coPset.v 4.12 KB
Newer Older
1
From iris.algebra Require Export cmra.
2
From iris.algebra Require Import updates local_updates.
3
From iris.prelude Require Export collections coPset.
4
Set Default Proof Using "Type".
5 6 7
(** This is pretty much the same as algebra/gset, but I was not able to
generalize the construction without breaking canonical structures. *)

8 9 10 11
(* The union CMRA *)
Section coPset.
  Implicit Types X Y : coPset.

12
  Canonical Structure coPsetC := discreteC coPset.
13 14 15

  Instance coPset_valid : Valid coPset := λ _, True.
  Instance coPset_op : Op coPset := union.
16
  Instance coPset_pcore : PCore coPset := Some.
17 18 19

  Lemma coPset_op_union X Y : X  Y = X  Y.
  Proof. done. Qed.
20
  Lemma coPset_core_self X : core X = X.
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
  Proof. done. Qed.
  Lemma coPset_included X Y : X  Y  X  Y.
  Proof.
    split.
    - intros [Z ->]. rewrite coPset_op_union. set_solver.
    - intros (Z&->&?)%subseteq_disjoint_union_L. by exists Z.
  Qed.

  Lemma coPset_ra_mixin : RAMixin coPset.
  Proof.
    apply ra_total_mixin; eauto.
    - solve_proper.
    - solve_proper.
    - solve_proper.
    - intros X1 X2 X3. by rewrite !coPset_op_union assoc_L.
    - intros X1 X2. by rewrite !coPset_op_union comm_L.
37
    - intros X. by rewrite coPset_core_self idemp_L.
38 39 40 41 42 43 44 45 46 47 48 49 50 51
  Qed.
  Canonical Structure coPsetR := discreteR coPset coPset_ra_mixin.

  Lemma coPset_ucmra_mixin : UCMRAMixin coPset.
  Proof. split. done. intros X. by rewrite coPset_op_union left_id_L. done. Qed.
  Canonical Structure coPsetUR :=
    discreteUR coPset coPset_ra_mixin coPset_ucmra_mixin.

  Lemma coPset_opM X mY : X ? mY = X  from_option id  mY.
  Proof. destruct mY; by rewrite /= ?right_id_L. Qed.

  Lemma coPset_update X Y : X ~~> Y.
  Proof. done. Qed.

52
  Lemma coPset_local_update X Y X' : X  X'  (X,Y) ~l~> (X',X').
53 54
  Proof.
    intros (Z&->&?)%subseteq_disjoint_union_L.
55 56
    rewrite local_update_unital_discrete=> Z' _ /leibniz_equiv_iff->.
    split. done. rewrite coPset_op_union. set_solver.
57 58 59 60
  Qed.
End coPset.

(* The disjoiny union CMRA *)
61 62 63 64
Inductive coPset_disj :=
  | CoPset : coPset  coPset_disj
  | CoPsetBot : coPset_disj.

65
Section coPset_disj.
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
  Arguments op _ _ !_ !_ /.
  Canonical Structure coPset_disjC := leibnizC coPset_disj.

  Instance coPset_disj_valid : Valid coPset_disj := λ X,
    match X with CoPset _ => True | CoPsetBot => False end.
  Instance coPset_disj_empty : Empty coPset_disj := CoPset .
  Instance coPset_disj_op : Op coPset_disj := λ X Y,
    match X, Y with
    | CoPset X, CoPset Y => if decide (X  Y) then CoPset (X  Y) else CoPsetBot
    | _, _ => CoPsetBot
    end.
  Instance coPset_disj_pcore : PCore coPset_disj := λ _, Some .

  Ltac coPset_disj_solve :=
    repeat (simpl || case_decide);
    first [apply (f_equal CoPset)|done|exfalso]; set_solver by eauto.

83
  Lemma coPset_disj_included X Y : CoPset X  CoPset Y  X  Y.
84 85 86 87 88 89
  Proof.
    split.
    - move=> [[Z|]]; simpl; try case_decide; set_solver.
    - intros (Z&->&?)%subseteq_disjoint_union_L.
      exists (CoPset Z). coPset_disj_solve.
  Qed.
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
  Lemma coPset_disj_valid_inv_l X Y :
     (CoPset X  Y)   Y', Y = CoPset Y'  X  Y'.
  Proof. destruct Y; repeat (simpl || case_decide); by eauto. Qed.
  Lemma coPset_disj_union X Y : X  Y  CoPset X  CoPset Y = CoPset (X  Y).
  Proof. intros. by rewrite /= decide_True. Qed.
  Lemma coPset_disj_valid_op X Y :  (CoPset X  CoPset Y)  X  Y.
  Proof. simpl. case_decide; by split. Qed.

  Lemma coPset_disj_ra_mixin : RAMixin coPset_disj.
  Proof.
    apply ra_total_mixin; eauto.
    - intros [?|]; destruct 1; coPset_disj_solve.
    - by constructor.
    - by destruct 1.
    - intros [X1|] [X2|] [X3|]; coPset_disj_solve.
    - intros [X1|] [X2|]; coPset_disj_solve.
    - intros [X|]; coPset_disj_solve.
    - exists (CoPset ); coPset_disj_solve.
    - intros [X1|] [X2|]; coPset_disj_solve.
  Qed.
  Canonical Structure coPset_disjR := discreteR coPset_disj coPset_disj_ra_mixin.

  Lemma coPset_disj_ucmra_mixin : UCMRAMixin coPset_disj.
  Proof. split; try apply _ || done. intros [X|]; coPset_disj_solve. Qed.
  Canonical Structure coPset_disjUR :=
    discreteUR coPset_disj coPset_disj_ra_mixin coPset_disj_ucmra_mixin.
116
End coPset_disj.