_pcore_idemp b cb); repeat constructor; auto.
  - intros x y ? [->|[(a&a'&->&->&?)|(b&b'&->&->&?)]]%csum_included [=].
    + exists CsumBot. rewrite csum_included; eauto.
    + destruct (pcore a) as [ca|] eqn:?; simplify_option_eq.
218
      destruct (cmra_pcore_mono a a' ca) as (ca'&->&?); auto.
219 220
      exists (Cinl ca'). rewrite csum_included; eauto 10.
    + destruct (pcore b) as [cb|] eqn:?; simplify_option_eq.
221
      destruct (cmra_pcore_mono b b' cb) as (cb'&->&?); auto.
222 223 224
      exists (Cinr cb'). rewrite csum_included; eauto 10.
  - intros n [a1|b1|] [a2|b2|]; simpl; eauto using cmra_validN_op_l; done.
  - intros n [a|b|] y1 y2 Hx Hx'.
225 226 227 228 229 230 231
    + destruct y1 as [a1|b1|], y2 as [a2|b2|]; inversion_clear Hx'.
      destruct (cmra_extend n a a1 a2) as (z1&z2&?&?&?); auto.
      exists (Cinl z1), (Cinl z2). by repeat constructor.
    + destruct y1 as [a1|b1|], y2 as [a2|b2|]; inversion_clear Hx'.
      destruct (cmra_extend n b b1 b2) as (z1&z2&?&?&?); auto.
      exists (Cinr z1), (Cinr z2). by repeat constructor.
    + by exists CsumBot, CsumBot; destruct y1, y2; inversion_clear Hx'.
232 233
Qed.
Canonical Structure csumR :=
234
  CMRAT (csum A B) csum_ofe_mixin csum_cmra_mixin.
235 236 237 238 239 240 241 242 243 244 245 246 247

Global Instance csum_cmra_discrete :
  CMRADiscrete A  CMRADiscrete B  CMRADiscrete csumR.
Proof.
  split; first apply _.
  by move=>[a|b|] HH /=; try apply cmra_discrete_valid.
Qed.

Global Instance Cinl_persistent a : Persistent a  Persistent (Cinl a).
Proof. rewrite /Persistent /=. inversion_clear 1; by repeat constructor. Qed.
Global Instance Cinr_persistent b : Persistent b  Persistent (Cinr b).
Proof. rewrite /Persistent /=. inversion_clear 1; by repeat constructor. Qed.

248
Global Instance Cinl_exclusive a : Exclusive a  Exclusive (Cinl a).
249
Proof. by move=> H[]? =>[/H||]. Qed.
250
Global Instance Cinr_exclusive b : Exclusive b  Exclusive (Cinr b).
251
Proof. by move=> H[]? =>[|/H|]. Qed.
252

253 254 255 256 257
Global Instance Cinl_cmra_homomorphism : CMRAHomomorphism Cinl.
Proof. split. apply _. done. Qed.
Global Instance Cinr_cmra_homomorphism : CMRAHomomorphism Cinr.
Proof. split. apply _. done. Qed.

258 259
(** Internalized properties *)
Lemma csum_equivI {M} (x y : csum A B) :
260 261 262 263 264 265
  x  y ⊣⊢ (match x, y with
            | Cinl a, Cinl a' => a  a'
            | Cinr b, Cinr b' => b  b'
            | CsumBot, CsumBot => True
            | _, _ => False
            end : uPred M).
266 267 268 269 270
Proof.
  uPred.unseal; do 2 split; first by destruct 1.
  by destruct x, y; try destruct 1; try constructor.
Qed.
Lemma csum_validI {M} (x : csum A B) :
271 272 273 274 275
   x ⊣⊢ (match x with
          | Cinl a =>  a
          | Cinr b =>  b
          | CsumBot => False
          end : uPred M).
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
Proof. uPred.unseal. by destruct x. Qed.

