excl.v 7.16 KB
Newer Older
1 2
From iris.algebra Require Export cmra.
From iris.algebra Require Import upred.
Robbert Krebbers's avatar
Robbert Krebbers committed
3 4
Local Arguments validN _ _ _ !_ /.
Local Arguments valid _ _  !_ /.
Robbert Krebbers's avatar
Robbert Krebbers committed
5 6 7 8 9 10

Inductive excl (A : Type) :=
  | Excl : A  excl A
  | ExclBot : excl A.
Arguments Excl {_} _.
Arguments ExclBot {_}.
Robbert Krebbers's avatar
Robbert Krebbers committed
11 12 13 14

Notation Excl' x := (Some (Excl x)).
Notation ExclBot' := (Some ExclBot).

Robbert Krebbers's avatar
Robbert Krebbers committed
15 16
Instance maybe_Excl {A} : Maybe (@Excl A) := λ x,
  match x with Excl a => Some a | _ => None end.
Robbert Krebbers's avatar
Robbert Krebbers committed
17

18 19
Section excl.
Context {A : cofeT}.
Robbert Krebbers's avatar
Robbert Krebbers committed
20 21
Implicit Types a b : A.
Implicit Types x y : excl A.
22

Robbert Krebbers's avatar
Robbert Krebbers committed
23
(* Cofe *)
24
Inductive excl_equiv : Equiv (excl A) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
25
  | Excl_equiv a b : a  b  Excl a  Excl b
Robbert Krebbers's avatar
Robbert Krebbers committed
26 27
  | ExclBot_equiv : ExclBot  ExclBot.
Existing Instance excl_equiv.
28
Inductive excl_dist : Dist (excl A) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
29
  | Excl_dist a b n : a {n} b  Excl a {n} Excl b
30
  | ExclBot_dist n : ExclBot {n} ExclBot.
Robbert Krebbers's avatar
Robbert Krebbers committed
31
Existing Instance excl_dist.
Robbert Krebbers's avatar
Robbert Krebbers committed
32

Robbert Krebbers's avatar
Robbert Krebbers committed
33
Global Instance Excl_ne n : Proper (dist n ==> dist n) (@Excl A).
34 35 36
Proof. by constructor. Qed.
Global Instance Excl_proper : Proper (() ==> ()) (@Excl A).
Proof. by constructor. Qed.
37
Global Instance Excl_inj : Inj () () (@Excl A).
38
Proof. by inversion_clear 1. Qed.
39
Global Instance Excl_dist_inj n : Inj (dist n) (dist n) (@Excl A).
40
Proof. by inversion_clear 1. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
41

42
Program Definition excl_chain (c : chain (excl A)) (a : A) : chain A :=
Robbert Krebbers's avatar
Robbert Krebbers committed
43
  {| chain_car n := match c n return _ with Excl y => y | _ => a end |}.
44
Next Obligation. intros c a n i ?; simpl. by destruct (chain_cauchy c n i). Qed.
45
Instance excl_compl : Compl (excl A) := λ c,
46
  match c 0 with Excl a => Excl (compl (excl_chain c a)) | x => x end.
47
Definition excl_cofe_mixin : CofeMixin (excl A).
Robbert Krebbers's avatar
Robbert Krebbers committed
48 49
Proof.
  split.
Robbert Krebbers's avatar
Robbert Krebbers committed
50
  - intros x y; split; [by destruct 1; constructor; apply equiv_dist|].
Robbert Krebbers's avatar
Robbert Krebbers committed
51 52
    intros Hxy; feed inversion (Hxy 1); subst; constructor; apply equiv_dist.
    by intros n; feed inversion (Hxy n).
53
  - intros n; split.
Robbert Krebbers's avatar
Robbert Krebbers committed
54
    + by intros []; constructor.
Robbert Krebbers's avatar
Robbert Krebbers committed
55
    + by destruct 1; constructor.
56
    + destruct 1; inversion_clear 1; constructor; etrans; eauto.
57
  - by inversion_clear 1; constructor; apply dist_S.
58 59 60
  - intros n c; rewrite /compl /excl_compl.
    feed inversion (chain_cauchy c 0 n); first auto with lia; constructor.
    rewrite (conv_compl n (excl_chain c _)) /=. destruct (c n); naive_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
61
Qed.
62
Canonical Structure exclC : cofeT := CofeT (excl A) excl_cofe_mixin.
63 64 65 66
Global Instance excl_discrete : Discrete A  Discrete exclC.
Proof. by inversion_clear 2; constructor; apply (timeless _). Qed.
Global Instance excl_leibniz : LeibnizEquiv A  LeibnizEquiv (excl A).
Proof. by destruct 2; f_equal; apply leibniz_equiv. Qed.
67