(** Updates *)
Lemma csum_update_l (a1 a2 : A) : a1 ~~> a2  Cinl a1 ~~> Cinl a2.
Proof.
  intros Ha n [[a|b|]|] ?; simpl in *; auto.
  - by apply (Ha n (Some a)).
  - by apply (Ha n None).
Qed.
Lemma csum_update_r (b1 b2 : B) : b1 ~~> b2  Cinr b1 ~~> Cinr b2.
Proof.
  intros Hb n [[a|b|]|] ?; simpl in *; auto.
  - by apply (Hb n (Some b)).
  - by apply (Hb n None).
Qed.
Lemma csum_updateP_l (P : A  Prop) (Q : csum A B  Prop) a :
  a ~~>: P  ( a', P a'  Q (Cinl a'))  Cinl a ~~>: Q.
Proof.
  intros Hx HP n mf Hm. destruct mf as [[a'|b'|]|]; try by destruct Hm.
  - destruct (Hx n (Some a')) as (c&?&?); naive_solver.
  - destruct (Hx n None) as (c&?&?); naive_solver eauto using cmra_validN_op_l.
Qed.
Lemma csum_updateP_r (P : B  Prop) (Q : csum A B  Prop) b :
  b ~~>: P  ( b', P b'  Q (Cinr b'))  Cinr b  ~~>: Q.
Proof.
  intros Hx HP n mf Hm. destruct mf as [[a'|b'|]|]; try by destruct Hm.
  - destruct (Hx n (Some b')) as (c&?&?); naive_solver.
  - destruct (Hx n None) as (c&?&?); naive_solver eauto using cmra_validN_op_l.
Qed.
Lemma csum_updateP'_l (P : A  Prop) a :
  a ~~>: P  Cinl a ~~>: λ m',  a', m' = Cinl a'  P a'.
Proof. eauto using csum_updateP_l. Qed.
Lemma csum_updateP'_r (P : B  Prop) b :
  b ~~>: P  Cinr b ~~>: λ m',  b', m' = Cinr b'  P b'.
Proof. eauto using csum_updateP_r. Qed.
311 312 313

Lemma csum_local_update_l (a1 a2 a1' a2' : A) :
  (a1,a2) ~l~> (a1',a2')  (Cinl a1,Cinl a2) ~l~> (Cinl a1',Cinl a2').
314
Proof.
315 316 317 318
  intros Hup n mf ? Ha1; simpl in *.
  destruct (Hup n (mf = maybe Cinl)); auto.
  { by destruct mf as [[]|]; inversion_clear Ha1. }
  split. done. by destruct mf as [[]|]; inversion_clear Ha1; constructor.
319
Qed.
320 321
Lemma csum_local_update_r (b1 b2 b1' b2' : B) :
  (b1,b2) ~l~> (b1',b2')  (Cinr b1,Cinr b2) ~l~> (Cinr b1',Cinr b2').
322
Proof.
323 324 325 326
  intros Hup n mf ? Ha1; simpl in *.
  destruct (Hup n (mf = maybe Cinr)); auto.
  { by destruct mf as [[]|]; inversion_clear Ha1. }
  split. done. by destruct mf as [[]|]; inversion_clear Ha1; constructor.
327
Qed.
328 329 330 331 332 333 334 335 336
End cmra.

Arguments csumR : clear implicits.

(* Functor *)
Instance csum_map_cmra_monotone {A A' B B' : cmraT} (f : A  A') (g : B  B') :
  CMRAMonotone f  CMRAMonotone g  CMRAMonotone (csum_map f g).
Proof.
  split; try apply _.
337
  - intros n [a|b|]; simpl; auto using cmra_monotone_validN.
338 339
  - intros x y; rewrite !csum_included.
    intros [->|[(a&a'&->&->&?)|(b&b'&->&->&?)]]; simpl;
340
    eauto 10 using cmra_monotone.
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
Qed.

Program Definition csumRF (Fa Fb : rFunctor) : rFunctor := {|
  rFunctor_car A B := csumR (rFunctor_car Fa A B) (rFunctor_car Fb A B);
  rFunctor_map A1 A2 B1 B2 fg := csumC_map (rFunctor_map Fa fg) (rFunctor_map Fb fg)
|}.
Next Obligation.
  by intros Fa Fb A1 A2 B1 B2 n f g Hfg; apply csumC_map_ne; try apply rFunctor_ne.
Qed.
Next Obligation.
  intros Fa Fb A B x. rewrite /= -{2}(csum_map_id x).
  apply csum_map_ext=>y; apply rFunctor_id.
Qed.
Next Obligation.
  intros Fa Fb A1 A2 A3 B1 B2 B3 f g f' g' x. rewrite /= -csum_map_compose.
  apply csum_map_ext=>y; apply rFunctor_compose.
Qed.

Instance csumRF_contractive Fa Fb :
  rFunctorContractive Fa  rFunctorContractive Fb 
  rFunctorContractive (csumRF Fa Fb).
Proof.
  by intros ?? A1 A2 B1 B2 n f g Hfg; apply csumC_map_ne; try apply rFunctor_contractive.
Qed.