Robbert Krebbers's avatar
Robbert Krebbers committed
68
Global Instance Excl_timeless a : Timeless a  Timeless (Excl a).
Robbert Krebbers's avatar
Robbert Krebbers committed
69
Proof. by inversion_clear 2; constructor; apply (timeless _). Qed.
70
Global Instance ExclBot_timeless : Timeless (@ExclBot A).
Robbert Krebbers's avatar
Robbert Krebbers committed
71
Proof. by inversion_clear 1; constructor. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
72 73

(* CMRA *)
74
Instance excl_valid : Valid (excl A) := λ x,
Robbert Krebbers's avatar
Robbert Krebbers committed
75
  match x with Excl _ => True | ExclBot => False end.
76
Instance excl_validN : ValidN (excl A) := λ n x,
Robbert Krebbers's avatar
Robbert Krebbers committed
77 78 79
  match x with Excl _ => True | ExclBot => False end.
Instance excl_pcore : PCore (excl A) := λ _, None.
Instance excl_op : Op (excl A) := λ x y, ExclBot.
Robbert Krebbers's avatar
Robbert Krebbers committed
80

81
Lemma excl_cmra_mixin : CMRAMixin (excl A).
Robbert Krebbers's avatar
Robbert Krebbers committed
82
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
83
  split; try discriminate.
84 85
  - by intros n []; destruct 1; constructor.
  - by destruct 1; intros ?.
86
  - intros x; split. done. by move=> /(_ 0).
Robbert Krebbers's avatar
Robbert Krebbers committed
87 88 89 90
  - intros n [?|]; simpl; auto with lia.
  - by intros [?|] [?|] [?|]; constructor.
  - by intros [?|] [?|]; constructor.
  - by intros n [?|] [?|].
91 92 93 94 95
  - intros n x y1 y2 ? Hx.
    by exists match y1, y2 with
      | Excl a1, Excl a2 => (Excl a1, Excl a2)
      | ExclBot, _ => (ExclBot, y2) | _, ExclBot => (y1, ExclBot)
      end; destruct y1, y2; inversion_clear Hx; repeat constructor.
Robbert Krebbers's avatar
Robbert Krebbers committed
96
Qed.
97
Canonical Structure exclR :=
98
  CMRAT (excl A) excl_cofe_mixin excl_cmra_mixin.
99

100
Global Instance excl_cmra_discrete : Discrete A  CMRADiscrete exclR.
101 102
Proof. split. apply _. by intros []. Qed.

103 104
(** Internalized properties *)
Lemma excl_equivI {M} (x y : excl A) :
105
  (x  y)  (match x, y with
106
               | Excl a, Excl b => a  b
Robbert Krebbers's avatar
Robbert Krebbers committed
107
               | ExclBot, ExclBot => True
108
               | _, _ => False
109
               end : uPred M).
110 111 112
Proof.
  uPred.unseal. do 2 split. by destruct 1. by destruct x, y; try constructor.
Qed.
113
Lemma excl_validI {M} (x : excl A) :
Robbert Krebbers's avatar
Robbert Krebbers committed
114
   x  (if x is ExclBot then False else True : uPred M).
115
Proof. uPred.unseal. by destruct x. Qed.
116

117
(** ** Local updates *)
Robbert Krebbers's avatar
Robbert Krebbers committed
118 119
Global Instance excl_local_update y :
  LocalUpdate (λ x, if x is Excl _ then  y else False) (λ _, y).
Robbert Krebbers's avatar
Robbert Krebbers committed
120
Proof. split. apply _. by destruct y; intros n [a|] [b'|]. Qed.
121

122
(** Updates *)
Robbert Krebbers's avatar
Robbert Krebbers committed
123
Lemma excl_update a y :  y  Excl a ~~> y.
Robbert Krebbers's avatar
Robbert Krebbers committed
124
Proof. destruct y=> ? n [z|]; eauto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
125
Lemma excl_updateP (P : excl A  Prop) a y :  y  P y  Excl a ~~>: P.
Robbert Krebbers's avatar
Robbert Krebbers committed
126 127 128 129 130 131 132 133 134 135 136 137
Proof. destruct y=> ?? n [z|]; eauto. Qed.

(** Option excl *)
Lemma excl_validN_inv_l n mx a : {n} (Excl' a  mx)  mx = None.
Proof. by destruct mx. Qed.
Lemma excl_validN_inv_r n mx a : {n} (mx  Excl' a)  mx = None.
Proof. by destruct mx. Qed.
Lemma Excl_includedN n a mx : {n} mx  Excl' a {n} mx  mx {n} Excl' a.
Proof.
  intros Hvalid; split; [|by intros ->].
  intros [z ?]; cofe_subst. by rewrite (excl_validN_inv_l n z a).
Qed.
138 139 140
End excl.

Arguments exclC : clear implicits.
141
Arguments exclR : clear implicits.
Robbert Krebbers's avatar
Robbert Krebbers committed
142

Robbert Krebbers's avatar
Robbert Krebbers committed
143
(* Functor *)
144
Definition excl_map {A B} (f : A  B) (x : excl A) : excl B :=
Robbert Krebbers's avatar
Robbert Krebbers committed
145
  match x with Excl a => Excl (f a) | ExclBot => ExclBot end.
146
Lemma excl_map_id {A} (x : excl A) : excl_map id x = x.
147
Proof. by destruct x. Qed.
148 149
Lemma excl_map_compose {A B C} (f : A  B) (g : B  C) (x : excl A) :
  excl_map (g  f) x = excl_map g (excl_map f x).
150
Proof. by destruct x. Qed.
151 152 153
Lemma excl_map_ext {A B : cofeT} (f g : A  B) x :
  ( x, f x  g x)  excl_map f x  excl_map g x.
Proof. by destruct x; constructor. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
154
Instance excl_map_ne {A B : cofeT} n :
155
  Proper ((dist n ==> dist n) ==> dist n ==> dist n) (@excl_map A B).
Robbert Krebbers's avatar
Robbert Krebbers committed
156
Proof. by intros f f' Hf; destruct 1; constructor; apply Hf. Qed.
157 158
Instance excl_map_cmra_monotone {A B : cofeT} (f : A  B) :
  ( n, Proper (dist n ==> dist n) f)  CMRAMonotone (excl_map f).
Robbert Krebbers's avatar
Robbert Krebbers committed
159
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
160
  split; try apply _.
Robbert Krebbers's avatar
Robbert Krebbers committed
161
  - by intros n [a|].
Robbert Krebbers's avatar
Robbert Krebbers committed
162 163
  - intros x y [z Hy]; exists (excl_map f z); apply equiv_dist=> n.
    move: Hy=> /equiv_dist /(_ n) ->; by destruct x, z.
Robbert Krebbers's avatar
Robbert Krebbers committed
164
Qed.
165
Definition exclC_map {A B} (f : A -n> B) : exclC A -n> exclC B :=
166
  CofeMor (excl_map f).
167
Instance exclC_map_ne A B n : Proper (dist n ==> dist n) (@exclC_map A B).
Robbert Krebbers's avatar
Robbert Krebbers committed
168
Proof. by intros f f' Hf []; constructor; apply Hf. Qed.
Ralf Jung's avatar
Ralf Jung committed
169

Robbert Krebbers's avatar
Robbert Krebbers committed
170 171 172
Program Definition exclRF (F : cFunctor) : rFunctor := {|
  rFunctor_car A B := (exclR (cFunctor_car F A B));
  rFunctor_map A1 A2 B1 B2 fg := exclC_map (cFunctor_map F fg)
173
|}.
174 175 176
Next Obligation.
  intros F A1 A2 B1 B2 n x1 x2 ??. by apply exclC_map_ne, cFunctor_ne.
Qed.
177 178 179 180 181 182 183 184
Next Obligation.
  intros F A B x; simpl. rewrite -{2}(excl_map_id x).
  apply excl_map_ext=>y. by rewrite cFunctor_id.
Qed.
Next Obligation.
  intros F A1 A2 A3 B1 B2 B3 f g f' g' x; simpl. rewrite -excl_map_compose.
  apply excl_map_ext=>y; apply cFunctor_compose.
Qed.
185

Robbert Krebbers's avatar
Robbert Krebbers committed
186 187
Instance exclRF_contractive F :
  cFunctorContractive F  rFunctorContractive (exclRF F).
188
Proof.
189
  intros A1 A2 B1 B2 n x1 x2 ??. by apply exclC_map_ne, cFunctor_contractive.
190
Qed.